Central angle of arc APB + Central angle of arc AQB $=360^{\circ}$

Eg: The central angle of an arc APB is $\mathbf{8 0 ^ { \circ }}$. What
is the central angle of an arc AQB ?

Central angle of arc AQB = 360-80=280 ${ }^{\circ}$

2 The angle in a semicircle is a right angle.
C is a point on the circle, then $\angle A C B=90^{\circ}$

D is a point inside the circle, then $\angle \mathrm{ADB}>\mathbf{9 0}^{\circ}$
E is a point outside the circle, then $<$ AEB $<90^{\circ}$

All angles inscribed in an arc are equal.

$$
\begin{aligned}
& \angle \mathrm{ACD}=\angle \mathrm{ABD} \\
& \angle \mathrm{CAB}=<\mathrm{CDB}
\end{aligned}
$$

Eg: In figure $<\mathrm{BAC}=\mathbf{2 5 ^ { \circ }}$, Find $<\mathrm{BDC}$.

$$
<B A C=<B D C=25^{\circ} \text {, because they are in the same arc. }
$$

The angle made by an arc at its alternate arc is
half the central angle of the arc.
$\mathrm{Eg}:$ If $\angle A O B=100^{\circ}$, find $\angle A Q B$?

$$
<\mathrm{AQB}=\frac{1}{2} \times 100=50^{\circ}
$$

The opposite angles of a cyclic quadrilateral are supplimentary .
$\angle B+\angle D=180^{\circ} \quad$ and $\angle A+\angle C=180^{\circ}$
Eg : In a cyclic quadrilateral ABCD , if $\angle \mathrm{A}=75^{\circ}$ find $<\mathrm{C}$?

$$
<C=180-75=105^{\circ}
$$

In figure, PA and PB are tangent of the circle with centre ' O '
(1) $<\mathrm{PAB}=\angle \mathrm{PBA}$
(2) $\angle \mathrm{OAQ}=<\mathrm{OBQ}$
(3) $A Q=B Q$
(4) $\triangle A O Q, \triangle P A Q, \triangle P O A$ are similar right angled triangle.

(5) $\triangle B O Q, \triangle P B Q, \triangle P O B$ are similar right angled triangle.
(6) $O Q \times Q P=Q A^{2}, O Q \times O P=O A^{2}$
The angle made by a tangent and a chord at a point on
a circle is equal to half the central angle of the chord.

$$
<Q A B=\frac{1}{2}<A O B
$$

The sides of the large triangle touch the circle
at A, B and C respectively,

$$
\begin{aligned}
& \angle \mathrm{QAB}=\angle \mathrm{QBA}=\angle \mathrm{ACB} \\
& \angle \mathrm{PAC}=\angle \mathrm{PCA}=\angle \mathrm{ABC} \\
& \angle \mathrm{RBC}=\angle \mathrm{RCB}=\angle \mathrm{BAC}
\end{aligned}
$$

If a quadrilateral is formed by drawing tangents
through 4 points of a circle, then the sum of pairs of its opposite sides are equal.

$$
A B+C D=A D+B C
$$

17 In a circle , the tangent at a point C on the circle and
the chord BA extended meet at a point P
outside the circle , then
(1) $\triangle P A C, \triangle P B C$ are similar triangle
(2) $\mathrm{PA} \times \mathrm{PB}=\mathrm{PC}^{2}$
$E g: P A=4 \mathrm{~cm}, A B=5 \mathrm{~cm}$, Find $P C$.

$\mathrm{PA} \times \mathrm{PB}=\mathrm{PC}^{2}$ impllies $4 \times(4+5)=\mathrm{PC}^{2}$
$P C=6 \mathrm{~cm}$
visit www.shenischool.in or whatsapp 7012498606

