Polynomials

An algebraic expression is a polynomial if all the terms contains the same variable and the powers are non negative integers.

Eg: $x^{2}-3 x+2$ Here the variable is x and powers of x are non negative integers.

A polynomial in the variable x is represented by $p(x)$.
That is, $p(x)=x^{2}-3 x+2$
A polynomial in the variable y is represented by $p(y)$.
Using the identity $\mathbf{x}^{2}-y^{2}=(x+y)(x-y)$
$x^{2}-1=(x+1)(x-1)$
$x^{2}-4=x^{2}-2=(x+2)(x-2)$
$x^{2}-1, x^{2}-4, x^{2}-3 x+2$ are second degree polynomials.
Degree of a polynomial
Degree of a polynomial is the degree of its highest degree
term.
$\mathrm{x}^{2}-1=(\mathrm{x}+1)(\mathrm{x}-1)$
Jaisingh G R ;HST(Maths) Govt.V\&HSS Kulathoor

We can write a second degree polynomial as the product of two first degree polynomials.

Factors and solutions

When we write a number as the product of two numbers, those multiplied numbers are called factors.

Eg: $10=5 \times 2$
Here 5 and 2 are factors of 10
If $p(x)$ is the product of $q(x)$ and $r(x)$, then $q(x)$ and $r(x)$ are factors of $p(x)$.

Using the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$ we can write
$(x+3)(x+1)=x^{2}+(3+1) x+3 \times 1=x^{2}+4 x+3$
$(x-1)(x-2)=x^{2}+(-1+-2) x+-1 \times-2=x^{2}-3 x+2$
That is, $x^{2}-3 x+2=(x-1)(x-2)$
Here the first degree polynomials $x-1, x-2$ are the factors of the second degree polynomial $x^{2}-3 x+2$
In the polynomial $p(x)=x^{2}-3 x+2$, find $p(1)$ and $p(2)$.
$p(x)=x^{2}-3 x+2$
$p(1)=1^{2}-3 \times 1+2=1-3+2=3-3=0$

$$
\begin{aligned}
& p(x)=x^{2}-3 x+2=(x-1)(x-2) \\
& p(1)=(1-1)(1-2)=0 \times-1=0
\end{aligned}
$$

Therefore, $(x-1)$ is a factor of $p(x)=x^{2}-3 x+2$
$p(2)=2^{2}-3 \times 2+2=4-6+2=6-6 \xlongequal{-} 0$
or
$p(2)=(2-1)(2-2)=1 \times 0=0$
$(x-1)$ is a factor $0 f p(x)$, then $p(1)=0$
$(\mathrm{x}-2)$ is a factor $0 \mathrm{p}(\mathrm{x})$, then $\mathrm{p}(2)=0$

$$
p(x)=x^{2}-3 x+2
$$

If $p(x)=0$, then

$$
\begin{aligned}
& x^{2}-3 x+2=0 \\
& (x-1)(x-2)=0 \\
& (x-1)=0 \text { or }(x-2)=0 \\
& x=1 \text { or } x=2
\end{aligned}
$$

That is,
if $\mathbf{x}=\mathbf{1}$, 2 then the equation $x^{2}-3 x+2=0$ becomes true. These numbers are the solutions of the equation.

If the first degree polynomial ($\mathrm{x}-\mathrm{a}$) is a factor of the polynomial $p(x)$; then $p(a)=0$; that is, a is a solution of the equation $p(x)=0$

If the polynomial $p(x)$ can be split into first degree factors as $p(x)=\left(x-a_{1}\right)\left(x-a_{1}\right) \ldots\left(x-a_{n}\right)$ then the numbers $a_{1}, a_{2}, \ldots, a_{n}$ are the solutions of the equation $p(x)=0$

Activity

Write the second degree polynomial as the product of two first degree polynomials.

1. $\mathbf{p}(\mathrm{x})=\mathrm{x}^{2}-7 \mathrm{x}+12$
$x^{2}-7 x+12=x^{2}+(a+b) x+a b$
Here $\mathbf{a b}=12$

$$
a+b=-7
$$

That is, product of twonumbers = 12

$$
\text { sum of two numbers }=-7
$$

Therefore, the numbers's are -3 and -4
That is, $a=-3, b=-4$
That is, $\quad x^{2}-7 x+12=(x-3)(x-4)$

$$
p(x)=x^{2}-7 x+12
$$

If $\mathbf{p}(\mathbf{x})=0$, then $\mathbf{x}^{2}-7 x+12=0$

$$
\begin{aligned}
& (x-3)(x-4)=0 \\
& (x-3)=0 \text { or }(x-4)=0 \\
& x=3 \text { or } x=4
\end{aligned}
$$

These are the solutions of the equation $x^{2}-7 x+12=0$
2. $p(x)=x^{2}-12 x-13$

$$
x^{2}-12 x-13=x^{2}+(a+b) x+a b
$$

Here $\quad \mathbf{a b}=-13$

$$
a+b=-12
$$

That is, product of two numbers $=\mathbf{- 1 3}$ sum of two numbers $=-12$

Therefore, the numbers are -13 and 1
Therefore, $a=-13, b=1$
Therefore, $x^{2}-12 x-13=(x-13)(x+1)$
If $p(x)=0$, then $\quad x^{2}-12 x-13=0$

$$
\begin{aligned}
& (x-13)(x+1)=0 \\
& (x+13)=0 \text { or }(x+1)=0 \\
& x=13 \text { or } x=-1
\end{aligned}
$$

These are the solutions of the equation $x^{2}-12 x-13=0$

Assignment

Write the second degree polynomials given below as the product of two first degree polynomials. Find also the solutions of the equation $p(x)=0$ in each.

1. $\mathbf{p}(\mathbf{x})=\mathbf{x}^{2}+7 \mathbf{x}+12$
2. $p(x)=x^{2}-8 x+12$
3. $p(x)=x^{2}+13 x+12$
4. $p(x)=x^{2}+12 x-13$

Function

- $f(x)=\sin (x)$
- $\mathrm{g}(\mathrm{x})=$.
- $M(x)=x-\frac{x^{3}}{6}$

Based on the first bell class on 07-01-2021

Assignment on 05-01-2021
Write the second degree polynomials given below as the product of two first degree polynomials. Find also the solutions of the equation $p(x)=0$ in each.

1. $p(x)=x^{2}+7 x+12$
2. $p(x)=x^{2}+13 x+12$
3. $p(x)=x^{2}-8 x+12$
4. $p(x)=x^{2}+12 x-13$

Answers

1. $p(x)=x^{2}+7 x+12$

$$
\begin{aligned}
& (x+a)(x+b)=x^{2}+(a+b) x+a b \\
& x^{2}+7 x+12=x^{2}+(a+b) x+a b
\end{aligned}
$$

Therefore, $a+b=7$

$$
\mathrm{ab}_{y}=12
$$

That is, Sum of two numbers = 7

Their product $=12$

Therefore, $a=3 \quad b=4$
Therefore, $x^{2}+7 x+12=(x+3)(x+4)$

Therefore,

$$
(x+3)(x+4)=0
$$

That is,

$$
(x+3)=0 \text { or }(x+4)=0
$$

That is,

Therefore,

$$
x=-3, x=-4 \text { are the solutions of } \hat{p}(x)=x^{2}+7 x+12
$$

2. $p(x)=x^{2}-8 x+12$

$$
\begin{aligned}
& (x+a)(x+b)=x^{2}+(a+b) x+a b \\
& x^{2}-8 x+12=x^{2}+(a+b) x+a b
\end{aligned}
$$

Therefore, $a+b=-8$

$$
a b=12
$$

That is, \quad sum of two numbers $=-8$
Their pródúct $=12$
Therefore, $a=-6 \quad b^{\prime}=-2$
Therefore, $x^{2}-8 x+12=(x-6)(x-2)$
If $p(x)=0$, then $x^{2}-8 x+12=0$
Therefore,

$$
(x-6)(x-2)=0
$$

That is,

$$
(x-6)=0 \text { or }(x-2)=0
$$

That is,

$$
x=6 \text { or } x=2
$$

Therefore,

$$
x=6, x=2 \text { are the solutions of } p(x)=x^{2}-8 x+12
$$

3. $p(x)=x^{2}+13 x+12$

$$
\begin{aligned}
& (x+a)(x+b)=x^{2}+(a+b) x+a b \\
& x^{2}+13 x+12=x^{2}+(a+b) x+a b
\end{aligned}
$$

Therefore, $\mathbf{a}+\mathbf{b}=13$
$a b=12$
That is, \quad sum of two numbers $=13$
Their product $=12$
Therefore, $a=12 \quad b=1$
Therefore, $x^{2}+13 x+12=(x+12)(x+1)$
If $p(x)=0$, then $x^{2}+13 x+12=0$
Therefore,

$$
(x+12)(x+1)=0
$$

That is,

$$
(x+12)=0 \text { or }(x+1)=0
$$

That is,

$$
x^{\prime}=-12 \text { or } x=-1
$$

Therefore,

$$
x=-12, x=-1 \text { are the solutions of } p(x)=x^{2}+13 x+12
$$

4. $p(x)=x^{2}+12 x-13$

$$
\begin{aligned}
& (x+a)(x+b)=x^{2}+(a+b) x+a b \\
& x^{2}+12 x-13=x^{2}+(a+b) x+a b
\end{aligned}
$$

Therefore, $a+b=12$

$$
a b=-13
$$

Their product $=\mathbf{- 1 3}$

Therefore, $a=-1 \quad b=13$
Therefore, $x^{2}+12 x-13=(x-1)(x+13)$
If $p(x)=0$, then $x^{2}+12 x-13=0$
Therefore,

$$
(x-1)(x+13)=0
$$

That is,

$$
(x-1)=0 \text { or }(x+13)=0
$$

That is,

$$
x=1 \text { or } x=-13
$$

Therefore,

$$
x=1, x=-13 \text { are the solutions of } p(x)=x^{2}+12 x-13
$$

Note:

We know that $x^{2}-a^{2}=(x+a)(x-a)$
That is, ($x-a$) is a factor of $x^{2}-a^{2}$
Let

$$
\begin{aligned}
& p(x)=x^{2} \\
& p(a)=a^{2} \\
& p(x)-p(a)=x^{2}-a^{2} \\
& =(x+a)(x-a)
\end{aligned}
$$

That is, $(x-a)$ is a factor of $p(x)-p(a)$.
Example:1
Let $p(x)=3 x^{2}+2 x-1$

$$
\mathbf{p}(\mathbf{a})=3 \mathbf{a}^{2}+2 \mathbf{a}-1
$$

$$
\begin{aligned}
\mathbf{p}(\mathbf{x})-\mathbf{p}(\mathbf{a}) & =3 x^{2}+2 x-1-\left(3 a^{2}+2 a-1\right) \\
& =3 x^{2}+2 x-1-3 a^{2}-2 a+1 \\
& =3 x^{2}+2 x-3 a^{2}-2 a \\
& =3 x^{2}-3 a^{2}+2 x-2 a \\
& =3\left(x^{2}-a^{2}\right)+2(x-a) \\
& =3(x+a)(x-a)+2(x-a) \\
& =(x-a)[3(x+a)+2]
\end{aligned}
$$

That is, $(x-a)$ is a factor of $p(x)-p(a)$.

Example: 2

Let $p(x)=1 x^{2}+m x+n$

$$
\mathbf{p}(\mathbf{a})=\mathbf{l} \mathbf{a}^{2}+\mathbf{m a}+\mathbf{n}
$$

$$
\mathbf{p}(\mathbf{x})-\mathbf{p}(\mathbf{a})=\mathbf{l} \mathbf{x}^{2}+\mathbf{m} \mathbf{x}+\mathbf{n}-\left(\mathbf{l a}^{2}+\mathbf{m a}+\mathbf{n}\right)
$$

$$
=\mathbf{l} \mathbf{x}^{2} \text { 午 } \mathbf{m} x+\mathbf{n}-\mathbf{l a}^{2}-\mathbf{m a}-\mathbf{n}
$$

$$
=\mathbf{l} \mathbf{x}^{2}+\mathbf{m x}-\mathbf{l a}^{2}-\mathbf{m a}
$$

$$
=\mathbf{l} \mathbf{x}^{2}-\mathbf{l} \mathbf{a}^{2}+\mathbf{m x}-\mathbf{m a}
$$

$$
=l\left(x^{2}-a^{2}\right)+m(x-a)
$$

$$
=\mathbf{l}(\mathbf{x}+\mathbf{a})(\mathbf{x}-\mathbf{a})+\mathbf{m}(\mathbf{x}-\mathbf{a})
$$

$$
=(x-a)[l(x+a)+m]
$$

$$
=(x-a)[1 \mathbf{x}+1 \mathbf{l a}+\mathbf{m}]
$$

$$
=(\mathbf{x}-\mathbf{a})[\mathbf{l x}+(\mathbf{l a}+\mathbf{m})]
$$

That is, (x-a) is a factor of $p(x)-p(a)$.

For any second degree polynomial $p(x)$ and for any number a, the polynomial $x-a$ is a factor of the polynomial $p(x)-p(a)$.

For any second degree polynomial $p(x)$ and for any number a, if $p(a)=0$, then the first degree polynomial $x-a$ is a factor of the polynomial $p(x)$

In each pair of polynomials given below, find the number to be subtracted from the first to get a polynomial for which the second is a factor. Find also the second factor of the polynomial got on subtracting the number.
(i) $x^{2}-3 x+5, x-4$
(iii) $x^{2}+4 x+6, x+1$
(ii) $x^{2}-3 x+5, x+4$

Activity

Answer(i) $x^{2}-3 x+5 ; x-4$
Let $p(x)=x^{2}-3 \bar{x}+5$
$(x-a)$ is a factor of $p(x)-p(a)$
Therefore, $(x-4)$ is a factor of $p(x)-p(4)$

$$
\begin{aligned}
\hat{\mathbf{\rho}}(4) & =4^{2}-3 \times 4+5 \\
& =16-12+5=4+5=9
\end{aligned}
$$

That is, 9 is to be subtracted from $x^{2}-3 x+5$ to get a polynomial in which $\mathrm{x}-4$ is a factor.

$$
p(x)-9=x^{2}-3 x+5-9=x^{2}-3 x-4
$$

That is, $\quad x-4$ is a factor of $x^{2}-3 x-4$
We have to find the second factor of $x^{2}-3 x-4$

$$
\begin{aligned}
& (x+a)(x+b)=x^{2}+(a+b) x+a b \\
& x^{2}-3 x-4=x^{2}+(a+b) x+a b
\end{aligned}
$$

Therefore, $a+b=-3 \quad a b=-4$

$$
-4+1=-3 \quad-4 \times 1=-4
$$

Therefore, $a=-4 \quad b=1$
Therefore, $x^{2}-3 x-4=(x-4)(x+1)$
(ii) $x^{2}-3 x+5 ; x+4$

$$
x+4=x-(-4)
$$

Let $\mathbf{p}(\mathbf{x})=\mathbf{x}^{2}-3 x+5$
$(x-a)$ is a factor of $p(x)-p(a)$
Therefore, $x-(-4)$ is a factor of $p(x)-p(-4)$

$$
\begin{aligned}
\mathbf{p}(-4) & =(-4)^{2}-3 \times-4+5 \\
& =16+12+5=28+5=33
\end{aligned}
$$

That is, 33 is to be subtracted from $x^{2}-3 x+5$ to get a polynomial in which $\mathrm{x}+4$ is a factor.

$$
p(x)-33=x^{2}-3 x+5-33=x^{2}-3 x-28
$$

That is, $\quad x+4$ is a factor of $x^{2}-3 x-28$

$$
\begin{aligned}
& (x+a)(x+b)=x^{2}+(a+b) x+a b \\
& x^{2}-3 x-28=x^{2}+(a+b) x+a b
\end{aligned}
$$

Therefore, $\mathbf{a}+\mathbf{b}=-3 \quad \mathbf{a b}=-28$

$$
-7+4=-3 \quad-7 \times 4=-28
$$

Therefore, $\mathbf{a}=-7 \quad b=4$
Therefore, $x^{2}-3 x-28=(x+4)(x-7)$
(iii) $x^{2}+4 x+6 ; x+1$

$$
x+1=x-(-1)
$$

Let $p(x)=x^{2}+4 x+6$
$(x-a)$ is a factor of $p(x)-p(a)$
Therefore, $x-(-1)$ is a factor of $p(x)-p(-1)$

$$
\begin{aligned}
\mathbf{p}(-1) & =(-1)^{2}+4 \times-1+6 \\
& =1-4+6=7-3=3
\end{aligned}
$$

That is, 3 is to be subtracted from $x^{2}+4 x+6$ to get a polynomial in which $x+1$ is a factor.

$$
p(x)-3=x^{2}+4 x+6-3=x^{2}+4 x+3
$$

That is, $\quad x+1$ is a factor of $x^{2}+4 x+3$
We have to find the second factor of $x^{2}+4 x+3$

$$
\begin{aligned}
& (x+a)(x+b)=x^{2}+(a+b) x+a b \\
& x^{2}+4 x+3=x^{2}+(a+b) x+a b
\end{aligned}
$$

Therefore, $\mathbf{a}+\mathbf{b}=4 \quad \mathbf{a b}=3$

$$
1+3=4 \quad 1 \times 3=3
$$

Therefore, $\mathbf{a}=1 \quad b=3$
Therefore, $x^{2}+4 x+3=(x+1)(x+3)$

Assignment

In each pair of polynomials given below, find the number to be subtracted from the first to get a polynomial for which the second is a factor. Find also the second factor of the polynomial got on subtracting the number.
(i) $x^{2}+5 x-7, x-1$
(ii) $\mathrm{x}^{2}-4 \mathrm{x}-3, \mathrm{x}-1$

Jaisingh G R ;HST(Maths) Govt.V\&HSS Kulathoor

Assignment on 07-01-2021

In each pair of polynomials given betow, find the number to be subtracted from the first to get a polynomial for which the second is a factor. Find also the second factor of the polynomial got on subtracting the number.
(i) $x^{2}+5 x-7, x-1$
(ii) $x^{2}-4 x-3, x-1$

Answer

(i) $x^{2}+5 x-7, x-1$

Let $\mathbf{p}(\mathbf{x})=\mathrm{x}^{2}+5 \mathrm{x}-7$
$(x-a)$ is a factor of $p(x)-p(a)$
Therefore, $(x-1)$ is a factor of $p(x)-p(1)$

$$
\begin{aligned}
\hat{p(1)} & =1^{2}+5 \times 1-7 \\
& =1+5-7=6-7=-1
\end{aligned}
$$

That is, $\mathbf{- 1}$ is to be subtracted from $\mathbf{x}^{2}+5 x-7$ to get a polynomial in which $\mathbf{x}-1$ is a factor.

$$
p(x)--1=x^{2}+5 x-7--1=x^{2}+5 x-7+1
$$

$$
=x^{2}+5 x-6
$$

That is, $\quad x-1$ is a factor of $x^{2}+5 x-6$
We have to find the second factor of $x^{2}+5 x-6$

$$
\begin{aligned}
& (x+a)(x+b)=x^{2}+(a+b) x+a b \\
& x^{2}+5 x-6=x^{2}+(a+b) x+a b
\end{aligned}
$$

Therefore, $a+b=5 \quad a b=-6$

$$
6+-1=5 \quad 6 \times-1=-6
$$

Therefore, $a=6 \quad b=-1$
Therefore, $x^{2}+5 x-6=(x+6)(x-1)$
(ii) $x^{2}-4 x-3, x-1$

Let $p(x)=x^{2}-4 x-3$
$(x-a)$ is a factor of $p(x)-p(a)$
Therefore, $x-1$ is a factor of $p(x)-p(1)$

$$
\begin{aligned}
& p(1)=1^{2}-4 \times 1-3 \\
& =1-4-3=-3-3=-6
\end{aligned}
$$

That is, -6 is to be subtracted from $x^{2}-4 x-3$ to get a polynomiallin which $\mathbf{x}-1$ is a factor.

$$
\begin{aligned}
p(x)--6=x^{2}-4 x-3--6= & x^{2}-4 x-3+6 \\
& =x^{2}-4 x+3
\end{aligned}
$$

That is, $\quad x-1$ is a factor of $x^{2}-4 x+3$
We have to find the second factor of $x^{2}-4 x+3$

Unit - 10

$$
\begin{aligned}
& (x+a)(x+b)=x^{2}+(a+b) x+a b \\
& x^{2}-4 x+3=x^{2}+(a+b) x+a b
\end{aligned}
$$

Therefore, $a+b=-4 \quad a b=3$

$$
-3+-1=-4 \quad-3 \times-1=3
$$

Therefore, $a=-3 \quad b=-1$
Therefore, $x^{2}-4 x+3=(x-3)(x-1)$
Note:
$(x-a)$ is a factor of $p(x)-p(a)$.
Therefore, The polynomial $p(x)-p(a)$ can be written as the product of ($x-a$) and a polynomial $q(x)$

That is, $\quad p(x)-p(a)=(x-a) q(x)$
Therefore, $p(x)=(x-a) q(x)+p(a)$
That is, $p(a)$ is the remainder when $p(x)$ is divided by ($x-a$).
Note:
$p(-a)$ is the remainder when $p(x)$ is divided by $(x+a)$.

Activity

In the polynomial $x^{2}+k x+6$, what number must be taken as k to get a polynomial for which $x-1$ is a factor? Find also the other factor of that polynomial.

$$
p(x)=x^{2}+k x+6
$$

If $(x-1)$ is a factor of $p(x)$, then $p(1)=0$

$$
p(1)=0
$$

That is, $\quad 1^{2}+k \times 1+6=0$
That is, $\quad 1+k+6=0$
That is, $\quad \mathbf{k}+7=\mathbf{0}$
Therefore, $k=-7$
Therefore, $p(x)=x^{2}-7 x+6$

$$
\begin{aligned}
& (x+a)(x+b)=x^{2}+(a+b) x+a b \\
& x^{2}-7 x+6=x^{2}+(a+b) x+a b
\end{aligned}
$$

Therefore, $\mathbf{a}+\mathbf{b}=-7 \quad \mathbf{a b}=6$

$$
-1+-6=-7 \quad-1 \times-6=6
$$

Therefore, $a=-1 \quad b=-6$
Therefore, $x^{2}-7 x+6=(x-1)(x-6)$

Activity

In the polynomial $k x^{2}+2 x-5$, what number must be taken as k to get a polynomial for which $x-1$ is a factor?

Answer

$$
\mathbf{p}(\mathbf{x})=\mathbf{k} x^{2}+2 x-5
$$

If $(x-1)$ is a factor of $p(x)$, then $p(1)=0$
Therefore, $p(1)=0$
That is, $\quad k \times 1^{2}+2 \times 1-5=0$

Therefore, $k=3$

Activity

Find the remainder when $\mathbf{p}(\mathbf{x})=\mathbf{x}^{75}+2 \mathrm{x}^{50}+\mathbf{x}^{2}+1$ is divided by ($\mathrm{x}-1$)

Answer

$$
p(x)=x^{75}+2 x^{50}+x^{2}+1
$$

when $p(x)$ is divided by $(x-a)$, the remainder is $p(a)$.
Therefore,
when $p(x)$ is divided by $(x-1)$, the remainder is $p(1)$.

$$
\mathbf{P}(1)=1^{75}+2 \times 1^{50}+1^{2}+1=1+2+1+1=5
$$

Therefore, the remainder $=5$

Activity

Find a second degree polynomial $p(x)$ such that $p(2)=0$ and $p(-2)=0$.

Answer

If $p(a)=0$, then $(x-a)$ is a factor of $p(x)$.
Given that, $p(2)=0$
Therefore, ($x-2$) is a factor of $p(x)$.
Also given that, $\mathbf{p}(-2)=0$

$$
=x^{2}-2^{2}=x^{2}-4
$$

Activity

Which first degree polynomial is added to $3 x^{3}-2 x^{2}$ gives a polynomial $p(x)$ for which $x^{2}-1$ is a factor?

Answer

Let the first degree polynomial added $=\mathbf{a x}+\mathbf{b}$
Therefore, $p(x)=3 x^{3}-2 x^{2}+a x+b$
$x^{2}-1$ is a factor of $p(x)$

$$
x^{2}-1=(x+1)(x-1)
$$

That is, $(x+1)$ and $(x \notin 1)$ are factors of $p(x)$.
If $(x-1)$ is a factor of $p(x)$, then $p(1)=0$
That is, $\quad 3 \times 1^{3}-2 \times 1^{2}+a \times 1+b=0$

$$
\begin{aligned}
& 3 \times 1-2 \times 1+a \times 1+b=0 \\
& 3-2+a+b=0 \\
& 1+a+b=0 \\
& a+b=-1 \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

If $(x+1)$ is a factor of $p(x)$, then $p(-1)=0$
That is, $\quad 3 \times(-1)^{3}-2 \times(-1)^{2}+a \times-1+b=0$

$$
3 \times-1-2 \times 1-a+b=0
$$

$$
\begin{align*}
& -3-2-a+b=0 \\
& -5-a+b=0 \\
& -a+b=5 \ldots \ldots \ldots . . \tag{2}\\
& a+b=-1 \ldots \ldots \ldots . . \tag{1}
\end{align*}
$$

Adding these two equations, we get

$$
\begin{aligned}
& 2 b=4 \\
& b=4 \div 2=2 \\
& a+b=-1
\end{aligned}
$$

That is,

$$
a+2=-1
$$

$$
a=-1-2=3
$$

Therefore,
the first degree polynomial is to be added $=-3 x+2$

Assignment

1. Find the value of k, if $x-2$ is a factor of $p(x)=3 x^{2}-5 x+k$.
2. The solutions of $x^{2}+a x+b=0$ are 3 and -4 .
(a) Write $\mathrm{x}^{2}+\mathrm{ax}+\mathrm{b}$ as the product of two first degree polynomials
(b) Find the value of a and b.
