Based on the first bell class on 31-12-2020

Geometry and Algebra

Previous knowledge

1. Coordinates of origin is $(0,0)$
2. The y coordinate of any point on the x axis is 0 .
3. The x coordinate of any point on the y axis is 0 .
4. The y coordinates of any point in a line parallel to x axis are equal.
5. The x coordinates of any pointin a line parallel to y axis are equal.

The distance between the points with coordinates $\left(x_{1}, y\right)$ and $\left(x_{2}, y\right)$ is $\left|x_{1}-x_{2}\right|$.

The distance between the points with
coordinates $\left(x, y_{1}\right)$ and $\left(x, y_{2}\right)$ is $\left|y_{1}-y_{2}\right|$.
The distance between the point with coordinates (x, y) and the origin is

$$
\sqrt{x^{2}+y^{2}}
$$

The distance between two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$ If the line joining two points is not parallel to either axis, then we can draw a rectangle with these points as opposite vertices and sides parallel to the axes

$$
\begin{equation*}
(-2,2) \tag{3,2}
\end{equation*}
$$

$$
\begin{equation*}
(-2,-1) \tag{3,-1}
\end{equation*}
$$

Also we know how we can find the coordinates of the other two vertices without drawing the axes.

It was using such a rectangle
that we computed the distance
between two points like these, in terms of their co-ordinates. We
 didn't use the full rectangle, but only a right triangle forming half of it.

Activity

Find the fourth vertex of the parallelogram with, the origin and two other points as vertices.

Answer

In the figure ABCD is a parallelogram.

AP and DQ are parallel to x -axis. PB and QC are parallel to the y axis.
$\mathrm{AB}=\mathbf{C D}$ (opposite sides
of parallelogram are
 equal)

$$
\begin{aligned}
& \left\llcorner\mathbf{P}=\angle \mathbf{Q}=90^{\circ}\right. \\
& \llcorner\mathbf{B A P}=\angle \mathbf{C D Q} \text { (corresponding angles) }
\end{aligned}
$$

Therefore,
$\left\llcorner\mathrm{ABP}=\left\llcorner\mathrm{DCQ}\right.\right.$ (sum of angles of a triangle is 180°)
Therefore, $\triangle \mathrm{ABP}$ and $\triangle \mathrm{DCQ}$ are equal triangles.

In equal triangles, sides opposite to equal angles are equal. Therefore, $\quad A P=D Q, \quad P B=C Q$
co-ordinates of $A=(0,0)$
co-ordinates of $B=(6,2)$
The y co-ordinate of any point on the x-axis is 0 . The x coordinate of any point on a line parallel to y-axis are same.
Therefore, co-ordinates of $\mathbf{P}=(6,0)$

$$
\begin{aligned}
& A P=6-0=6 \\
& P B=2-0=2
\end{aligned}
$$

Therefore,
co-ordinates of $Q=(3+6,5)=(9,5)$
co-ordinates of $C=(9,5+2)=(9,7)$

Activity

The figure shows a parallelogram with the coordinates of its vertices:

Prove that $x_{1}+x_{3}=x_{2}+x_{4}$ and $y_{1}+y_{3}=y_{2}+y_{4}$

$\left(x_{1}, y_{1}\right)$

In the figure $A B C D$ is a parâlelogram.
$A P$ and DQ are parallel to -axis. $P B$ and $Q C$ are parallel to the y axis.

Therefore,

$$
\begin{aligned}
& \text { co-ordinates of } \widehat{P}=\left(x_{2}, y_{1}\right) \\
& \text { co-ordinates of } \mathrm{Q}=\left(x_{3}, y_{4}\right)
\end{aligned}
$$

$$
\mathbf{A P}=\mathbf{x}_{2}-\mathbf{x}_{1}
$$

$$
\mathrm{DQ}=\mathrm{x}_{3}-\mathrm{x}_{4}
$$

$$
\mathbf{A P}=\mathbf{D Q}
$$

Therefore, $x_{2}-x_{1}=x_{3}-x_{4}$

$$
\mathbf{x}_{2}+\mathbf{x}_{4}=\mathbf{x}_{1}+\mathbf{x}_{3}
$$

That is, $\quad x_{1}+x_{3}=x_{2}+x_{4}$

$$
\begin{aligned}
& \mathbf{P B}=\mathbf{y}_{2}-\mathbf{y}_{1} \\
& \mathbf{Q C}=\mathbf{y}_{3}-\mathbf{y}_{4} \\
& \mathbf{P B}=\mathbf{Q C}
\end{aligned}
$$

Therefore, $y_{2}-y_{1}=y_{3}-y_{4}$

$$
\mathbf{y}_{2}+\mathbf{y}_{4}=\mathbf{y}_{3}+\mathbf{y}_{1}
$$

That is, $\quad y_{1}+y_{3}=y_{2}+y_{4}$

Activity

Prove that in any parallelogram, the sum of the squares of all sides is equal to the sum of the squares of the diagonals.

Answer

Let the co-ordinates of $C^{\prime}=(a, b)$
In a parallelogram,
the sum of x co-ordinates of
opposite vertices are equal.
the sum of y co-ordinates of
 opposite vertices are equal.

Therefore, $0+\mathrm{a}=\mathrm{x}_{1}+\mathrm{x}_{\mathbf{2}}$
That is, $\quad \mathrm{a}=\mathrm{X}_{1}+\mathrm{X}_{2}$
Similarly, $\quad \mathbf{0}+\mathbf{b}=\mathbf{y}_{1}+\mathrm{y}_{2}$

$$
b=y_{1}+y_{2}
$$

Therefore, co-ordinates of $C=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$

$$
\begin{aligned}
& A B^{2}=x_{1}^{2}+y_{1}^{2} \\
& A D^{2}=x_{2}^{2}+y_{2}^{2}
\end{aligned}
$$

$$
\mathbf{A D}=\mathbf{B C}
$$

Therefore, $A D^{2}=B C^{2}=x_{2}^{2}+y_{2}^{2}$

$$
A B=C D
$$

Therefore, $A B^{2}=C D^{2}=x_{1}^{2}+y_{1}^{2}$

Therefore,

$$
\begin{aligned}
& A B^{2}+B C^{2}+C D^{2}+A D^{2}=x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2} \\
& A B^{2}+B C^{2}+C D^{2}+A D^{2}=2 x_{1}^{2}+2 y_{1}^{2}+2 x_{2}^{2}+2 y_{2}^{2} \\
& A C^{2}=\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}
\end{aligned}
$$

That is, $A C^{2}=x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}+y_{1}^{2}+y_{2}^{2}+2 y_{1} y_{2}$

$$
\begin{aligned}
& B D^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1} y_{2}\right)^{2} \\
& B D^{2}=x_{1}^{2}+x_{2}^{2}-2 x_{1} y_{2}+y_{1}^{2}+y_{2}^{2}-2 y_{1} y_{2}
\end{aligned}
$$

Therefore,

$$
A C^{2}+B D^{2}=
$$

$$
x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}+y_{1}^{2}+y_{2}^{2}+2 y_{1} y_{2}+x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}+y_{1}^{2}+y_{2}^{2}-2 y_{1} y_{2}
$$

$$
=x_{1}^{2}+x_{2}^{2}+y_{1}^{2}+y_{2}^{2}+x_{1}^{2}+x_{2}^{2}+y_{1}^{2}+y_{2}^{2}
$$

$$
=x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}
$$

$$
=2 x_{1}^{2}+2 y_{1}^{2}+2 x_{2}^{2}+2 y_{2}^{2}
$$

$$
A B^{2}+B C^{2}+C D^{2}+A D^{2}=2 x_{1}^{2}+2 y_{1}^{2}+2 x_{2}^{2}+2 y_{2}^{2}
$$

$$
A C^{2}+B D^{2}=2 x_{1}^{2}+2 y_{1}^{2}+2 x_{2}^{2}+2 y_{2}^{2}
$$

Therefore, $A B^{2}+B C^{2}+C D^{2}+A D^{2}=A C^{2}+B D^{2}$

Assignment

In this picture, the mid points of the sides of the large triangle are joined to make a small triangle inside.
Calculate the coordinates of the vertices of the large triangle.

Prepared by Jaisingh G R;HST(Maths) Govt.V\&HSS Kulathoor

Based on the first bell class on 03-01-2021-AN

Geometry and Algebra

Assignment on 03-01-2020-FN

Calculate the coordinates of the point P in the picture:
$(0,3)$

$(0,0)$
$(4,0)$

Answer

In the picture,
Co-ordinates of $A=(0,3)$
Co-ordinates of $O=(0,0)$
Co-ordinates of $B=(4,0)$
Therefore, OA = 3

$$
\mathrm{OB}=4
$$

$$
\begin{aligned}
\mathbf{A B} & =\sqrt{O A^{2}+O B^{2}} \\
& =\sqrt{3^{2}+4^{2}} \\
& =\sqrt{9+16}=\sqrt{25}=5
\end{aligned}
$$

Angles of these two triangles are equal and therefore $\triangle \mathrm{OAP}$ and $\triangle B A O$ are similar.

Therefore, sides opposite to equal angles are proportional.
Therefore, $\frac{P A}{O A}=\frac{O A}{A B}$
That is, $\quad \frac{P A}{3}=\frac{3}{5}$

$$
\begin{aligned}
& 5 \times P A=3 \times 3 \\
& P A=\frac{3 \times 3}{5}=\frac{9}{5}
\end{aligned}
$$

Consider $\triangle \mathrm{OAB}$ and $\triangle \mathrm{POB}$.
Angles of these two triangles are equal and therefore $\triangle \mathrm{OAB}$ and $\triangle \mathrm{POB}$ are similar.

Therefore, sides opposite to equal angles are proportional.
Therefore, $\quad \frac{O B}{P B}=\frac{A B}{O B}$
That is,

$$
\begin{aligned}
& \frac{4}{P B}=\frac{5}{4} \\
& 5 \times P B=4 \times 4 \\
& P B=\frac{4 \times 4}{5}=\frac{16}{5}
\end{aligned}
$$

Therefore, PA:PB $=\frac{9}{5}: \frac{16}{5}=9: 16$
Therefore, co-ordinates of $\mathbf{P}=\left(0+\frac{9}{25}(4-0), 3+\frac{9}{25}(0-3)\right)$

$$
\begin{aligned}
& =\left(0+\frac{9}{25} \times 4,3+\frac{9}{25} \times-3\right) \\
& =\left(\frac{36}{25}, 3-\frac{27}{25}\right) \\
& =\left(\frac{36}{25}, \frac{75-27}{25}\right) \\
& =\left(\frac{36}{25}, \frac{48}{25}\right. \\
& =\left(1 \frac{11}{25}, \frac{13}{25}\right)
\end{aligned}
$$

Straight line

We can draw only one straight line joining any two points. we can extend this/line as to either side.

If the x coordinates of the two points are equal, then the line will be parallel to the y axis; and if the y coordinates are equal, the line willibe parallel to the x axis.

 If both the x coordinates and the y coordinates are different, the line will be slanted(not parallel to either axis)

Example-1

Draw a line passing through $\mathbf{A}(3,2)$ and $B(7,4)$

Mark another two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ on this line. Draw a right triangle ACB with AB as hypotenuse and perpendicular sides(AC and BC) parallel to either axis.
Draw another right triangle PRQ with PQ as hypotenuse and perpendicular sides $(\mathrm{PR}$ and QR$)$ parallel to either axis.

In $\triangle A C B$, co-ordinates of $C=(7,2)$
As we move from A to B,
change in $x=7-3=4$
change in $y=4-2=2$
In $\triangle P R Q$, co-ordinates of $R=\left(x_{2}, y_{1}\right)$
As we move from \mathbf{P} to \mathbf{Q},
change in $x=x_{2}-x_{1}$
change in $\mathrm{y}=\mathrm{y}_{2}-\mathrm{y}_{1}$
Angles of $\triangle A C B$ and $\triangle P R Q$ are equal.
Therefore, these two triangles are similar.
In similar triangles, sides opposite to equal angles are proportional.
Therefore, $\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{2}{4}$
That is, $\quad \frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{1}{2}$
That is, $\quad\left(y_{2}-y_{1}\right)=\frac{1}{2}\left(x_{2}-x_{1}\right)$

Example-2

Draw a line passing through $(1,3)$ and $(3,7)$
Here, As we move from $(1,3)$ to $(3,7)$
change in $x=3-1=2$
change in $y=7-3=4$
Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be another two points on this line. change in $x=x_{2}-x_{1}$ change in $y=y_{2}-y_{1}$
Then we can write, $\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{4}{2}$

$$
\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=2
$$

Therefore, \& $\left(y_{2}-y_{1}\right)=2\left(x_{2}-x_{1}\right)$
That is, \quad change in $y=2 \times$ change in x
Example-3
Draw a line passing through $(3,5)$ and $(7,3)$
Here, As we move from $(3,5)$ to $(7,3)$
change in $x=7-3=4$
change in $y=3-5=-2$ Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ be another two points on this line.
change in $x=x_{2}-x_{1}$
change in $\mathbf{y}=\mathbf{y}_{\mathbf{2}}-\mathbf{y}_{\mathbf{1}}$
Then we can write, $\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{-2}{4}$

$$
\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{-1}{2}
$$

$$
\left(y_{2}-y_{1}\right)=\frac{-1}{2}\left(x_{2}-x_{1}\right)
$$

That is, the difference in $y=\frac{-\hat{1}}{2}$ of the difference in x
From these examples, we can understand that ,
In any line not parallel to either axis, the change in \boldsymbol{y} coordinate is the product of the change in \boldsymbol{x} coordinate with a fixed number

In other words,
In any line not parallel to either axis, the change in y is proportional to the change in x

Note:

In a line parallel to x axis, the y coordinate does not change and so the y difference of any two points is 0 .

That is, $y_{2}-y_{1}=0$

Unit - 9 GEOMETRY AND ALGEBRA
 GOVT V \& HSS KULATHOOR, PARASSALA SUB DIST

 Here also, $\mathrm{y}_{2}-\mathrm{y}_{1}=$ constant $\times\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$Here the constant $=0$,
In this line the \mathbf{x}, y change is not proportional.
Geometrically, the x difference is the horizontal shift and the y difference is the vertical shift:

So, on dividing the y difference by the x difference, we get the rate of change of the vertical shift with respect to the horizontal shift.

In other words, the constant of proportionality of the change in coordinates of a tine is a measure of the slant of the line. It is called the slope of the line.

That is,
Slope of a line passing through $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$ and $\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}$
In a line perpendicular to x axis or parallel to y axis, change in y is different and change in $\mathrm{x}=0$
Therefore, slope of this line $=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{\left(y_{2}-y_{1}\right)}{0}$

Activity

Find the co-ordinates a point on the line joining $(3,5)$ and (6,7).

Answer

Change in $\mathrm{x}=6-3=3$
Change in $\mathrm{y}=7-5=2$
That is, change in $\mathrm{y}=\frac{2}{3} \times$ cliange in x
Let x co-ordinate of point on this line $=4$
As x increases by 1 y inicreases by $\frac{2}{3}$
Therefore, if $x=4$ then $y=5+\frac{2}{3}=5 \frac{2}{3}$
Therefore, co-ordinates of a point on this line $=\left(4,5 \frac{2}{3}\right)$
Let x co-ordinate of another point on this line $=9$
change in $\mathrm{x}=9-3=6$
change in $\mathrm{y}=6 \times \frac{2}{3}=4$
Therefore, y co-ordinate of the point $=5+4=9$

Activity

Prove that the points $(1,3),(2,5)$ and $(3,7)$ are on the same line

Answer

Consider the points $(1,3)$ and $(2,5)$
change in $x=2-1=1$
change in $y=5-3=2$
change in $y=2$ times changein x

Consider the points $(2,5)$ and $(3,7)$
change in $x=3-2=1$
change in $y=7-5=2$
Here also, change in $y=2$ times change in x
Therefore, $(1,3),(2,5),(3,7)$ are on the same line.

Activity

Find the coordinates of two more points on the line joining $(-1,4)$ and $(1,2)$

Answer

Consider the points $(-1,4)$ and $(1,2)$ change in $x=1-1=1+1=2$
change in $y=2-4=-2$
That is, as x increases by 2 , then y decreases by 2
Therefore, a point on this line $=(1+2,2-2)=(3,0)$
One more point $=(3+2,0-2)=(5,-2)$

Activity

$x_{1}, x_{2}, x_{3}, \ldots$ and $y_{1}, y_{2}, y_{3}, \ldots$ are arithmetic sequences. Prove that all the points with coordinates in the sequence $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots$ of number pairs, are on the same line

Answer

If $x_{1}, x_{2}, x_{3}, \ldots$ are in arithmetic sequence, then $x_{2}=\frac{\left(x_{1}+x_{3}\right)}{2}$
If $\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots$ are in arithmetic sequence, then $y_{2}=\frac{\left(y_{1}+y_{3}\right)}{2}$
If we consider the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ then
slop

$$
\begin{aligned}
& =\frac{\left(\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{\left(\frac{y_{1}+y_{3}}{2}-y_{1}\right)}{\left(\frac{x_{1}+x_{3}}{2}-x_{1}\right)}\right.}{=\frac{\left(y_{1}+y_{3}-2 y_{1}\right)}{\left(x_{1}+x_{3}-2 x_{1}\right)}=\frac{\left(y_{3}-y_{1}\right)}{\left(x_{3}-x_{1}\right)}}
\end{aligned}
$$

That is, $\quad \frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{\left(y_{3}-y_{1}\right)}{\left(x_{3}-x_{1}\right)}$
Therefore, $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots$ are on the same line

Activity

Find the co-ordinates of the intersecting point of the lines joining $(0,2),(6,4)$ and $(-2,6),(3,1)$

Answer

Let the point of intersection is (x, y)
In the line joining $(0,2)$ and $(6,4)$
change in $y=4-2=2$
change in $x=6-0=6$
Therefore, slope $=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{2}{6}=\frac{1}{3}$
If $\left(\left(x_{1}, y_{1}\right)\right.$ is a point on the line, $\left(y_{2}-y_{1}\right)=\frac{1}{3}\left(x_{2}-x_{1}\right)$
Therefore, $(y-2)=\frac{1}{3}(x-0)$

$$
\begin{aligned}
& (y-2)=\frac{1}{3} x \\
& 3(y-2)=x \\
& 3 y-6=x \\
& x-3 y=-6
\end{aligned}
$$

In the line joining $(-2,6)$ and $(3,1)$ change in $y=1-6=-5$
change in $y=3--2=5$

$$
\text { slope }=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{-5}{5}=-\mathbf{1}
$$

That is, $\quad\left(y_{2}-y_{1}\right)=-1\left(x_{2}-x_{1}\right)$
Therefore, $(y-6)=-1(x--2)$

$$
\begin{align*}
& y-6=-1(x+2) \\
& y-6=-x-2 \\
& x+y=-2+6 \\
& x+y=4 \\
& x-3 y=-6 \ldots \ldots . . \tag{1}
\end{align*}
$$

(2) -1 ($\rightarrow x-x+y--3 y=4--6$

$$
\begin{aligned}
& y+3 y=4+6 \\
& 4 y=10 \\
& y=\frac{10}{4}=\frac{5}{2}=2 \frac{1}{2} \\
& x+y=4
\end{aligned}
$$

$$
x+\frac{5}{2}=4
$$

$$
x=4-\frac{5}{2}=\frac{8-5}{2}
$$

$$
=\frac{3}{2}=1 \frac{1}{2}
$$

Therefore,
co-ordinates of the intersecting point $=\left(1 \frac{1}{2}, 2 \frac{1}{2}\right)$

Assignment-1

$(5,3),(8,9)$ are two points on a line.

 (a) Findat the slope of the line.(b) Find the co ordinates of two other points on this line.

Assignment-2

Find the point of intersection of the lines joining the point's $(5,0),(0,5)$ and $(6,1),(2,-3)$.

Jaisingh G R ;HST(Maths) Govt.V\&HSS Kulathoor

Based on the first bell class on 04-01-2021
Geometry and Algebra
Assignments on 04-01-2020-AN
$(5,3),(8,9)$ are two points on a line.
(a) Fifitat the slope of the line.
(b) Find the co ordinates of two other points on this line.

Answer

(a) Two points on the line are $(5,3),(8,9)$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9-3}{8-5}=\frac{6}{3}=2$
(b) y difference $=6$
x difference $=3$
That is, as x increases by 3 , y increases by 6 .
Therefore,
Co-ordinates of a point on this line $=(8+3,9+6)=(11,15)$
Co-ordinates of another point on this line $=(11+3,15+6)$

$$
=(14,21)
$$

Find the point of intersection of the lines joining the points $(5,0),(0,5)$ and $(6,1),(2,-3)$.

Answer

Let the point of intersection is (x, y)
In the line joining $(5,0)$ and $(0,5)$
change in $y=5-0=5$
change in $x=0-5=-5$
Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5}{-5}=-1$
(x, y) is a point on this line
Therefore, $\frac{y-0}{x-5}=-1$
Therefore, $y-0=-1(x-5)$

$$
y=-x+5
$$

That is, $x+y=5$............ 1
slope of thetine joining $(6,1)$ and $(2,-3)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{1--3}{6-2}=\frac{4}{4}=1
$$

(x, y) is a point on this line.
Therefore, $\quad \frac{y-1}{x-6}=\mathbf{1}$

$$
\begin{align*}
& y-1=x-6 \\
& x-6=y-1 \\
& x-y=-1+6 \\
& x-y=5 \ldots \ldots . \tag{2}\\
& x+y=5 \ldots . . \tag{1}
\end{align*}
$$

Adding these two equations we get,

$$
\begin{aligned}
& 2 x=10 \\
& x=\frac{10}{2}=5
\end{aligned}
$$

Subtract second equation from the first we get,

$$
\begin{aligned}
& 2 y=0 \\
& y=\frac{0}{2}=0
\end{aligned}
$$

Therefore, point of intersection $=(5,0)$

Equation of a line

Example-1

Find the equation of a line passing through $(1,2)$ and $(4,3)$.

Answer

Two points on the line are $(1,2)$ and $(4,3)$.
y difference $=3-2=1$
x difference $=4-1=3$ Let (x, y) is a point on this line.
Therefore,

$$
\begin{aligned}
& \frac{y-2}{x-1}=\frac{1}{3} \\
& 3(y-2)=x-1 \\
& 3 y-6=x-1 \\
& x-1=3 y-6 \\
& x-3 y-1+6=0 \\
& x-3 y+5=0 \text { which is the equation of the line. }
\end{aligned}
$$

Note:

If (\mathbf{p}, \mathbf{q}) is a point on this,line, then $p-3 q+5=0$

To check $(4,3)$ is a point on this line; substitute $x=4$ and $y=3$ in the equation $x-3 y+5=0$

That is, $x-3 y+5=4-3 \times 3+5=4-9+5=9-9=0$
Therefore, $(4,3)$ is a point on this line.

To check $(10,5)$ is a point on this line; substitute $x=10$ and $\mathbf{y}=5$ in the equation $x-3 y+5=0$

$$
x-3 y+5=10-3 \times 5+5=10-15+5=15-15=0
$$

Therefore, $(10,5)$ is a point on this line.
Every point on this line satisfy this equation.

Example-2

Find the equation of a line passing through $(0,0)$ and $(1,1)$.

Answer

$$
\text { Slope }=\frac{y \text { difference }}{x \text { difference }}=\frac{1-0}{1-0}=\frac{1}{1}=\boldsymbol{1}
$$

Let (x, y) is a point on this line.

$$
\begin{aligned}
& \frac{y-0}{x-0}=1 \\
& \frac{y}{x}=1
\end{aligned}
$$

Therefore, $x=y$
This means that, in every point on this line both x and y coordinates are equal. This can also be
 written as $x-y=0$

Activity

Find the equation of the line joining $(1,2)$ and $(2,4)$. For points on this line with consecutive natural numbers $3,4,5, \ldots$ as x coordinates, what is the sequence of y coordinates?

Answer

Two point on this line are $(1,2)$ and $(2,4)$
y difference $=4$ - $2=2$
x difference $=2-1=1$
Slope $=\frac{y \text { difference }}{x \text { difference }}=\frac{2}{1}=2$
Let (x, y) is a point on this line.
Therefore, $\frac{y-2}{x-1}=2$

$$
\begin{aligned}
& (y-2)=2(x-1) \\
& y-2=2 x-2
\end{aligned}
$$

$y=2 x$ whichmeans that, y co-ordinate of any point on this line is 2 times the \mathbf{x} co-ordinate.

$$
\begin{aligned}
& \text { When } x=3 \\
& \text { When } x=4 \\
& \text { When } x=5=8 \\
& y=10
\end{aligned}
$$

That is, when x co-ordinates are $3,5,7, \ldots \ldots$;
the y coordinates are $6,8,10, \ldots$.

Activity

Find the equation of the line joining $(-1,3)$ and $(2,5)$. Prove that if the point (x, y) is on this line, so is the point $(x+3, y+2)$.

Answer

Two points on this line are $(-1,3)$ and $(2,5)$.
y difference $=5-3=2$
x difference $=2-\mathbf{- 1}=2+1=3$
Slope $=\frac{\text { ydifference }}{x \text { difference }}=\frac{2}{3}$
Let (x, y) is a point on this line.
Therefore, $\frac{y-5}{x-2}=\frac{2}{3}$

$$
\begin{aligned}
& 3(y-5)=2(x-2) \\
& 3 y-15=2 x-4 \\
& 2 x-4=3 y-15 \\
& 2 x-3 y-4+15=0
\end{aligned}
$$

$2 x-3 y+11=0$ which is the equation of the line.
To check $(x+3, y+2)$ is a point on this line, substitute $x=x+3$
and $y=y+2$ in the equation $2 x-3 y+11=0$

$$
\begin{aligned}
& 2(x+3)-3(y+2)+11=0 \\
& 2 x+6-3 y-6+11=0 \\
& 2 x-3 y+11=0
\end{aligned}
$$

Therefore, $(x+3, y+2)$ is a point on this line.

In the picture below, the x coordinate of a point on the slanted (blue) line is 3:
i) What is its y coordinate?
ii) What is the slope of the line?
iii) Write the equation of the line.

Answer

In the picture,
Co-ordinates of $A=(1,0)$
x co-ordinate of $\mathrm{B}=3$
Therefore,
Co-ordinates of $C=(3,0)$
Draw BC perpendicular to
the x axis.
In $\triangle B A C$,

$$
\begin{aligned}
& A C=3-1=2 \\
& \angle B A C=60^{\circ} \\
& \angle A B C=30^{\circ}
\end{aligned}
$$

That is, angles of $\triangle \mathrm{BAC}$ are $30^{\circ}, \mathbf{6 0}^{\circ}, 90^{\circ}$. Its sides are in the ratio $1: \sqrt{3}: 2$
(i) co-ordinates of $\mathbf{B}=(3,2 \sqrt{3})$
(ii) slope of the line $=\frac{y \text { difference }}{x \text { difference }}=\frac{2 \sqrt{3}-0}{3-1}=\frac{2 \sqrt{3}}{2}=\sqrt{3}$ (iii) Let (x, y) be a point on the line $\mathrm{AB}_{\text {. }}$

Therefore, $\mathrm{y}-\mathbf{0}=\sqrt{3}(\mathrm{x}-\mathbf{1})$
That is, $\quad y=\sqrt{3} x-\sqrt{3}$
That is, $\quad \sqrt{3} \mathbf{x}-\mathbf{y}-\sqrt{3}=\mathbf{0}$ is the equation of AB

Activity

In the picture here, $A B C D$ is a square: Prove that for any point on the diagonal $B D$, the sum of the x and y coordinates is zero.

Answer

In the figure,

co-ordinate of $\mathrm{A}=(-2,-2)$
co-ordinate of $C=(2,2)$
Therefore,

co-ordinate of $\mathbf{B}=(2,-2)$ co-ordinate of $\mathbf{D}=(-2,2)$ co-ordinate of $\mathrm{O}=(0,0)$
In the line BD ,

$$
\begin{aligned}
& \text { y difference }=-2-2=-4 \\
& \mathrm{x} \text { difference }=2--2=2+2=4 \\
& \text { Slope }=\frac{y \text { difference }}{x \text { difference }}=\frac{-4}{4}=-1
\end{aligned}
$$

Let (x, y) is a point on this line.
Therefore, $\frac{y-0}{x-0}=-1$

$$
\begin{aligned}
& y=0=-1(x-0) \\
& y=-x
\end{aligned}
$$

$$
x+y=0 \text { which means that in every point on this }
$$

line, the sum of x and y co-ordinates is 0 .

Activity

Prove that for any point on the line intersecting the axes in the picture, the sum of the x and y coordinates is 3 .
(3, Answer

In the picture, co-ordinates of $A=(3,0)$ co-ordinates of $B=(0,3)$

Slope of $\mathbf{A B}=\frac{y \text { difference }}{x \text { difference }}$

$$
=\frac{3-0}{0-3}=\frac{3}{-3}=-1
$$

Let (x, y) is a point on this line.
Therefore, $\frac{y-0}{x-3}=-1$

$$
y-0=-1(x-3)
$$

$$
y=-x+3
$$

That is, $\quad x+y=3$ which means that, in every point on this line, the sum of x and y co-ordinates is 3 .

Equation of a circle

Activity

Find the equation of a circle with centre $(1,4)$ and radius 2.

Answer

Let (x, y) is a point on the circle.
Distance between $(1,4)$ and $(x, y)=2$
That is, $\sqrt{(x-1)^{2}+(y-4)^{2}}=2$

$$
\begin{aligned}
& x^{2}+y^{2}-2 x-8 y+1+16=4 \\
& x^{2}+y^{2}-2 x-8 y+17=4 \\
& x^{2}+y^{2}-2 x-8 y+17-4=0 \\
& x^{2}+y^{2}-2 x-8 y+13=0 \text { which means that, for every }
\end{aligned}
$$

point on the circle, this equation will satisfy.

Activity

Find the equation of a circle with centre $(0,0)$ and radius 1 .

Answer

Let (x, y) is a point on the circle.
Distance between $(0,0)$ and $(x, y)=1$
That is, $\sqrt{(x-0)^{2}+(y-0)^{2}}=1$

$$
\begin{aligned}
& (x-0)^{2}+(y-0)^{2}=1 \\
& x^{2}+y^{2}=1
\end{aligned}
$$

That is, Equation of a circle with origin as centre and radius 1 is $x^{2}+y^{2}=1$
Similarly,
Equation of a circle with origin as centre and radius 2 is

$$
x^{2}+y^{2}=2^{2}
$$

That is, $x^{2}+y^{2}=4$

Activity

Find the equation of the circle with centre at the orgin and radius 5 .
Write the coordinates of eight points on this circle.

Answer

Equation of a circle with origin as centre and radius 5 is $x^{2}+y^{2}=5^{2}$

That is, $x^{2}+y^{2}=25$
Radius of the circle $=5$
Therefore, the co-ordinates of 4
 points which cut the axes are $(5,0)$,
$(0,5),(-5,0),(0,-5)$.
$x^{2}+y^{2}=25$ which means that the sum of squares of two
numbers is 25.
We know that $3^{2}+4^{2}=25$
Therefore, $x=3$ and $y=4$
Now the co-ordinates of another 4 points on the circle are
$(3,4),(3,-4),(-3,4)$ and $(-3,-4)$

Activity

Prove that if (x, y) be a point on the circle with the line joining $(0,1)$ and $(2,3)$ as diameter, then $x^{2}+y^{2}-2 x-4 y+3=0$. Find the coordinates of the points where this circle cuts the y axis.

Answer

In the figure, $A B$ is a diameter of the circle.

Co-ordinates of $A=(0,1)$

Co-ordinates of $\mathbf{B}=(2,3)$
Centre of the circle $=$ midpoint
of the diameter $=\left(\frac{\left(x_{1}+x_{2}\right)}{2}, \frac{\left(y_{1}+y_{2}\right)}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{(0+2)}{2}, \frac{(1+3)}{2}\right) \\
& =\left(\frac{2}{2}, \frac{4}{2}\right)=(1,2)
\end{aligned}
$$

radius $=\sqrt{(1-0)^{2}+(2-1)^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{1+1}=\sqrt{2}$
Let (x, y) is a pointon the circle.
The equation of the circle is

$$
\begin{aligned}
& (x-1)^{2}+(y-2)^{2}=(\sqrt{2})^{2} \\
& x^{2}-2 x+1+y^{2}-4 y+4=2 \\
& x^{2}+y^{2}-2 x-4 y+5-2=0 \\
& x^{2}+y^{2}-2 x-4 y+3=0
\end{aligned}
$$

If the circle cuts the y axis, the x co-ordinate of that points
are zero.

Therefore, substitute $x=0$ in the equation

$$
x^{2}+y^{2}-2 x-4 y+3=0
$$

That is, $0^{2}+y^{2}-2 \times 0-4 y+3=0$
That is, $y^{2}-4 y+3=0$
That is, $(y-1)(y-3)=0$
That is, $(y-1)=0$ or $(y-3)=0$
That is, $y=1$ or $y=3$
Therefore, co-ordinates points which cuts the y axis are $(0,1)$ and $(0,3)$.

Assignment-1

Find the equation of the line joining $(1,4)$ and $(6,6)$.

Assignment-2

Find the equation of the circle with the line joining $(2,0)$ and $(0,4)$ as diameter.

