Coordinates

(Based on the online class on 27-11-2020)

Assignment on 26-11-2020

Draw the coordinate axes and find the coordinates of the corners of the two rectangles.

Answer

We can draw axes anywhere on a plane to find the coordinates of a point. As the position of axes changes, the coordinates of the point also changes. But the shape of the picture does not change.

Method-1

Method-2

Method-3

Note:
When we mark numbers on the axes we can take any distance as 1 unit (eg. $1 \mathrm{~cm}, 1 / 2 \mathrm{~cm}, 2 \mathrm{~cm}$, etc). As the distance of 1 unit changes, the coordinates of points also changes. But the position of points does not change.

How can we mark the position of a point, if its coordinates are given. For this, first draw the axes mutually perpendicular. The intersecting point of the axes is marked as zero. Taking a convenient distance as 1 unit, mark the numbers. Right and top of the intersecting point positive numbers; left and bottom of the intersecting point negative numbers.

Example-1: Mark $(5,3)$ on the plane.
Here both numbers in the pair are positive. Therefore, this point is on the right top. Draw perpendiculars from 5 on x -axis and 3 on y-axis. The intersecting point of these two perpendiculars is the point $(5,3)$.

Example-2: Mark $(-3,2)$ on the plane.
Here first number in the pair is negative and second number is positive. Therefore, this point is on the left top. Draw perpendiculars from -3 on x-axis and 2 on y-axis. The intersecting point of these two perpendiculars is the point $(-3,2)$.

Example-3: Mark $(-4,-3)$ on the plane.
Here both numbers in the pair are negative. Therefore, this point is on the left bottom. Draw perpendiculars from -4 on x -axis and -3 on y-axis. The intersecting point of these two perpendiculars is the point $(-4,-3)$.

Example-4: Mark $(4,-5)$ on the plane.
Here first number in the pair is positive and second number is negative. Therefore, this point is on the right bottom. Draw perpendiculars from 4 on x-axis and -5 on y-axis. The intersecting point of these two perpendiculars is the point (4,-5).

Activity

Write the coordinates of A from the figure.

Draw perpendiculars from A to both x and y axes. The perpendiculars meet x -axis at 4 and y -axis at 5 .

Therefore, coordinates of A is $(4,5)$
Assignment-1
Mark the points $\mathrm{A}(-4,3), \mathrm{B}(4,3), \mathrm{C}(2,-2), \mathrm{D}(-6,-2)$
after drawing the co-ordinate axes. Name the shape obtained by joining the points in order.

Assignment-2

Find the co-ordinates of the following points.

Prepared by Jaisingh Jose G R ;HST(Maths) Govt.V\&HSS Kulathoor

Unit - 6 COORDINATES

Activity

In the figure, an isosceles triangle of base 3 cm and height 4 cm drawn. The axes are drawn through the midpoint of the base. Find the coordinates of the vertices of the triangle.

Answer

The coordinates of vertices are (-1.5,0), (1.5,0), $(0,4)$
Prepared by Jaisingh Jose G R ;HST(Maths) Govt.V\&HSS Kulathoor

Activity

In the figure, OABC is a parallelogràm. $\mathrm{OA}=\mathbf{6 \mathrm { cm } , \mathrm { OC } = 4 \mathrm { cm } \text { , }}$ $\angle A O C=60^{\circ}$. Find the coordinates of O, A, B and C.

Answer

Draw $C D$ and $B E$ perpendicular to the x-axis. $\angle O C D=30^{\circ}$,
$\left\llcorner\mathrm{COD}=60^{\circ}, \mathrm{OC}=4 \mathrm{~cm}, \mathrm{OA}=6 \mathrm{~cm}\right.$
$\triangle \mathrm{COD}$ is a triangle of angles $\mathbf{3 0 ^ { \circ }}, \mathbf{6 0}^{\circ}, \mathbf{9 0}^{\circ}$
Its sides are in the ratio $1: \sqrt{ } \mathbf{3}: 2$
Therefore, $O D=2 \mathrm{~cm}, \quad C D=2 \sqrt{ } 3 \mathrm{~cm}$
Also, $\triangle \mathrm{COD}$ and $\triangle \mathrm{BAE}$ are equal triangles.
Therefore, $\mathrm{OD}=\mathrm{AE}=2 \mathrm{~cm}, \mathrm{CD}=\mathrm{BE}=2 \sqrt{ } 3 \mathrm{~cm}$

Therefore,
Coordinates of $O=(0,0)$
Coordinates of $A=(6,0)$
Coordinates of $B=(2,2 \sqrt{ } 3)$
Coordinates of $C=(6+2,2 \sqrt{ } 3)=(8,2 \sqrt{ } 3)$

Note:

When we draw axes,
x -axis is labelled as $\mathrm{X}^{\prime} \mathrm{X}(\mathrm{Xdash} \mathrm{X})$ from left to right.
y-axis is labelled as $Y Y^{\prime}$ (YYdash) from top to bottom.
Intersecting point of both axes is denoted by " O ". It is called
the origin.

In the figure, write the coordinates of points A, B, C, D, E and F.

Answer

Coordinates of $A=(-2,0)$
Coordinates of $B=(-1,0)$
Coordinates of $C=(1,0)$
Coordinates of $D=(2,0)$
Coordinates of $\mathrm{E}=(3,0)$
Coordinates of $F=(4,0)$
These points A, B, C, D, E, F arepoints on the x -axis. The second coordinate or y coordinate of these points are zero.
That is, The y coordinate of any point on the x axis is 0 .

Activity

In the figure, write the coordinates of points $\mathbf{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ and T .

Coordinates of $P=(0,3)$
Coordinates of $\mathbf{Q}=(0,2)$
Coordinates of $R=(0,1)$
Coordinates of $S=(0,-1)$
Coordinates of $T=(0,-2)$
These points P, Q, R, S, T are points on the x-axis. Fhe first coordinate or x coordinate of these points are zero.
That is, The x coordinate of any point on the y axis is 0 . Activity
Sort the following points as their positions kRthe x axis,on the y axis, not on the axes $(5,3),(5,0),(-4,1),(0,2),(-1,0),(1,1),(0,-4)$

Answer

The y coordinate of any point on the x axis is 0 .
The x coordinate of any point on the y axis is 0 . Therefore,

Points on the x axis are $(5,0),(-1,0)$
Points on the y axisare (0,2), ($0,-4$)
Points not on the axes are (5,3), (-4,1), (1,1) Activity
Draw the axes. Mâ̂k the point (0,1). Draw a line parallel to x axis through this point. Write the coordinates of points marked on that line.

Answer

The coordinates of the points are $(-4,1),(-2,1),(2,1)$ and $(4,1)$ That is,

The y coordinates of any point in a line parallel to x axis are equal.

Activity

Draw the axes. Mark the point (1,0). Draw a line parallel to y axis through this point. Write the coordinates of points marked on that line.

Answer

The coordinates of the points are $(1,3),(1,2),(1,1)$ and $(1,-3)$

That is,
The x coordinates of any point in a line parallel to y axis are equal.

Prepared by Jaisingh Jose G R ;HST(Maths) Govt.V\&HSS Kulathoor

Answer

O is the origin.
Therefore, Coordinates of $O=(0,0)$
$A B$ is parallel to the y axis.
Therefore, x coordinate of A is 4 .
Also A is a point on the x axis.
Therefore, its y coordinate is $\mathbf{0}$.
Therefore, Coordinates of $A=(4,0)$
$C B$ is parallel to the x axis.
Therefore, y coordinate of \mathcal{C} is 2.
Also C is a point on the y axis.
Therefore, its \mathbf{x} coordinate is $\mathbf{0}$.
Therefore, Coordinates of $C=(0,2)$

A large trapezium is made of 4 equal trapeziums. Find the coordinates of all the vertices of the trapeziums.

Answer

Consider the small trapezium OAGF.
$\mathrm{OB}=8$
Therefore, $\mathrm{OA}=4, \mathrm{AG}=2, \mathrm{GF}=2$
We can write the coordinates of all points using this.
Coordinates of $\mathrm{O}=(\mathbf{0 , 0})$
Coordinates of $A=(4,0)$
Coordinates of $B=(8,0)$
$\mathrm{OA}=4, \mathrm{AG}=2$. Therefore, Coordinates of $\mathrm{G}=(4,2)$
GF $=$ 2. Therefore, Coordinates of $F=(4-2,2)=(2,2)$
Coordinates of $\mathbf{H}=(4+2,2)=(6,2)$
$\mathrm{OB}=8, \mathrm{BC}=4$. Therefore, Coordinates of $\mathrm{C}=(8,4)$
$C D=2$. Therefore, Coordinates of $D=(8-2,4)=(6,4)$
$E D=2$. Therefore, Coordinates of $E=(6-2,4)=(4,4)$

Activity

In the picture ,the centre of the circle O is the origin and \mathbf{A}, B are points on the circle . Find the coordinates of A and B

Answer

$\left\llcorner\mathrm{AOB}=90^{\circ}\right.$
$\mathrm{OA}=\mathrm{OB}=2$ (radii of circle)
Draw AM and BN perpendicular to x axis.
L AOM $=30^{\circ}$
$\triangle \mathrm{AOM}$ is a triangle of angles 30°, $60^{\circ}, 90^{\circ}$. Its sides are in the ratio 1 : $\sqrt{ } 3: 2$
Therefore, $\mathrm{AM}=1$ and $\mathbf{O M}=\sqrt{ } 3$
Therefore, Coordinates of $A=(\sqrt{ } 3,1)$
$\left\llcorner B O N=180-\left(90^{\circ}+30^{\circ}\right)=180-120^{\circ}=60^{\circ}\right.$
$\angle \mathrm{OBN}=30^{\circ}$
$\triangle A O M$ and $\triangle O B N$ are equal triangles.
Therefore, $\mathrm{ON}=1, \quad \mathrm{BN}=\sqrt{ } 3$
Therefore, Coordinates of $B=(-1, \sqrt{ } 3)$

Assignment

One side of a rhombus is 8 cm and the angle made by the side with x axis is 60°. Taking the unit as 1 cm find the co-ordinates of all its vertices.

Coordinates

(Based on the online class on 01-12-2020)

Discussed in the previous class

1. Coordinates of origin is $(0,0)$
2. The y coordinate of any point on the xaxis is 0 .
3. The x coordinate of any point on the y axis is 0 .
4. The y coordinates of any point ina line parallel to x axis are equal.
5. The x coordinates of any pointin a line parallel to y axis are equal.

Activity

In the figure, $(3,2)$ and $(7,5)$ are coordinates of one pair of opposite vertices of a rectangle. Find the coordinates of the other two vertices.

Answer

In the figure, ABCD is a rectangle.
Coordinates of $A=(3,2)$

Coordinates of $C=(7,5)$
The y coordinates of any point in a line parallel to x axis are equal.

Therefore, y coordinate of B is 2

$$
y \text { coordinate of } D \text { is } 5
$$

The x coordinates of any point in a line parallel to y axis are equal.

Therefore, $\quad x$ coordinate of B is 7
x coordinate of D is 3
Therefore, Coordinates of $B=(7,2)$

Coordinates of $\mathbf{D}=(3,5)$

Activity

All rectangles below have sides parallel to the axes. Find the coordinates of the remaining vertices of each.

Answer

The y coordinates of any point in a line parallel to \mathbf{x} axis are equal.
The x coordinates of any point in a line parallel to y axis are equal.
Therefore, Coordinates of $B=(2,3)$
Coordinates of $\mathrm{D}=(-2,4)$
Coordinates of $P=(-1,-4)$
Coordinates of $R=(2,-2)$

> Coordinates of $E=(2,3)$
> Coordinates of $G=(-1,6)$

Activity

Without drawing coordinate axes, mark each pair of points below with left- right, top-bottom position correct. Find the other coordinates of the rectangles drawn with these as opposite vertices and sides parallel to the axes.
(i) $(3,5),(7,8)$
(i) $(6,2),(5,4)$
(iii) $(-3,5),(-7,1)$
(iv) $(-1,-2),(-5,-4)$

Answer

(i) $(3,5)$ is at left bottom and $(7,8)$ is at top right. The coordinates of the other two vertices are $(3,8)$ and $(7,5)$. (ii) $(6,2)$ is at right bottom and $(5,4)$ is at left top. The coordinates of the other two vertices are $(6,4)$ and $(5,2)$. (iii) $(-3,5)$ is at right top and $(-7,1)$ is at left bottom.

The coordinates of the other two vertices are $(-3,1)$ and $(-7,5)$.
(iv) $(-1,-2)$ is at right top and $(-5,-4)$ is at left bottom.

The coordinates of the other two vertices are $(-1,-4)$ and $(-5,-2)$.

Assignment

In the figure, the sides of the rectangles ABCD and CEFG are parallel to axes. Find the coordinates of the vertices A, C, E, G.

Coordinates

(Based on the online class on 02-12-2020)

Distances

Activity

In the figure, find the coordinates of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E . Find the distance between; A and $B(A B), A$ and $D(A D), C$ and $D(C D), A$ and C(AC). Also find $\left|x_{1}-x_{2}\right|$ and completé the table.

Answer

Coordinates of $\mathrm{A}=(-5,0)$
Coordinates of $B=(-3,0)$
Coordinates of $C=(-2,0)$
Coordinates of $D=(1,0)$

Name	$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$	Disi-	$\left\|x_{1}-x_{2}\right\|$
$A B$	$(-5,0),(-3,0)$	2	$I-5--3\|=\|-5+3\|=2$
$A D$	$(-5,0),(1,0)$	6	$\|-5-1\|=\|-6\|=6$
CD	$(-2,0),(1,0)$	3	$\|-2-1\|=\|-3\|=3$
$A C$	$(-5,0),(-2,0)$	3	$\|-5--2\|=\|-5+2\|=3$

Note: The y coordinate of any point on the x axis is 0 . Therefore, any point on the x axis can be writtenkas ($\mathrm{x}, \mathbf{0}$). Eg. $\left(\mathrm{x}_{1}, 0\right),\left(\mathrm{x}_{2}, \mathbf{0}\right)$, $\left(x_{3}, 0\right), \ldots$

If $\left(x_{1}, 0\right),\left(x_{2}, 0\right)$ are two points on the x axis, then the distance between these two points $=\left|\frac{x_{1}}{1}, \mathbf{x}_{2}\right|$

Activity

In the figure, find the coordinates of P, Q, R, S and T. Find the distance between; P and $Q(P Q), R$ and $S(R S), Q$ and $T(Q T), R$ and $T(R T)$. Also find $\left|x_{1}-X_{2}\right|$ and complete the table.

Name	$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$	Disi-	$\left\|x_{1}-x_{2}\right\|$
PR			
RS			
QT			
RT			

Coordinates of $\mathbf{P}=(-5,3)$

Coordinates of $\mathbf{Q}=(-4,3)$
Coordinates of $\mathbf{R}=(-1,3)$
Coordinates of $S=(2,3)$
Coordinates of $T=(4,3)$

Note:

The y coordinates of any point on a line parallel to x axis are equal. Therefore, any point on aline parallel to the x axis can be written as ($x, k)$. Eg. ($\left.x_{1}, k\right),\left(x_{2}, k\right),\left(x_{3}, k\right), \ldots$

If $\left(x_{1}, k\right),\left(x_{2}, k\right)$ are two points on a line parallel to x axis, then the distance between these two points $=\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|$

Activity

In the figure, find the coordinates of $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H . Find the distance between; G and $E(G E), G$ and $F(G F), E$ and $H(E H), G$ and $H(G H)$. Also find $\left|y_{1}-y_{2}\right|$ and complete the table.

Name	$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$	Dist- ance	ly $y_{1}-y_{2} \mid$

Answer

Coordinates of $E=(0,1)$
Coordinates of $\mathrm{F}=(0,-2)$
Coordinates of $\mathrm{G}=(0,3)$
Coordinates of $\mathbf{H}=(0,-3)$

Name	$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$	Dist- ance	$\left\|y_{1}-y_{2}\right\|$
GE	$(0,3),(0,1)$	2	$\|3-1\|=\|2\|=2$
GF	$(0,3),(0,-2)$	5	$\|3--2\|=\|3+2\|=5$
EH	$(0,1),(0,-3)$	4	$\|1--3\|=\|1+3\|=4$
GH	$(0,3),(0,-3)$	6	$\|3--3\|=\|3+3\|=6$

Note:

The x coordinates of any point on the y axis is 0 . Therefore, any point on the y axis can be written as ($0, y$). Eg. ($0, \mathrm{y}_{1}$), ($0, \mathrm{y}_{2}$), ($0, \mathrm{y}_{3}$), \ldots If $\left(0, y_{1}\right),\left(0, y_{2}\right)$ are two points on the y axis, then the distance between these two points $=\left|y_{1}-y_{2}\right|$

Activity

In the figure, find the coordinates of A, B, C and D. Find the distance between; A and $D(A D), A$ and $B(A B), C$ and $D(C D), D$ and $B(D B)$. Also find $\left|y_{1}-y_{2}\right|$ and complete the table.

Name	$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$	Dist ance	ly $y_{1}-y_{2} \mid$
AD			
AB			
CD			
DB			

Answer

Coordinates of $\mathrm{A}=(-2,2)$
Coordinates of $B=(-2,-2)$
Coordinates of $C=(-2,0)$
Coordinates of $\mathbf{D}=(-2,4)$

Name	$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$	Dist- ance	$\left\|y_{1}-y_{2}\right\|$
AD	$(-2,2)(-2,4)$	2	$\|2-4\|=\|-2\|=2$
AB	$(-2,2),(-2,-2)$	4	$\|2--2\|=\|2+2\|=4$
CD	$(-2,0)(-2,4)$	4	$\|4-0\|=\|4\|=4$
DB	$(-2,4)(-2,-2)$	6	$\|4--2\|=\|4+2\|=6$

If $\left(k, y_{1}\right),\left(k, y_{2}\right)$ are two points on a line parallef to the y axis, then the distance between these two points $\left.=\mid y_{R}\right)^{\prime} y_{2} \mid$

Distance between two points not parallel to the axes

Activity

Find the distance between $A(2,5)$ and $B(6,8)$.

Answer

To find the distance between A and B, draw lines parallel to both axes through A and B.

Coordinates of $C=(6,5)$

$$
\begin{aligned}
& \mathrm{AC}=|6-2|=4 \\
& \mathrm{BC}=|8-5|=3
\end{aligned}
$$

D
 $B(6,8)$

$$
A(2,5)
$$

In the right triangle $\hat{A} \hat{B}$ is the hypotenuse

$$
\begin{aligned}
\mathbf{A B} & =\sqrt{A C^{2}+B C^{2}}=\sqrt{4^{2}+3^{2}}=\sqrt{16+9} \\
& =\sqrt{25}=5
\end{aligned}
$$

Activity

If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ be any two points on a line. What is the length of $A B$

Answer

To find the distance between A and B, draw lines parallel to both axes through A and B.
 Coordinates of $\mathbf{C}=\left(\mathbf{x}_{2}, \mathbf{y}_{1}\right)$

$$
\begin{aligned}
& \mathbf{A C}=\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right| \\
& \mathbf{B C}=\left|\mathbf{y}_{1}-\mathbf{y}_{2}\right|
\end{aligned}
$$

In the right triangle AB is the hypotenuse

$$
\mathbf{A B}=\sqrt{A C^{2}+B C^{2}}
$$

$$
\begin{aligned}
A B= & \sqrt{\left(\left|X_{1}-X_{2}\right|\right)^{2}+\left(\left|y_{1}-y_{2}\right|\right)^{2}} \\
& =\sqrt{\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}}
\end{aligned}
$$

Activity
Calculate the lengths of the sides and diagonals of the quadrilateral ABCD

Answer

We have to find the length of $A B, B C, C D, A D, A C$ and $B D$.

$$
\begin{aligned}
\mathbf{A B} & =\sqrt{(0-7)^{2}+(-2--1)^{2}}=\sqrt{(-7)^{2}+(-2+1)^{2}} \\
& =\sqrt{(-7)^{2}+(-1)^{2}}=\sqrt{49+1} \\
& =\sqrt{50}=5 \sqrt{2} \\
\mathbf{B C} & =\sqrt{(6-7)^{2}+(1--1)^{2}}=\sqrt{(-1)^{2}+(2)^{2}} \\
& =\sqrt{1+4}=\sqrt{5} \\
\mathbf{C D} & =\sqrt{(2-6)^{2}+(2-1)^{2}}=\sqrt{(-4)^{2}+(1)^{2}} \\
& =\sqrt{16+1}=\sqrt{17} \\
\mathbf{A D} & =\sqrt{(2-0)^{2}+(2--2)^{2}}=\sqrt{(2)^{2}+(4)^{2}} \\
& =\sqrt{4+16}=\sqrt{20} \\
\mathbf{A C} & =\sqrt{(6-0)^{2}+(1--2)^{2}}=\sqrt{(6)^{2}+(3)^{2}} \\
& =\sqrt{36+9}=\sqrt{45} \\
\mathbf{B D} & =\sqrt{(7-2)^{2}+(-1-2)^{2}}=\sqrt{(5)^{2}+(-3)^{2}} \\
& =\sqrt{25+9}=\sqrt{34}
\end{aligned}
$$

Assignment

Calculate the lengths of sides and diagonals of the given quadrilateral.

Activity

Find the distance of the following points from the origin.
a) $(3,4)$
b) $(-6,8)$
c) $(-4,-1)$
d) (a, b)
e) (x, y)

Answer

The coordinates of origin is $(0,0)$
a) The distance of $(3,4)$ from $(0,0)=\sqrt{(3-0)^{2}+(4-0)^{2}}$

$$
\begin{aligned}
& =\sqrt{3^{2}+4^{2}} \\
& =\sqrt{9+16} \\
& =\sqrt{25}=5
\end{aligned}
$$

b) The distance of $(-6,8)$ from $(0,0)=\sqrt{(-6-0)^{2}+(8-0)^{2}}$

$$
\begin{aligned}
& =\sqrt{(-6)^{2}+8^{2}} \\
& =\sqrt{36+64} \\
& =\sqrt{100}=\mathbf{1 0}
\end{aligned}
$$

c) The distance of $(-4,-1)$ from $(\mathbf{0}, \mathbf{0})=\sqrt{(-4-0)^{2}+(-1-0)^{2}}$

$$
\begin{aligned}
& =\sqrt{(-4)^{2}+(-1)^{2}} \\
& =\sqrt{16+1} \\
& =\sqrt{17}
\end{aligned}
$$

d) The distance of (a,b) from $(\mathbf{0}, \mathbf{0})=\sqrt{(a-0)^{2}+(b-0)^{2}}$

$$
=\sqrt{a^{2}+b^{2}}
$$

e) The distance of (\mathbf{x}, \mathbf{y}) from $(\mathbf{0}, \mathbf{0})=\sqrt{(x-0)^{2}+(y-0)^{2}}$

$$
=\sqrt{x^{2}+y^{2}}
$$

Note:
Distance of any point (x, y) from the origin $\mathcal{=} \sqrt{x^{2}+y^{2}}$

Activity

A circle of radius 10 cm is drawn with the origin as centre. a) Check whether each of the points with coordinates $(6,9),(5,9),(6,8),(-6,7)$ is inside ,outside or on the circle b) Write coordinatess of 8 points on this circle

Answer

a) Radius of the circle $=\mathbf{1 0}$ unit

Centre is origin (0,0)
If the distance from the centre is 10 , it is a point on the circle.
If the distance from the centre is more than 10 , it is a point outside the circle.
If the distance from the centre is less than 10 , $i t$ is a point outside the circle.

The distance of $(\mathbf{6 , 9})$ from $(0,0)=\sqrt{6^{2}+9^{2}}$

$$
\begin{aligned}
& =\sqrt{36+81} \\
& =\sqrt{117}>\mathbf{1 0}
\end{aligned}
$$

Therefore, $(6,9)$ is a point outside the circle.

The distance of $(5,9)$ from $(0,0)=\sqrt{5^{2}+9^{2}}$

$$
\begin{aligned}
& =\sqrt{25+81} \\
& =\sqrt{106}>\mathbf{1 0}
\end{aligned}
$$

Therefore, $(5,9)$ is a point outside the circle.
The distance of $(\mathbf{6 , 8})$ from $(\mathbf{0 , 0})=\sqrt{6^{2}+8^{2}}$
$=\sqrt{36+64}$

$$
=\sqrt{100}=10
$$

Therefore, $(6,8)$ is a point on the circle.
The distance of $(-6,7)$ from $(0,0)=\sqrt{(-6)^{2}+7^{2}}$

$$
\begin{aligned}
& =\sqrt{36+49} \\
& =\sqrt{85}<\mathbf{1 0}
\end{aligned}
$$

Therefore, $(-6,7)$ is a point inside the circle.
b) Radius of the circle $=10$

Therefore, $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=10$
The y coordinate of any point on the x axis is 0 .

The x coordinate of any point on the y axis is 0 .

Therefore, Coordinates of $\mathbf{A}=\mathbf{(- 1 0 , 0})$

Coordinates of $B=(0,-10)$
Coordinates of $C=(10,0)$
Coordinates of $D=(0,10)$

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is a point on the circle.
Then $x^{2}+y^{2}=10^{2}$

$$
\begin{aligned}
& x^{2}+y^{2}=100 \\
& 64+36=100
\end{aligned}
$$

That is,

$$
\begin{aligned}
& 8^{2}+6^{2}=100 \\
& x=8, \quad y=6
\end{aligned}
$$

Now we can write four points on the circle.
They are (8,6), (-8,6), (-8,-6), (8,-6)
Also,

$$
36+84=100
$$

That is,

$$
6^{2}+8^{2}=100
$$

$$
x=6, \quad y=8
$$

Now we can write another four points on the circle.
They are (6,8), (-6,8), (-6,-8), (6,-8).

Note:

Similarly we can find so many points on the circle.
Eg:

$$
1+99=100
$$

That is,

$$
1^{2}+(\sqrt{ } 99)^{2}=100
$$

Here we can take, $\quad x=1, y=\sqrt{ } 99$ or $x=\sqrt{ } 99, y=1$
Using this we can write another 8 points on the circle.
Also,

$$
2+98=100
$$

That is,

$$
(\sqrt{ } 2)^{2}+(\sqrt{ } 98)^{2}=100
$$

Here we can take, $\quad x=\sqrt{ } 2, y=\sqrt{ } 98$ or $x=\sqrt{ } 98, y=\sqrt{ } 2$
Using this we can write another 8 points on the circle.

Activity

Find the coordinates of the points where a circle of radius $\sqrt{2}$, centred on the point with coordinates $(1,1)$ cuts the axes.

Answer

Radius of the circle $=\sqrt{ } 2$
$\mathbf{O}(0,1)$ is the centre of the circle.
Let $\mathrm{A}(\mathrm{x}, 0)$ is the point where the
circle cuts the x axis.

$$
\begin{aligned}
& \mathrm{OA}=\sqrt{ } \mathbf{2} \\
& \mathrm{OA}^{2}=(\sqrt{ } 2)^{2}=2
\end{aligned}
$$

That is, $(x-1)^{2}+(0-1)^{2}=2$

$$
\begin{aligned}
& (x-1)^{2}+(-1)^{2}=2 \\
& (x-1)^{2}+1=2 \\
& (x-1)^{2}=2-1=1
\end{aligned}
$$

Therefore, $\quad x-1= \pm 1$

$$
\begin{aligned}
\mathrm{x} & =1 \pm 1=1+1 \text { or } 1-1 \\
& =2,0
\end{aligned}
$$

If $x=2$, the point is $(2,0)$
If $x=0$, the point is $(0,0)$
Therefore, the circle cut the x axis at $(0,0)$ and $(2,0)$
Let $\mathrm{A}(0, y)$ is the point where the circle cuts the y axis.

$$
\begin{aligned}
& \mathrm{OA}=\sqrt{ } \mathbf{2} \\
& \mathrm{OA}^{2}=(\sqrt{ } 2)^{2}=2
\end{aligned}
$$

That is, $(0-1)^{2}+(y-1)^{2}=2$

$$
\begin{aligned}
& (-1)^{2}+(y-1)^{2}=2 \\
& 1+(y-1)^{2}=2 \\
& (y-1)^{2}=2-1=1
\end{aligned}
$$

Therefore, $\quad y-1= \pm 1$

$$
\begin{aligned}
y= & 1 \pm 1=1+1 \text { or } 1-1 \\
& =2,0
\end{aligned}
$$

If $y=2$, the point is $(0,2)$
If $\mathbf{y}=0$, the point is $(0,0)$
Therefore, the circle cut the y axis at $(0,0)$ and $(0,2)$
Assignment
Find the points on the x -axis which are at a distance of 5units from $(3,4)$

Prepared by Jaisingh Jose G R ;HST(Maths) Govt.V\&HSS Kulathoor

Coordinates

(Based on the online class on 04-12-2020)

Assignment on 03-12-2020

Find the points on the x-axis

 which are at a distance of 5units from $(3,4)$
Answer

Let the coordinates of the point at 5 unit distance from $(3,4)$ on the x axis is $(x, 0)$.
Therefore, $(x-3)^{2}+(0-4)^{2}=5^{2}$

$$
\begin{aligned}
& (x-3)^{2}+(-4)^{2}=25 \\
& (x-3)^{2}+16=25 \\
& (x-3)^{2}=25-16=9 \\
& x-3= \pm 3
\end{aligned}
$$

Therefore, $x=3 \pm 3=3+3$ or $3-3$

$$
=6,0
$$

Therefore, The coordinates of the point at 5 unit distance from $(3,4)$ on the x axis are $(0,0)$ and $(6,0)$

Activity

Consider the rectangle $A B C D . P$ is a point inside the rectangle. $\mathrm{PA}=3 \mathrm{~cm}$, $P B=4 \mathrm{~cm}, P C=5 \mathrm{~cm}$. Find PD.

Answer

Consider a rectangle of length a unit and breadth b unit.
Let, $P(x, y)$ is a point inside the rectangle. Draw the axes through B, with $B C$ on the x axis and $B A$ on the y axis.
Therefore,

Coordinates of $B=(0,0)$
Coordinates of $C=(a, 0)$
Coordinates of $A=(0, b)$
Coordinates of $\mathbf{D}=(\mathrm{a}, \mathrm{b})$
$P^{2}=x^{2}+y^{2}$
$P^{2}=(x-a)^{2}+(y-b)^{2}$
$P^{2}+P^{2}=x^{2}+\mathbf{y}^{2}+(x-a)^{2}+(y-b)^{2}$
$P A^{2}=(x-0)^{2}+(y-b)^{2}$

$$
=x^{2}+(y-b)^{2}
$$

$$
P^{2}=(x-a)^{2}+(y-0)^{2}
$$

$$
=(x-a)^{2}+y^{2}
$$

$$
\mathbf{P A}^{2}+\mathbf{P C}^{2}=\mathrm{x}^{2}+(\mathbf{y}-\mathbf{b})^{2}+(\mathbf{x}-\mathbf{a})^{2}+\mathbf{y}^{2}
$$

$$
=x^{2}+y^{2}+(x-a)^{2}+(y-b)^{2}
$$

So, $\mathbf{P A}^{2}+\mathbf{P C}^{2}=\mathbf{P B}^{2}+\mathbf{P D}^{2}$
Sum of the squares of distance from any point inside a rectangle to each pair of opposite corners are equal.
Now we can find the distance PD

$$
\begin{aligned}
& 4^{2}+\mathbf{P D}^{2}=3^{2}+5^{2} \\
& 16+\mathbf{P D}^{2}=9+25 \\
& \mathbf{P D}^{2}=9+25-16=34-16=18
\end{aligned}
$$

Therefore, $P D=\sqrt{ } 18=3 \sqrt{ } 2$

Activity

The coordinates of the vertices of a triangle are (2,6), (1,1), (7,1). Find the coordinates of the centre of its circumcircle and the circumradius.

Answer

Let $O(x, y)$ be the centre of the circumcircle.
Therefore, $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}$
$O A^{2}=(x-2)^{2}+(y-6)^{2}$
$=x^{2}-2 \times x \times 2+2^{2}+\hat{y}^{2}-2 \times y \times 6+6^{2}$

$$
=x^{2}-4 x+4+y^{2}-12 y+36
$$

$$
=x^{2}+y^{2}-4 x-12 y+40
$$

$\mathrm{OB}^{2}=(\mathrm{x}-1)^{2}+(\mathrm{y}-1)^{2}$

$$
\begin{aligned}
& =x^{2}-2 x+1^{2}+y^{2}-2 y+1^{2} \\
& =x^{2}-2 x+1+y^{2}-2 y+1 \\
& =x^{2}+y^{2}-2 x-2 y+2
\end{aligned}
$$

Therefore, $\quad x^{2}+y^{2}-4 x-12 y+40=x^{2}+y^{2}-2 x-2 y+2$

$$
\begin{aligned}
& x^{2}-x^{2}+y^{2}-y^{2}-4 x+2 x-12 y+2 y+40-2=0 \\
& -4 x+2 x-12 y+2 y+40-2=0 \\
& -2 x-10 y+38=0 \\
& 2 x+10 y=38 \\
& x+5 y=19 \ldots
\end{aligned}
$$

$$
\mathbf{O A}^{2}=\mathbf{O B}^{2}
$$

$$
x^{2}+y^{2}-2 x-2 y+2=x^{2}+y^{2}-14 x-2 y+50
$$

$$
x^{2}-x^{2}+y^{2}-y^{2}-2 x+14 x-2 y+2 y+2-50=0
$$

$$
-2 x+14 x-2 y+2 y+2-50=0
$$

$$
12 x-48=0
$$

$$
12 x=48
$$

$$
x=\frac{48}{12}=4
$$

Substituting $x=4$ in first equation, we get

$$
\begin{aligned}
& 4+5 y=19 \\
& 5 y=19-4=15 \\
& y=\frac{15}{5}=3
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{OC}^{2}=(\mathrm{x}-7)^{2}+(\mathrm{y}-1)^{2} \\
& =x^{2}-14 x+7^{2}+y^{2}-2 y+1^{2} \\
& =x^{2}-14 x+49+y^{2}-2 y+1 \\
& =x^{2}+y^{2}-14 x-2 y+50 \\
& O A^{2}=x^{2}+y^{2}-4 x-12 y+40 \\
& \mathrm{OB}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-2 \mathrm{y}+2 \\
& O C^{2}=x^{2}+y^{2}-14 x-2 y+50 \\
& \mathrm{OA}^{2}=\mathrm{OB}^{2}
\end{aligned}
$$

Therefore, Coordinates of the circumcentre $=(4,3)$

$\mathrm{OA}^{2}=(4-2)^{2}+(3-6)^{2}=(2)^{2}+(-3)^{2}$

$$
=4+9=13
$$

Circumradius $=\sqrt{ } 13$

Assignment

The coordinates of the vertices of a triangle are $(1,2),(2,3),(3,1)$. Find the coordinates of the centre of its circumcircle and the circumradius.

Prepared by Jaisingh Jose G R ;HST(Maths) Govt.V\&HSS Kulathoor

