

നാഡികളും പ്രത്യേകതകളും	ധർമം	
സംവേദനാഡി (സംവേദനാഡീ	ശരീരത്തിന്റെ വിവിധ ഭാഗങ്ങളിൽനിന്നുള്ള സന്ദേശങ്ങൾ	
തന്തുക്കൾ ചേർന്നുണ്ടാകുന്നു).	മസ്തിഷ്കത്തിലേക്കും സുഷുമ്നയിലേക്കും എത്തിക്കുന്നു.	
പ്രേരകനാഡി (പ്രേരകനാഡീ	തലച്ചോറ്, സുഷുമ്ന എന്നിവയിൽനിന്നുള്ള സന്ദേശങ്ങൾ	
തന്തുക്കൾ ചേർന്നുണ്ടാകുന്നു).	ശരീരത്തിന്റെ വിവിധ ഭാഗങ്ങളിലെത്തിക്കുന്നു.	
സമ്മിശ്രനാഡി (സംവേദനാഡീ തന്തുക്കളും പ്രേരകനാഡീതന്തു ക്കളും ചേർന്നുണ്ടാകുന്നു).	തലച്ചോറ്, സുഷുമ്ന എന്നിവയിലേക്കും തിരിച്ചുമുള്ള സന്ദേ ശങ്ങളുടെ വിനിമയം സാധ്യമാക്കുന്നു.	

രോഗം കാരണം		ലക്ഷണം	
അൽഷിമേഴ്സ്	മസ്തിഷ്കത്തിലെ നാഡീകലക ളിൽ അലേയമായ ഒരുതരം പ്രോട്ടീൻ അടിഞ്ഞുകൂടുന്നു. ന്യൂറോണുകൾ നശിക്കുന്നു.	കേവല ഓർമകൾ പോലും ഇല്ലാതാവുക. കൂട്ടു കാരെയും ബന്ധുക്കളെയും തിരിച്ചറിയാൻ കഴി യാതെ വരുക, ദിനചര്യകൾ പോലും ചെയ്യാൻ കഴിയാതെ വരുക.	
മസ്തിഷ്കത്തിലെ പ്രത്യേക പാർക്കിൻസൺസ് ഗാംഗ്ലിയോണുകളുടെ നാശം. തലച്ചോറിൽ ഡോപമിൻ എന്ന നാഡീയപ്രേഷകത്തിന്റെ ഉൽപ്പാ ദനം കുറയുന്നു.		ശരീരതുലനനില നഷ്ടപ്പെടുക, പേശികളുടെ ക്രമരഹിതമായ ചലനം, ശരീരത്തിന് വിറയൽ, വായിൽനിന്ന് ഉമിനീർ ഒഴുകുക.	
അപസ്മാരം	തലച്ചോറിൽ തുടർച്ചയായി ക്രമ രഹിതമായ വൈദ്യുതപ്രവാഹ മുണ്ടാകുന്നു.	തുടരെത്തുടരെയുള്ള പേശീസങ്കോചം മൂല മുള്ള സന്നി, വായിൽനിന്നു നുരയും പതയും വരുക, പല്ല് കടിച്ചുപിടിക്കുക, തുടർന്ന് രോഗി അബോധാവസ്ഥയിലാകുന്നു.	

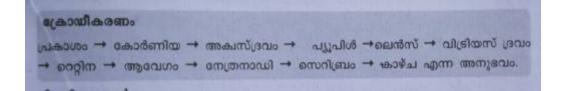
റെറ്റിനയും പ്രകാശഗ്രാഹികോശങ്ങളും

റെറ്റിനയിൽ പ്രകാശഗ്രാഹീകോശങ്ങൾ ഉണ്ടെന്ന് നിങ്ങൾ മനസിലാക്കി യിട്ടുണ്ടല്ലോ? റോഡ് കോശങ്ങൾ (Rod cells), കോൺ കോശങ്ങൾ (Cone cells) എന്നിവയാണ് റെറ്റിനയിലെ പ്രകാശഗ്രാഹീകോശങ്ങൾ. റോഡുകോശങ്ങൾ കോൺകോശങ്ങളെക്കാൾ എണ്ണത്തിൽ കൂടുതലാണ്.

ചിത്രം (2.4) നിരീക്ഷിച്ച് പ്രകാശഗ്രാഹീകോശങ്ങളുടെ ആകൃതിയും അവയുടെ പേരുമായുള്ള ബന്ധം തിരിച്ചറിയു. അനുബന്ധവിവരണം വിശകലനം ചെയ്ത്

> പ്രകാശ ഗ്രാഹീകോശങ്ങളെ താരതമ്യം ചെയ്ത് പട്ടിക (2.3) പൂർത്തിയാക്കു.

റോഡുകോശങ്ങളിൽ റൊഡോപ്സിൻ (Rhodopsin) എന്ന കാഴ്ചാവർണകം (Visual pigment) ഉണ്ട്. ഇത് ഓപ്സിൻ (Opsin) എന്ന പ്രോട്ടീനും വിറ്റാമിൻ A യിൽ നിന്ന് ഉണ്ടാകുന്ന റെറ്റി നാൽ (Retinal) എന്ന പദാർഥവും ചേർന്നാണ് ഉണ്ടാകുന്നത്. മങ്ങിയ പ്രകാശത്തിൽ പോലും ഉദ്ദീപിക്കപ്പെടുന്നതിനാൽ വസ്തുക്കളെ മങ്ങിയ വെളിച്ചത്തിൽ കാണാൻ ഇവ സഹായി കുന്നു. ഇവയ്ക്ക് നിറങ്ങൾ തിരിച്ചറിയാനുള്ള കഴിവില്ല.


കോൺകോശങ്ങളിൽ അടങ്ങിയിരിക്കുന്നത് ഫോട്ടോപ്സിൻ (Photopsin) എന്ന കാഴ്ചാവർണകമാണ്. ഇതിനെ അയഡോ പ്സിൻ (Iodopsin) എന്നും വിളിക്കാറുണ്ട്. ഇതും ഓപ്സിൻ, റെറ്റിനാൽ എന്നീ ഘടകങ്ങൾ ചേർന്നാണ് ഉണ്ടായിരിക്കുന്നത്. പ്രകാശത്തിലെ ചുവപ്പ്, പച്ച, നീല എന്നീ വർണങ്ങളെ തിരി

ച്ചറിയാൻ സഹായിക്കുന്ന മൂന്നു തരം കോൺകോശങ്ങൾ നമ്മുടെ കണ്ണിലുണ്ട്. ഓപ്സിൻ തന്മാത്രയിലെ അമിനോ ആസിഡുകൾ വ്യത്യസ്തമായതാണ് ഈ വൈവിധ്യത്തിന് കാരണം. കോൺകോശങ്ങളുടെ പ്രവർത്തനമാണ് നമുക്ക് വർണ ക്കാഴ്ച സാധ്യമാക്കുന്നത്.

	റോഡ് കോശം	കോൺ കോശം
വർണകം		
ആകൃതി		
ധർമം		

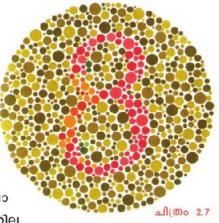
and the second	റോഡ്കോശം	കോൺകോശം	
വർണകം	റൊഡോപ്സിൻ	അയഡോപ്സിൻ	
ആകൃതി	ദണ്ഡ് ആകൃതി	കോണിക്കൽ ആകൃതി	
ധർമം	മങ്ങിയ പ്രകാശത്തിലെ കാഴ്ച	തീവ്രപ്രകാശത്തിലെ കാഴ്ച, വർണക്കാഴ്ച സാധ്യമാക്കാൻ.	

നിശാസാത (Night blindness)

കാഴ്ചാവർണകങ്ങളിലെ ഘടകമായ റെറ്റിനാൽ വിറ്റാമിൻ A യിൽ നിന്നു രൂപം കൊള്ളുന്നതാണെന്ന് അറിയാമല്ലോ. വിറ്റാമിൻ A യുടെ ലഭ്യത കുറയുമ്പോൾ റെറ്റിനാലിന്റെ അളവ് കുറയുകയും റൊഡോപ്സിന്റെ പുനർനിർമാണം തടസ്സപ്പെടുകയും ചെയ്യും. ഈ അവസ്ഥയിൽ മങ്ങിയ വെളിച്ചത്തിൽ വസ്തു ക്കളെ വൃക്തമായി കാണാൻ കഴിയാതെ വരുന്ന ഈ രോഗം നിശാന്ധത എന്നറിയപ്പെടുന്നു.

സിറോഫ്താൽമിയ

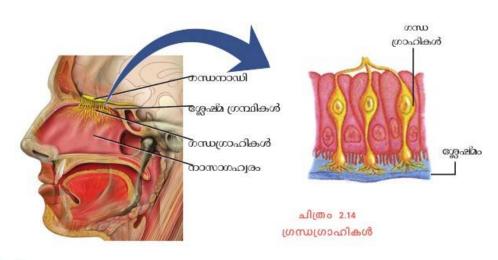
സിറോഫ്താൽമിയ (Xerophthalmia)


വിറ്റാമിൻ A യുടെ തുടർച്ചയായ അഭാവം ഉണ്ടായാൽ നേത്രാവര ണവും കോർണിയയും വരണ്ട് കോർണിയ അതാര്യമായിത്തീരുന്നു. ഇത് സിറോഫ്താൽമിയ എന്ന അവസ്ഥയിലേക്കും തുടർന്ന് അന്ധ തയിലേക്കും നയിക്കുന്നു.

വർണാസത (Colour blindness)

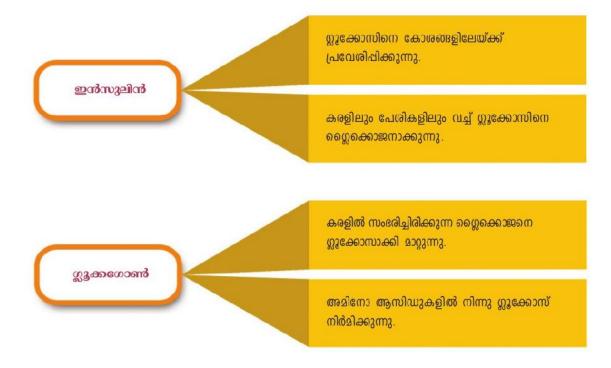
ചിത്രം (2.7) നിരീക്ഷിക്കു.

നിങ്ങൾക്ക് ചിത്രത്തിലുള്ളത് വ്യക്തമായി വായിക്കാൻ കഴി യുന്നുണ്ടോ?


ചുവപ്പ്, പച്ച, നീല എന്നീ നിറങ്ങൾ തിരിച്ചറിയാനുള്ള കോൺകോശങ്ങൾ റെറ്റിനയിലുണ്ടല്ലോ? കോൺകോശങ്ങ ളുടെ തകരാറു മൂലം ചിലർക്ക് ചുവപ്പും പച്ചയും നിറങ്ങൾ വേർതിരിച്ചറിയാൻ കഴിയില്ല. ഈ രോഗാവസ്ഥയാണ് വർണാന്ധത. വർണാന്ധതയുള്ളവരെ സൈനൃത്തിലോ ഡ്രൈവർ, പൈലറ്റ് മുതലായ ജോലികൾക്കോ തിരഞ്ഞെടുക്കാറില്ല. കാരണമെന്തായിരിക്കും? ചർച്ച ചെയ്യു.

രുചിയറിയാൻ

ഓരോ സ്ഥാദ്മുകുളത്തിലും വൃതൃസ്ത രുചികളെ തിരിച്ചറിയാൻ സഹായിക്കുന്ന രാസഗ്രാഹികളുണ്ട്. രുചിക്ക് കാരണമാവുന്ന വസ്തുക്കൾ ഉമിനീരിൽ ലയിച്ച് രാസഗ്രാഹികളെ ഉദ്ദീപിപ്പിക്കുകയും ആവേ ഗങ്ങളുണ്ടാക്കുകയും ചെയ്യുന്നു. ഈ ആവേഗങ്ങൾ ബന്ധപ്പെട്ട നാഡികളിലൂടെ മസ്തിഷ്കത്തി ലെത്തുകയും രുചി അനുഭവപ്പെടുകയും ചെയ്യുന്നു.



ഘട്ടങ്ങൾ

- വായുവിൽ കലരുന്ന ഗന്ധകണികകൾ മൂക്കിലേക്ക് പ്രവേശിക്കുന്നു.
- ഗന്ധകണികകൾ മൂക്കിനുള്ളിലെ ശ്ലേഷ്മത്തിൽ ലയിക്കുന്നു.
- .
- .
- .

ജലദോഷമുള്ളപ്പോൾ ആഹാരത്തിന് രുചി തോന്നാതിരിക്കാൻ സാധ്യതയില്ലേ? എന്തായിരിക്കും കാരണം? ചർച്ച ചെയ്യൂ.

- പ്രഭാതഭക്ഷണം കഴിക്കുന്നതിന് മുൻപുള്ള രക്തപരിശോധനയിൽ ഗ്ലൂക്കോസിന്റെ അളവ് 126 mg/100ml ആണെങ്കിൽ പ്രമേഹം എന്ന അവസ്ഥയാണ്.
- വർധിച്ച വിശപ്പും ദാഹവും, കൂടെക്കുടെയുള്ള മുത്രമൊഴിക്കൽ, മുത്രത്തിലെ ഗ്ലൂക്കോസിന്റെ സാന്നിധ്യം എന്നിവയാണ് പ്രമേഹത്തിന്റെ മുഖ്യ ലക്ഷണങ്ങൾ.
- ഇൻസുലിൻ ഉൽപ്പാദനക്കുറവ്, പ്രവർത്തനത്തകരാറുകൾ, എന്നിവയാണ് പ്രമേ ഹത്തിന്റെ മുഖ്യകാരണങ്ങൾ.

രക്തത്തിലെ ഗ്ലൂക്കോസിന്റെ സാധാരണ അളവ് 70-110mg/100ml ആണ്. ഇൻസു ലിനും ഗ്ലൂക്കഗോണും ചേർന്നുള്ള പ്രവർത്തനമാണ് രക്തത്തിലെ ഗ്ലൂക്കോസിന്റെ അളവ് സ്ഥിരമായി നിലനിർത്തുന്നത്.

ഗ്ലൂക്കോസിന്റെ അളവ് ക്രമീകരിക്കുന്ന ഹോർമോണുകളുടെ ഉൽപ്പാദനം ഉൾപ്പെടുത്തി നൽകിയിരിക്കുന്ന ചിത്രീകരണം (3.3) പൂർത്തിയാക്കൂ.

ഇൻസുലിൻ ഇല്ലെങ്കിൽ...

ഇൻസുലിന്റെ അഭാവമോ, ഉൽപ്പാദിപ്പിക്കപ്പെടുന്ന ഇൻസുലിനെ കോശങ്ങൾക്ക് ഉപയോഗിക്കാൻ കഴിയാതെ വരുന്നതോ ശരീരത്തെ എങ്ങനെയാണ് ബാധിക്കുക?

ചർച്ച ചെയ്യു.

ചുവടെ നൽകിയ വിവരണം സൂചകങ്ങളെ അടിസ്ഥാനമാക്കി വിശകലനം ചെയ്ത് സയൻസ് ഡയറിയിൽ എഴുതു.

ബീറ്റാകോശങ്ങൾ നശിക്കുന്നതിന്റെ ഫലമായി ഇൻസുലിൻ ഉൽപ്പാദനത്തിലുണ്ടാകുന്ന കുറവോ ഉൽപ്പാദിപ്പിക്കപ്പെടുന്ന ഇൻസുലിനെ കോശങ്ങൾക്ക് ഉപയോഗിക്കാൻ കഴിയാത്ത തോ മൂലം രക്തത്തിലെ ഗ്ലൂക്കോസിന്റെ മൂത്രത്തിലു ഒെ ത്തിൽ അധികരിച്ച ഗ്ലൂക്കോസിനെ മൂത്രത്തിലൂടെ പുറത്തുകളയുന്നു. സാധാരണഗതിയിൽ മൂത്രത്തിൽ ഗ്ലൂക്കോസിന്റെ സാന്നിധ്യം കാണപ്പെടില്ല. പ്രഭാതഭക്ഷണം കഴിക്കുന്നതിനു മുമ്പുള്ള രക്തപരിശോധനയിൽ 126mg/100ml എന്ന തോതിനു മുകളിൽ രക്തത്തിൽ ഗ്ലൂക്കോസുള്ള അവ സ്ഥയാണ് പ്രമേഹം. വർധിച്ച വിശപ്പും ദാഹവും കുടെക്കു ടെയുള്ള മൂത്രമൊഴിക്കലുമാണ് പ്രമേഹത്തിന്റെ മുഖ്യ ലക്ഷ ണങ്ങൾ.

മുന്നുമാസത്തെ ഗ്ലൂക്കോസ് നില കൃത്യമായി മനസ്സിലാക്കാൻ സഹായിക്കുന്ന രക്തപരിശോധന പ്രമേഹരോഗ നിർണയ ത്തിൽ പ്രാധാന്യമർഹിക്കുന്നു.

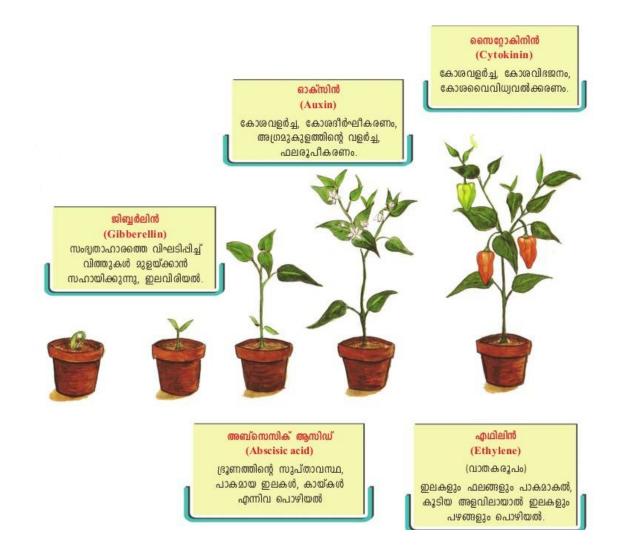
വളർച്ചയുടെ ഘട്ടത്തിൽ സൊമാറ്റോട്രോപ്പിന്റെ ഉൽപ്പാദനം കൂടിയാൽ അമിതമായ ശരീരവളർച്ച ഉണ്ടാകുന്നു. ഈ അവസ്ഥയാണ് **ഭീമാകാരത്വം** (Gigantism). എന്നാൽ വളർച്ചാഘട്ടത്തിൽ ഇതിന്റെ ഉൽപ്പാദനം കുറഞ്ഞാൽ വളർച്ച മുരടി ച്ച് **വാമനത്വത്തിന്** (Dwarfism) കാരണമാകുന്നു. വളർച്ചാഘട്ടത്തിനുശേഷം സൊമാറ്റോട്രോപ്പിന്റെ അമിതമായ ഉൽപ്പാദനം മൂലം മുഖം, താടിയെല്ല്, വിരലുകൾ എന്നിവിടങ്ങളിലെ അസ്ഥികൾ വളരുന്ന സാഹചര്യമുണ്ടാകാം. ഇതാണ് **അക്രോമെഗാലി** (Acromegaly).

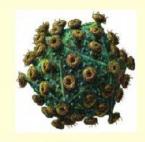
ആശയവിനിമയത്തിനുതകുന്ന രാസസന്ദേശങ്ങറാ

നിശ്ചിത പാതയിലൂടെ ഉറുമ്പുകൾ വരിവരിയായി സഞ്ചരിക്കുന്നത് കണ്ടിട്ടില്ലേ? ഇവ ഉൽപ്പാദിപ്പിക്കുന്ന ചില രാസവസ്തുക്കളാണ് ഇതിന് കാരണം.

ഇത്തരത്തിൽ ആശയവിനിമയത്തിന് ചില ജന്തുക്കൾ ചുറ്റുപാടിലേയ്ക്ക് സ്രവിക്കുന്ന രാസവസ്തുക്കളാണ് ഫിറോമോണുകൾ. ഇണയെ ആകർഷിക്കൽ, ഭക്ഷണലഭൃത അറിയിക്കൽ, സഞ്ചാരപാത നിർണയിക്കൽ, അപകടസാധൃത അറിയിക്കൽ എന്നിവയ്ക്ക് ഫിറോമോണുകൾ ഉപയോഗിക്കുന്നു. തേനീച്ചകൾ, ചിതലുകൾ മുതലായവ കോളനികളായി ജീവിക്കുന്നത് ഫിറോമോണുകൾ ഉപ യോഗിച്ചുള്ള രാസസന്ദേശങ്ങൾ വഴിയാണ്.

കസ്തൂരിമാനിലെ കസ്തൂരി (Muscone), വെരുകിലെ സിവറ്റോൺ (Civeton), പെൺപട്ടുനൂൽ ശലഭത്തിലെ ബോംബികോൾ (Bombykol) എന്നിവ ഫിറോമോ ണുകൾക്ക് ഉദാഹരണങ്ങളാണ്.


കാർഷികമേഖലയിൽ കൃത്രിമ ഫിറോമോണുകളുപയോഗിച്ചുള്ള കീടനിയ ന്ത്രണമാർഗം അവലംബിച്ചുവരുന്നുണ്ട്.



ent

മുൻകാലങ്ങളിൽ വ്യാപകമായ ഭീതി പരത്തിയിരുന്ന രോഗമായിരുന്നു ക്ഷയം. നൽകിയ വസ്തുതകൾ വിശകലനം ചെയ്ത് ക്ഷയരോഗത്തെക്കുറിച്ചുള്ള മുഖ്യ വിവരങ്ങൾ ഉൾപ്പെടുത്തി ചുവർപത്രിക തയാറാക്കി ക്ലാസിൽ പ്രദർശിപ്പിക്കു.

രോഗകാരി	മൈക്കോബാക്ടീരിയം ട്യൂബർകുലോസിസ് (Mycobacterium tuberculosis)	
മുഖൃലക്ഷണങ്ങൾ	 ശരീരത്തിന് ഭാരക്കുറവ് അനുഭവപ്പെടുക, ക്ഷീണം, സ്ഥിരമായ ചുമ. രോഗി ചുമയ്ക്കുമ്പോഴോ, തുമ്മുമ്പോഴോ, സംസാരിക്കുമ്പോഴോ രോഗാണുക്കൾ വായുവിലേക്കും മറ്റുള്ളവരിലേക്കും വ്യാപിക്കും. ശ്വാസകോശത്തെയാണ് മുഖ്യമായും ക്ഷയരോഗം ബാധിക്കുക. എന്നാൽ വൃക്കകൾ, അസ്ഥികൾ, അസ്ഥിസന്ധികൾ, തലച്ചോറ് എന്നിവയെയും ഈ രോഗം ബാധിക്കാറുണ്ട്. ആന്റീബയോട്ടിക്കുകൾ ഉപയോഗിച്ചുള്ള ചികിത്സ. ക്ഷയരോഗബാധയെ തടയുന്നതിന് ഉപയോഗിക്കുന്ന പ്രതിരോധ വാക്സിനാണ് ബി.സി.ജി. (BCG). 	
രോഗപ്പകർച്ച		
രോഗം ബാധിക്കുന്ന ശരീരഭാഗങ്ങൾ		
ചികിത്സ		
വാക്സിൻ		

എയ്ഡ്സ്

ചിത്രം 4.3 എച്ച്.ഐ.വി ലോകത്തെ ഭീതിയിലാഴ്ത്തിയ രോഗമാണ് എയ്ഡ്സ് (AIDS-Acquired Immuno Deficiency Syndrome). ശരീരത്തിന് രോഗപ്രതിരോധശേഷി നൽകുന്ന ലിംഫോസൈറ്റുകളുടെ ജനിതക സംവിധാനം ഉപയോഗിച്ച് എയ്ഡ്സിന് കാരണമായ വൈറസ് (HIV- Human Immunodeficiency Virus) പെരുകുന്നു. തൻമൂലം ലിംഫോസൈറ്റുകളുടെ എണ്ണം ഗണ്യ മായി കുറഞ്ഞ് ശരീരത്തിന്റെ രോഗപ്രതിരോധശേഷി തകരാറിലാ കുന്നു. ഈ സന്ദർഭത്തിൽ ശരീരത്തെ ബാധിക്കുന്ന വിവിധ രോഗാ ണുക്കളാണ് എയ്ഡ്സ് എന്ന അവസ്ഥയെ മാരകമാക്കുന്നത്.

ചിത്രീകരണം 4.3 എയിഡ്സ് പകരുന്ന വിധം

എങ്ങനെയൊക്കെ എയ്ഡ്സ് പകരില്ല?

- സ്പർശനം, ഹസ്തദാനം, ചുമ, തുമ്മൽ എന്നിവയിലൂടെ.
- കൊതുക്, ഈച്ച തുടങ്ങിയ പ്രാണികളിലൂടെ.
- ഒരുമിച്ച് താമസിക്കുക, ആഹാരം പങ്കിടുക എന്നിവയിലൂടെ.
- ഒരേ ശൗചാലയം ഉപയോഗിക്കുന്നതിലൂടെ.
- ഒരേ കുളത്തിൽ കുളിക്കുന്നതിലൂടെ.

എയ്ഡ്സ് രോഗിയെ ഭയക്കേണ്ടതുണ്ടോ? എയ്ഡ്സ് രോഗബാധിത രോട് നമ്മുടെ സമീപനം എങ്ങനെയായിരിക്കണം? ചർച്ച ചെയ്യൂ.

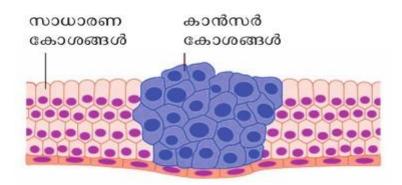
ഹീമോഫീലിയ

രക്തം കട്ടപിടിക്കുന്നത് പ്ലാസ്മയിലെ ചില പ്രോട്ടീനുകളുടെ സഹാ യത്താലാണ്. ഇത്തരം പ്രോട്ടീനുകളുടെ ഉൽപ്പാദനത്തെ നിയന്ത്രി ക്കുന്ന ജീനുകൾ തകരാറിലായാൽ എന്തുസംഭവിക്കും?

ചർച്ച ചെയ്യൂ.

ചെറിയ മുറിവിൽ നിന്നുപോലും അമിതമായി രക്തനഷ്ടമുണ്ടാകുന്ന രോഗാവസ്ഥയാണ് ഹീമോഫീലിയ. ഇതൊരു ജനിതകരോഗമായ തിനാൽ പരിപൂർണ ചികിത്സ നിലവിലില്ല. ഉൽപ്പാദനം തകരാറിലായ പ്രോട്ടീൻ ഏതെന്ന് കണ്ടെത്തി അത് കുത്തിവച്ചാണ് രോഗത്തിന് താൽക്കാലിക ശമനമുണ്ടാക്കുന്നത്.

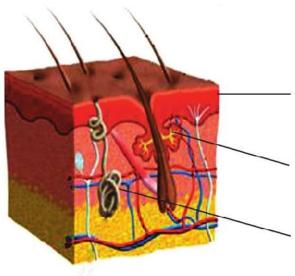
പ്രത്യേക ശ്രദ്ധയും പരിചരണവും ആവശ്യമായ ഇത്തരം രോഗികൾക്കായി ചില സാമൂഹിക സംഘങ്ങൾ പ്രവർത്തിക്കുന്നുണ്ട്. ഹീമോഫീലിയ രോഗികളെ കണ്ടെത്തി പരിചരിക്കാനും ബന്ധുക്കളെയും പൊതുജനങ്ങളെയും ബോധവൽക്ക രിക്കാനും ഇത്തരം സന്നദ്ധസംഘങ്ങൾ മുൻകൈയെടുക്കുന്നു.


കാൻസർ

അനിയന്ത്രിതമായ കോശവിഭജനം വഴി കോശങ്ങൾ പെരുകി ഇതര കലകളി ലേയ്ക്ക് വ്യാപിക്കുന്ന രോഗാവസ്ഥയാണ് കാൻസർ. കോശവിഭജനപ്രക്രിയയിലെ നിയന്ത്രണ സംവിധാനങ്ങൾ തകരാറിലാകുന്നതോടെയാണ് സാധാരണ കോശങ്ങൾ കാൻസർ കോശങ്ങളായി മാറുന്നത്. പരിസ്ഥിതി ഘടകങ്ങൾ, പുക വലി, വികിരണം, വൈറസ്, പാരമ്പര്യഘടകങ്ങൾ തുടങ്ങിയവ ഇതിന്

ജീവശാസ്ത്രം - X

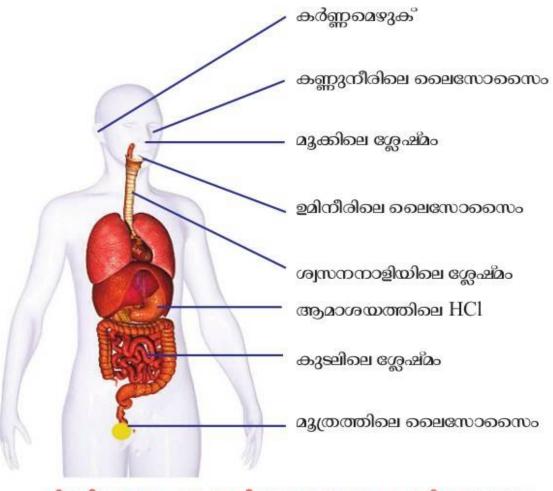
കാരണമാകാം. രക്തം, ലിംഫ് എന്നീ ശരീരദ്രവങ്ങളിലൂടെ കാൻസർ കോശങ്ങൾ മറ്റ് ഭാഗങ്ങളിലേയ്ക്ക് വ്യാപിച്ച് രോഗാവസ്ഥ സങ്കീർണമാകാം.



ചിത്രീകരണം 4.7 കാൻസർ കോശങ്ങൾ

ശസ്ത്രക്രിയ, രാസചികിത്സ, വികിരണചികിത്സ എന്നിവയെല്ലാം ഇന്ന് കാൻസർ ചികിത്സക്കായി പ്രയോജനപ്പെടുത്താറുണ്ട്. രോഗം മൂർഛിച്ച അവസ്ഥ യിൽ രോഗമുക്തി പ്രയാസകരമായതിനാൽ ഏറ്റവും നേരത്തേ രോഗബാധ തിരിച്ചറിയുക എന്നത് കാൻസർ ചികിത്സയിൽ നിർണായകമാണ്.

അധികവിവരശേഖരണം നടത്തിയും കാൻസർ വിദഗ്ധരുമായി ചർച്ച ചെയ്തും ഈ രോഗത്തെ ഒഴിവാക്കുന്നതിന് സഹായകമായ ജീവിതശൈലി യും ആഹാരരീതിയും എന്തെല്ലാമാണ് എന്ന് കണ്ടെത്തൂ.



എപ്പിഡെർമിസ് - ഇതിൽ കാണപ്പെടുന്ന കെരാറ്റിൻ എന്ന പ്രോട്ടീൻ രോഗാണുക്കളെ തടയുന്നു.

സെബേഷ്യസ് ഗ്രന്ഥി – ഉൽഷാദിഷിക്കുന്ന സെബം ത്വക്കിനെ എണ്ണമയമുള്ളതും വെള്ളം പറ്റിഷിടിക്കാത്ത തുമാക്കുന്നു.

സ്വേദഗ്രന്ഥി - ഉൽഷാദിഷിക്കുന്ന വിയർഷിലെ അണുനാശി നികൾ രോഗാണുക്കളെ നശിഷിക്കുന്നു.

ചിത്രീകരണം 5.2 ശരീരസ്രവങ്ങളും പ്രതിരോധവും

ഫാഗോസൈറ്റോസിസ്

രോഗാണുക്കളെ വിഴുങ്ങി നശിപ്പിക്കുന്ന പ്രവർത്തനമാണ് ഫാഗോസൈറ്റോസിസ് (Phagocytosis). ഫാഗോസൈറ്റോസിസ് നടത്തുന്ന കോശങ്ങളാണ് ഫാഗോസൈ റ്റുകൾ (phago-വിഴുങ്ങൽ, cyte-കോശം). ശേവതരക്താണുക്കളായ മോണോസൈ റ്റും ന്യൂട്രോഫില്ലും ഫാഗോസൈറ്റുകളാണ്.

ഫാഗോസൈറ്റോസിസിന്റെ ഘട്ടങ്ങൾ ചിത്രീകരിച്ചിരിക്കുന്നത് (5.5) വിശകലനം ചെയ്ത് കുറിപ്പ് തയാറാക്കി സയൻസ് ഡയറിയിൽ എഴുതു.

പനി ഒരു പ്രതിരോധ പ്രവർത്തനം

ശരീരത്തിന്റെ സാധാരണ താപനില 37 °C (98.6 °F) ആണ്. ശരീരതാപനില സാധാരണ നിലയിലും ഉയരുന്ന അവസ്ഥയാണ് പനി. ഇത് ഒരു രോഗമാണോ? രോഗലക്ഷണമാണോ? നൽകിയ ഫ്ളോചാർട്ട് വിശകലനം ചെയ്ത് നിഗമനങ്ങൾ സയൻസ് ഡയറിയിൽ എഴുതു.

എഡ്വേർഡ് ജെന്നർ

എഡ്ഡേർഡ് ജെന്നർ എന്ന ഇംഗ്ലീഷ് ഡോകൂർ ആണ് ആധുനിക പ്രതിരോധകുത്തിവയ്പ്പിന് തുടക്കം കുറിച്ചത്. ഗോവസൂരി രോഗം ബാധിച്ചവർക്ക് വസുരിരോഗം ബാധി ക്കുന്നില്ല എന്ന് അദ്ദേഹം നിരീക്ഷിച്ചു. അദ്ദേഹം 8 വയസ്സുള്ള ഒരു ആൺ കുട്ടിയിൽ ഗോവസൂരി രോഗിയിൽ നിന്നുള്ള പഴുപ്പ് കുത്തിവെച്ചു. ആ കുട്ടിക്ക് ഗോവസൂരി രോഗം ഉണ്ടാവുകയും രോഗം ഭേദമാകു കയും ചെയ്തു. രണ്ട് മാസത്തിനു ശേഷം അദ്ദേഹം ആ കുട്ടിയിൽ ഒരു വസൂരിരോഗിയിൽ നിന്നുള്ള പഴുപ്പ് കുത്തിവെച്ചു. ആ കുട്ടിയ്ക്ക് വസൂരിരോഗം ഉണ്ടായില്ല. ജെന്ന റുടെ ഗോവസൂരി പ്രയോഗത്തെ അനുസ്മരിച്ച് പശു എന്നർത്ഥം വരുന്ന ലാറ്റിൻ വാക്കായ 'vacca' യിൽ നിന്നാണ് പ്രതിരോധപ്രവർത്ത നങ്ങൾക്ക് വാക്സിനേഷൻ എന്ന പേര് കിട്ടിയത്.

സയൻസ ഡയറിയിൽ എഴുതു.

രോഗാണുക്കൾ ശരീരത്തിൽ പ്രവേശിക്കുമ്പോൾ പ്രതിരോധപ്രവർത്തനങ്ങൾക്ക് കാലതാമസം സംഭവിച്ചാൽ രോഗാണുക്കൾ പെരുകുകയും വ്യാപിക്കുകയും ചെയ്യുന്നു. രോഗാണുവിന്റെ ആക്രമണം മുന്നിൽക്കണ്ട് പ്രതിരോധ കോശങ്ങളെ സജ്ജമാക്കി വെക്കാനുള്ള കൃത്രിമമാർഗമാണ് പ്രതിരോധവൽക്കരണം (Immunization).

കൃത്രിമപ്രതിരോധവൽക്കരണത്തിനായി ഉപയോഗിക്കുന്ന വസ്തുക്കളാണ് വാക്സിനുകൾ. ജീവനുള്ളതോ മൃതമാക്കപ്പെട്ടതോ നിർവീരൃമാക്കപ്പെട്ടതോ ആയ രോഗാണുക്കൾ, നിർവീരൃമാക്കപ്പെട്ട വിഷവസ്തുക്കൾ, രോഗകാരികളുടെ കോശഭാഗങ്ങൾ എന്നിവയിൽ ഏതെ ങിലും ആയിരിക്കും ഓരോ വാക്സിനുകളിലെയും ഘടക ങ്ങൾ. ഇവ ശരീരത്തിലെ പ്രതിരോധപ്രവർത്തനങ്ങളെ ഉത്തേജിപ്പിക്കുന്ന ആന്റിജനുകളായി പ്രവർത്തിക്കുന്നു. ഇവയ്ക്കെതിരെ ശരീരത്തിൽ ആന്റിബോഡികൾ നിർമിക്കപ്പെടുന്നു. ഈ ആന്റിബോഡികൾ നിലനിൽക്കു കയും ഭാവിയിൽ ഇതേ രോഗത്തിന് കാരണമായ രോഗാണുക്കളിൽ നിന്ന് ശരീരത്തെ സംരക്ഷിക്കുകയും ചെയ്യുന്നു.

വാക്സിൻ	രോഗം
ബി.സി.ജി	
ഒ.പി.വി	
പെന്റാവാലന്റ്	
എാ.എാ.ആർ	
ടി.ടി	

ആന്റിബയോട്ടിക്കുകയ

ബാക്ടീരിയ, ഫംഗസ് തുടങ്ങിയ സൂക്ഷ്മജീവികളിൽ നിന്നും വേർതിരിച്ചെ ടുക്കുകയും ബാക്ടീരിയയെ നശിപ്പിക്കാൻ ഉപയോഗിക്കുന്നതുമായ ഔഷധങ്ങളാണ് ആന്റിബയോട്ടിക്കുകൾ. ശരീരോപരിതലത്തിലും ശരീരത്തിനകത്തും പ്രയോഗിക്കാവുന്ന ഔഷധങ്ങളാണ് ഇവ.

> 1928 ൽ സർ അലക് സാണ്ടർ ഫ്ളെമിങ് ആണ് ആദ്യമായി ആന്റിബയോട്ടിക്കുകൾ കണ്ടെത്തിയത്. *പെനിസിലിയം നൊട്ടെറ്റം* എന്ന ഫംഗസിന് ബാക്ടീരിയകളെ നശിപ്പിക്കാനുള്ള കഴിവുണ്ടെന്ന് അദ്ദേഹം ആകസ്മികമായി കണ്ടെത്തി. എന്നാൽ അതിൽ നിന്നും മരുന്ന് വേർതിരിച്ചെടുക്കാൻ പിന്നെയും വർഷങ്ങൾ വേണ്ടിവന്നു.

ആന്റിബയോട്ടിക്കുകൾ ഫലപ്രദമായ ഔഷ ധങ്ങളാണെങ്കിലും അവയുടെ സ്ഥിരമായ ഉപയോഗം പല പാർശ്വഫലങ്ങളും സൃഷ്ടി ക്കുന്നുണ്ട്. അവയിൽ പ്രധാനപ്പെട്ടവ ശ്രദ്ധിക്കൂ.

- സ്ഥിരമായ ഉപയോഗം രോഗാണു ക്കൾക്ക് ആന്റിബയോട്ടിക്കുകൾക്കെ തിരായ പ്രതിരോധശേഷിയുണ്ടാ ക്കുന്നു.
- ശരീരത്തിലെ ഉപകാരികളായ ബാക്ടീരിയകളെ നശിപ്പിക്കുന്നു.
- ശരീരത്തിലെ ചില വിറ്റാമിനുകളുടെ അളവ് കുറയ്ക്കുന്നു.

ഫംഗസുകളെ നശിപ്പിക്കാൻ ആന്റിഫംഗൽ

2018 ഒക്ടോബറിൽ നാടിന് സമർപ്പിക്കപ്പെട്ട KARSAP (Kerala Antimicrobial Resistance Strategic Action Plan) കേരളമാതൃകയുടെ മറ്റൊരുദാഹ രണമാണ്.

ഗകാരികളായ സൂക്ഷ്മജീവികളുടെ മരുന്നുക ടുള്ള അതിജീവനശേഷിക്കെതിരെ പോരാടാൻ പ്യം വയ്ക്കുന്ന ഈ കർമപദ്ധതി ദക്ഷിണ വേഷ്യൻ രാജ്യങ്ങളിൽ ആദ്യമായി നടപ്പിൽ ത്തിയത് കേരളത്തിലാണ്. 2016 ൽ മരുന്നുകളെ ിരോധിക്കുന്ന ക്ഷയരോഗം ലോകത്ത് ഏക 6 5 ലക്ഷം പേരെ ബാധിച്ചു. ഈ സാഹചര്യ ൽ WHO സൂക്ഷ്മജീവികളുടെ അതിജീവന

രക്തഗ്രൂപ്പുകൾ	ആന്റിജനുകൾ	ആന്റിബോഡികൾ
А	А	b
В	В	а
AB	A യും B യും	ഇല്ല
0	ഇല്ല	a യും b യും

പട്ടിക 5.5 വിവിധതരം രക്തഗ്രൂപ്പുകൾ

അരുണരക്താണുവിന്റെ ഉപരിതലത്തിലുള്ള A, B എന്നീ ആന്റിജനുകളുടെ സാന്നിധ്യമാണ് രക്തത്തെ ഗ്രൂപ്പുകളാക്കുന്നതിനാധാരം. ഇതിൽ ഏത് ആന്റി ജനാണോ ഒരാളുടെ രക്തത്തിലുള്ളത് ആ ആന്റിജന്റെ പേരാണ് രക്തഗ്രു പ്പിന് നൽകുക. പ്ലാസ്മയിൽ കാണപ്പെടുന്ന ചില ആന്റിബോഡികൾക്ക് രക്ത നിവേശനത്തിൽ പ്രത്യേക പ്രാധാന്യമുണ്ട്. A ഗ്രൂപ്പ് രക്തത്തിൽ ആന്റിബോഡി b യും B ഗ്രൂപ്പ് രക്തത്തിൽ ആന്റിബോഡി a യും ആണുള്ളത്. A,B ആന്റി ജനുകളെക്കൂടാതെ ചില വ്യക്തികളുടെ അരുണരക്താണുവിന്റെ കോശസ്ത രത്തിൽ ആന്റിജൻ D അഥവാ ആർ.എച്ച് ഘടകവും (Rh Factor) ഉണ്ടാകാം. ആർ.എച്ച്.ഘടകം ഉള്ള രക്തഗ്രൂപ്പുകൾ പോസിറ്റീവ് എന്നും ഇല്ലാത്തവ നെഗറ്റീവ് എന്നും അറിയപ്പെടുന്നു.

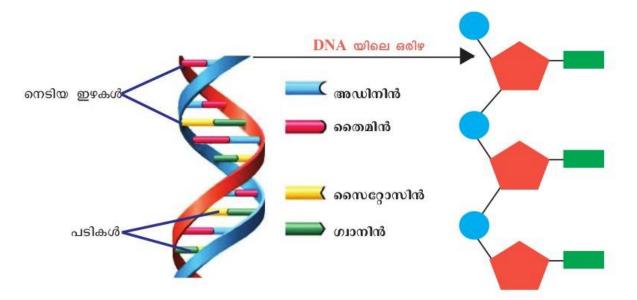
ഒരാളുടെ രക്തത്തിൽ സ്വാഭാവികമായി കാണപ്പെടാത്ത ആന്റിജനുകൾ എത്തിയാൽ അത് പ്രതിരോധ പ്രവർത്തനത്തെ ഉത്തേജിപ്പിക്കുന്നു. അനു യോജ്യമല്ലാത്ത രക്തം സ്വീകരിക്കുമ്പോൾ ദാതാവിന്റെ രക്തത്തിലെ ആന്റി ജനും സ്വീകർത്താവിന്റെ രക്തത്തിലെ ആന്റിബോഡിയും തമ്മിൽ പ്രതിപ്ര വർത്തിച്ച് രക്തക്കട്ട രൂപപ്പെടുന്നു. അതുകൊണ്ട് എല്ലാവർക്കും എല്ലാ ഗ്രൂപ്പ് രക്തവും സ്വീകരിക്കാൻ കഴിയില്ല.

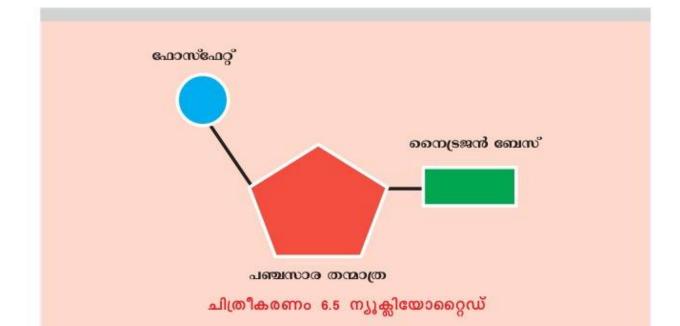
നോട്ടീസ് ബോർഡ്

- I & നും 60 നും ഇടയിൽ പ്രാഖമുള്ളവർക്ക് രക്തം ദാനം ചെയ്യാം.
- മുന്നുമാസത്തിലൊരിക്കൽ രക്തം ദാനം ചെയ്യാം.
- 🕨 രക്തദാനം ദാതാവിന് ഖാതൊരു ആരോഗ്യപ്രശ്നവുമുണ്ടാക്കുന്നില്ല.
- ഗർഭിണികൾ, മുല**യൂട്ടുന്ന അമ്മമാർ എന്നിവർ രക്തം ദാനം** ചെച്ചുരുത്.
- 🕨 രക്തത്തിലൂടെ പകരുന്ന രോഗമുള്ളവർ രക്തം ദാനം ചെച്ചരുത്.

പാരമ്പര്യസ്വഭാവങ്ങളുടെ പ്രേഷണത്തിന് കാരണമെന്ന് ഗ്രിഗർ മെൻഡൽ വിശേഷിപ്പിച്ച ഘടകങ്ങളുടെ യഥാർത്ഥ രൂപമോ സവിശേഷതയോ ഇരുപതാം നൂറ്റാണ്ടിന്റെ ആദ്യപാദങ്ങളിൽവരെ കണ്ടെത്താനായിരുന്നില്ല. തുടർന്നുനടന്ന പഠനങ്ങളിലൂടെ പാരമ്പര്യസ്വഭാവങ്ങളുടെ പ്രേഷണത്തിൽ ന്യൂക്ലിക് ആസിഡായ DNA (ഡീഓക്സിറൈബോന്യൂക്ലിക് ആസിഡ്) തന്മാത്രയ്ക്കുള്ള പ്രാധാനൃം ബോധ്യപ്പെടുകയും 'ഘടകങ്ങൾ' എന്ന് മെൻഡൽ വിശേ ഷിപ്പിച്ച പാരമ്പര്യവാഹകർ DNA യിലെ ജീനുകളാണ് എന്ന് കണ്ടെത്തുകയും ചെയ്തു. ക്രോമസോമുകളിലെ DNA യുടെ ഘടനയെ സംബന്ധിച്ച കണ്ടെത്തലുകളാണ് പിൽക്കാല ജനിതക ശാസ്ത്രഗവേഷണങ്ങൾക്ക് ഏറ്റവും വലിയ മുതൽക്കൂട്ടായത്. തൻമാത്രാജനിതകശാസ്ത്രം എന്ന ശാസ്ത്രശാഖ ഇന്ന് ഏറ്റവും വികസിച്ചുകൊണ്ടിരിക്കുന്ന ഗവേഷണ മേഖലയാണ്.

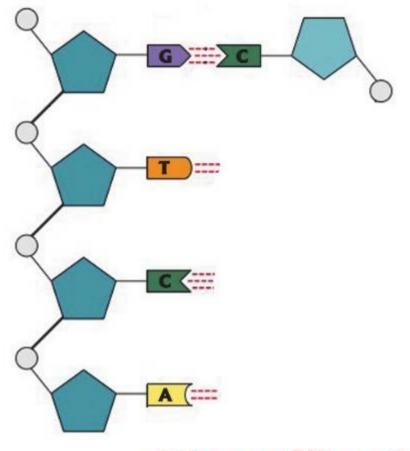
DNA (ഡീഓക്സിറൈബോന്യൂക്ലിക് ആസിഡ്)


ജയിംസ് വാട്സൺ, ഫ്രാൻസിസ് ക്രിക്ക് എന്നീ ശാസ്ത്രജ്ഞർ 1953 ൽ DNA യുടെ ചുറ്റുഗോവണി മാതൃക അവതരിപ്പിച്ചു. ഈ മാതൃക ശാസ്ത്രലോകത്തു വലിയ സ്വീകാര്യത നേടുകയും 1962 ൽ അവർക്ക് നോബൽ സമ്മാനം ലഭിക്കുകയും ചെയ്തു.



ചിത്രം 6.2 വാട്സനും ക്രിക്കും

ചുറ്റു ഗോവണി മാതൃക പ്രകാരം DNA തന്മാത്ര രണ്ട് ഇഴകൾ ചേർന്നതാണ്. പഞ്ചസാരയും ഫോസ്ഫേറ്റും ചേർന്നുള്ള രണ്ട് നെടിയ ഇഴകളും നൈട്രജൻ ബേസുകൾ ചേർന്നുള്ള പടികളുമുള്ള ഘടനയാണ് നിർദേശിക്കപ്പെട്ടത്. നൽകിയിട്ടുള്ള ചിത്രീകരണങ്ങളും (6.4, 6.5) വിവരണവും സൂചകങ്ങളുടെ അടി സ്ഥാനത്തിൽ വിശകലനം ചെയ്ത് DNA തന്മാത്രയുടെ ഘടനയെപ്പറ്റി കുറിപ്പ് തയാറാക്കു.



DNA തൻമാത്ര ന്യൂക്ലിയോറ്റൈഡുകൾ എന്ന യൂണിറ്റുകൾ ചേർന്നാണു ണ്ടാകുന്നത്. ഒരു പഞ്ചസാര തന്മാത്രയും ഒരു ഫോസ്ഫേറ്റ് തന്മാത്രയും ഒരു ന്യൈട്ജൻ ബേസും ആണ് ഒരു ന്യൂക്ലിയോറ്റൈഡിലുള്ളത്.

DNA യിൽ ഡീഓക്സി റൈബോസ് പഞ്ചസാരയാണു ള്ളത്. നൈട്രജൻ അടങ്ങിയതും ക്ഷാരസ്വഭാവമുള്ളതു മായ തന്മാത്രകളാണ് നൈട്രജൻ ബേസുകൾ (Nitrogen bases). അഡിനിൻ, തൈമിൻ, ഗ്വാനിൻ, സൈറ്റോസിൻ എന്നീ നാലുതരം നൈട്രജൻ ബേസുകൾ ഉള്ളതിനാൽ DNA യിൽ നാലുതരം ന്യൂക്ലിയോറ്റൈഡുകളുണ്ട്. DNA യുടെ നിർമാണഘടകങ്ങളായ നൈട്രജൻ ബേസുകൾ സവിശേഷ പ്രാധാന്യമുള്ള തന്മാത്രകളാണ്. DNA യിൽ അഡിനിൻ തൈമിനുമായും ഗ്വാനിൻ സൈറ്റോസിനു മായും മാത്രമേ ജോഡി ചേരുകയുള്ളൂ.

ചിത്രീകരണം 6.6 DNA ഇഴകൾ

RNA (റൈബോന്യൂക്ലിക് ആസിഡ്)

DNA യെപ്പോലെത്തന്നെ മറ്റൊരു ന്യൂക്ലിക് ആസിഡാണ് RNA. RNA യും ന്യൂക്ലി യോറ്റൈഡുകൾ കൊണ്ടാണ് നിർമിക്കപ്പെട്ടിരിക്കുന്നത്. RNA യിൽ കാണപ്പെടു ന്നത് റൈബോസ് പഞ്ചസാരയാണ്. തൈമിനുപകരം RNA യിൽ യുറാസിൽ എന്ന നൈട്രജൻ ബേസാണുള്ളത്. ഭൂരിഭാഗം RNA കളിലും ഒരിഴ മാത്രമേയു ള്ളൂ.

DNA യുടേയും RNA യുടേയും ഘടന താരതമ്യം ചെയ്ത് ചുവടെ നൽകിയ പട്ടിക (6.2) ഉചിതമായി പൂർത്തിയാക്കൂ.

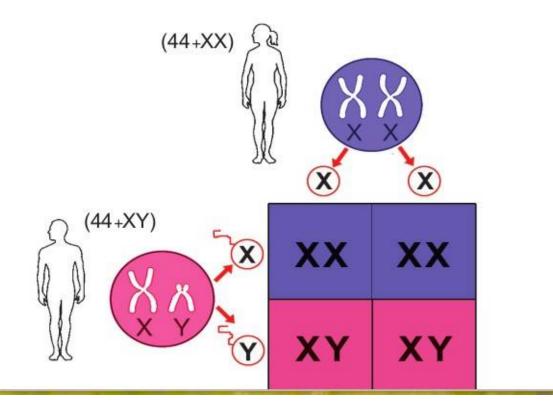
	ഇഴകളുടെ എണ്ണം	പഞ്ചസാരയുടെ തരം	നൈട്രജൻ ബേസുകൾ
DNA			
RNA			

DNA യിൽ നിന്ന് mRNA രൂപക്ഷെടുന്നു.

mRNA ന്യൂക്ലിയസിന് പുറ ത്തെത്തുന്നു

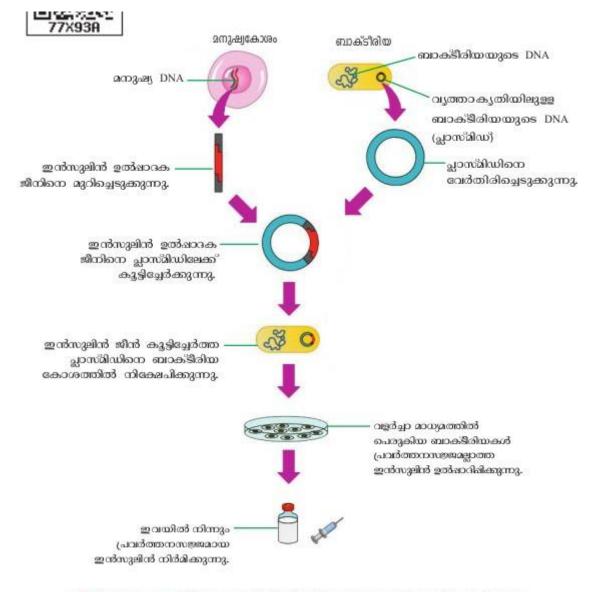
DNA

mRNA റൈബോ സോമിലെത്തുന്നു.


mRNA യിലെ സന്ദേശ മനുസരിച്ച് അമിനോ ആസിഡുകൾ കൂട്ടി ച്ചേർത്ത് പ്രോട്ടീൻ നിർമിക്കുന്നു.

tRNA വിവിധതരം അമിനോ ആസിഡുകളെ റൈബോസോ മിലെത്തിക്കുന്നു.

കുഞ്ഞ് ആണോ പെണ്ണോ?


കുഞ്ഞ് ആണോ പെണ്ണോ എന്നു നിശ്ചയിക്കപ്പെടുന്നതിലെ ജനിതകരഹസ്യം എന്താണ്?

ചിത്രീകരണം (6.10) നിരീക്ഷിക്കൂ. സൂചകങ്ങൾക്കനുസരിച്ച് ചർച്ചചെയ്ത് നിഗ മനങ്ങൾ സയൻസ് ഡയറിയിൽ എഴുതൂ.

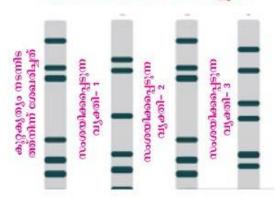
ചിത്രീകരണം 7.1 ജനിതക എഞ്ചിനീയറിങ്ങിലൂടെയുള്ള ഇൻസുലിൻ ഉൽപ്പാദനം

ജീനുകളെ മുറിച്ചെടുക്കാനും കുട്ടിചേർക്കാനും എൻസൈമുകളെയാണ് പ്രയോജനപ്പെടുത്തുന്നത്. ജീനുകളെ മുറിച്ചുമാറ്റാൻ ഉപയോഗിക്കുന്നത് റെസ്ട്രിക്ഷൻ എൻഡോന്യൂക്ലിയേസ് (Restriction Endonuclease) എന്ന എൻസൈമാണ്. ഇത് ജനി തക കത്രിക (Genetic scissors) എന്നറിയപ്പെടുന്നു. വിളക്കിച്ചേർക്കാൻ ഉപയോഗിക്കുന്നത് ലിഗേസ് (Ligase) എന്ന എൻസൈമാണ്. ഇത് ജനിതക പശ (Genetic glue) എന്നറിയപ്പെടുന്നു.

115

ജീവശാസ്ത്രം - X

മനുഷ്യനിലെ ഇൻസുലിൻ ഉൽപ്പാദക ജീനിനെ ബാക്ടീരിയയിലേക്ക് സന്നിവേശിപ്പിക്കാൻ കഴിഞ്ഞത് എങ്ങനെയാണ്? ഒരു കോശത്തിലെ ജീനിനെ മറ്റൊരു കോശത്തിലേക്ക് എത്തിക്കുന്നത് അനുയോജ്യരായ വാഹകരെ (Vectors) ഉപയോഗിച്ചാണ്. കൂട്ടിച്ചേർത്ത ജീനുകൾ ഉള്ള വാഹ കർ ലക്ഷ്യകോശത്തിൽ പ്രവേശിക്കുന്നു. സാധാരണയായി ബാക്ടീരിയ കളിലെ പ്ലാസ്മിഡ് ആണ് വാഹകരായി ഉപയോഗിക്കുന്നത്. അതുവഴി പുതിയ ജീനുകൾ ലക്ഷ്യകോശത്തിലെ ജനിതകഘടനയുടെ ഭാഗമാകുന്നു.


DNA ഫിംഗർപ്രിന്റിംഗ്

ന്യൂക്ലിയോറ്റൈഡുകളുടെ ക്രമീകരണം പരിശോധിക്കുന്ന സാങ്കേതികവി ദൃയാണ് DNA പ്രൊഫൈലിങ് (DNA Profiling). 1984 ൽ അലക് ജെഫ്രി (Alec Jeffreys) എന്ന ശാസ്ത്രജ്ഞൻ നടത്തിയ ചില പരീക്ഷണങ്ങളാണ് DNA പരിശോധന എന്ന സാധ്യതയിലേക്കു വഴിതെളിച്ചത്. ഓരോ വ്യക്തി യിലെയും വിരലടയാളം വ്യത്യസ്തമായിരിക്കുന്നതുപോലെ DNA യിലെ ന്യൂക്ലിയോറ്റൈഡുകളുടെ ക്രമീകരണവും വ്യത്യസ്തമായിരിക്കും. ഈ കണ്ടെത്തലാണ് DNA പരിശോധനയ്ക്ക് അടിസ്ഥാനമായത്. അതിനാൽ ഈ സാങ്കേതികവിദ്യയെ DNA ഫിംഗർപ്രിന്റിംഗ് എന്നും വിളിക്കുന്നു.

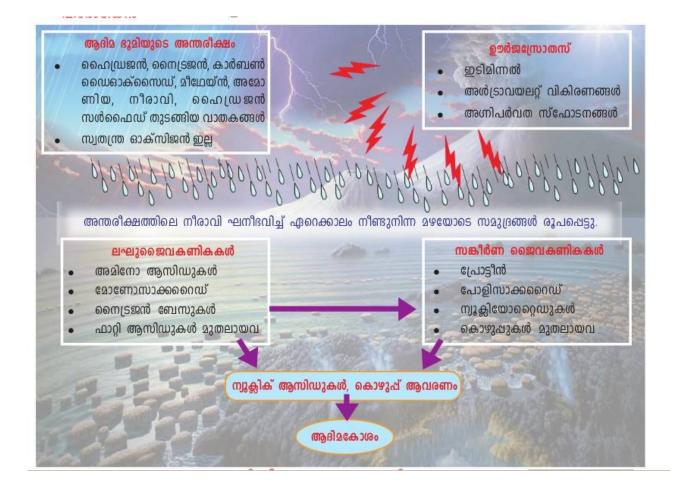
ന്യൂക്ലിയോറ്റൈഡുകളുടെ ക്രമീകരണത്തിൽ ഏറ്റവും സമാനത അടുത്ത ബന്ധു ക്കൾ തമ്മിലായിരിക്കും. അതിനാൽ കുടുംബപാരമ്പര്യം കണ്ടെത്താനും മാതൃ ത്വ പിതൃത്വ തർക്കങ്ങളിൽ യഥാർഥ മാതാപിതാക്കളെ തിരിച്ചറിയാനും പ്രകൃതി ക്ഷോഭം, യുദ്ധം തുടങ്ങിയ കാരണങ്ങളാൽ നഷ്ടപ്പെട്ടവരെ വർഷങ്ങൾക്കു ശേഷം കണ്ടെത്തുമ്പോൾ തിരിച്ചറിയാനും, DNA പ്രൊഫൈലിങ് സഹായക മാണ്.

DNA പരിശോധനാ സാമ്പിളുകൾ

കൊലപാതകം, മോഷണം തുടങ്ങിയ കുറ്റകൃതൃ ങ്ങൾ നടന്ന സ്ഥലത്തുനിന്നു ലഭിക്കുന്ന തക്കിന്റെ ഭാഗം, മുടി, നഖം, രക്തം, മറ്റ് ശരീരദ്ര വങ്ങൾ എന്നിവയിലെ DNA സംശയിക്കപ്പെടു ന്നവരുടെ DNA യുമായി താരതമ്യം ചെയ്യുന്നു. അങ്ങനെ സംശയിക്കപ്പെടുന്നയാൾ യഥാർഥ കുറ്റവാളിയാണോ എന്നു തിരിച്ചറിയാൻ ഇതുവഴി കഴിയും.

അലക് ജെഫ്രി

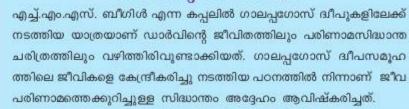
എ.ഐ.ഒപാരിൻ



ജെ.ബി.എസ്. ഹാൽഡേൻ

പ്രപഞ്ചത്തിലെ ഇതര ഗോളങ്ങളിലെവിടെയോ ജീവൻ ഉത്ഭവിച്ച് ആകസ്മിക മായി ഭൂമിയിലെത്തിയതാകാം എന്ന വാദഗതിയാണ് പാൻസ്പേർമിയ. ഭൂമി യിൽ പതിച്ച ഉൽക്കകളിൽ കണ്ടെത്തിയ ജൈവവസ്തുക്കൾ അതിന് പിൻബല മേകുന്നുണ്ട്.

ആദിമഭൂമിയിലെ സവിശേഷസാഹചര്യങ്ങളിൽ സമുദ്രജലത്തിലെ രാസവസ്തു ക്കൾക്കുണ്ടായ മാറ്റങ്ങളുടെ ഫലമായി ജീവൻ ഉത്ഭവിച്ചു എന്ന പരികൽപന യാണ് രാസപരിണാമ സിദ്ധാന്തമായി മാറിയത്. പരീക്ഷണത്തെളിവുകളുടെ അടിസ്ഥാനത്തിൽ ശാസ്ത്രലോകത്ത് ഇതിന് സ്വീകാര്യത ഏറെയാണ്. റഷ്യൻ ശാസ്ത്രജ്ഞനായ എ.ഐ. ഒപാരിനും (1924), ബ്രിട്ടീഷ് ശാസ്ത്രജ്ഞനായ ജെ.ബി.എസ്. ഹാൽഡേനും (1929)ആണ് ഈ സിദ്ധാന്തത്തിന്റെ ഉപജ്ഞാതാ ക്കൾ.


ചിത്രീകരണം (8.1) വിശകലനം ചെയ്ത് രാസപരിണാമസിദ്ധാന്തത്തെക്കുറിച്ച് ഒരു കുറിപ്പ് തയാറാക്കി സയൻസ് ഡയറിയിൽ എഴുതു.

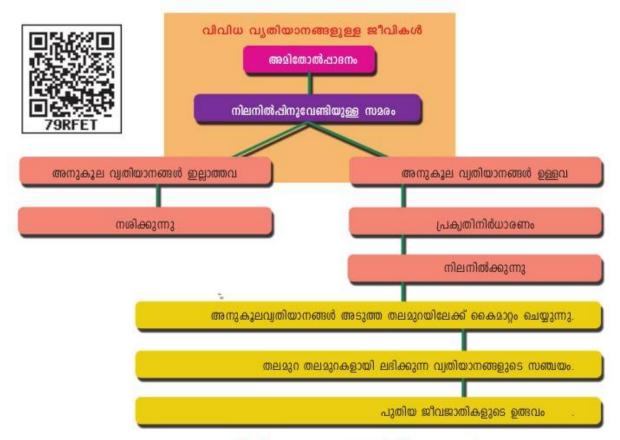
ഡാർവിനിസം

ജീവപരിണാമവുമായി ബന്ധപ്പെട്ട യുക്തിസഹമായ ശാസ്ത്രീയ സിദ്ധാന്തം ആദ്യ മായി അവതരിപ്പിച്ചത് ഇംഗ്ലീഷ് പ്രകൃതിശാസ്ത്രജ്ഞനായ ചാൾസ് റോബർട്ട് ഡാർവിനാണ്. നിരീക്ഷണങ്ങളുടെയും ശേഖരിച്ച വിവരങ്ങളുടെ വിശകലനത്തിലൂ ടെയും നിഗമനം രൂപീകരിക്കുന്ന ശാസ്ത്രത്തിന്റെ രീതി അവലംബിച്ചതിനാൽ ഡാർവിന്റെ സിദ്ധാന്തം കൂടുതൽ സ്നീകാര്യമായി.

ഡാർവിന്റെ കഷൽയാത്ര

തീരപ്രദേശങ്ങളുടെ ഭൂപടനിർമാണത്തിനായി ബ്രിട്ടീഷ് സർക്കാർ നിയോ ഗിച്ച യാത്രാസംഘത്തോടൊപ്പം ചേരുമ്പോൾ ഡാർവിന് 22 വയസായി രുന്നു പ്രായം. എഴ് വർഷത്തിനുശേഷം ബ്രിട്ടനിൽ തിരിച്ചെത്തുമ്പോ ഴേക്കും പരിണാമ സിദ്ധാന്തത്തിന് ഉപോൽബലകമായ പല തെളിവു കളും അദ്ദേഹം ശേഖരിച്ചിരുന്നു. നിരവധി തുടരമ്പേഷണങ്ങൾക്കും നിരീ ക്ഷണങ്ങൾക്കും പഠനങ്ങൾക്കും ശേഷം തന്റെ അൻപതാം വയസ്റ്റി ലാണ് പ്രകൃതിനിർധാരണം വഴിയുള്ള ജീവിവർഗ ഉൽപ്പത്തി (Origin of species by means of natural selection) എന്ന വിഖ്യാതഗ്രന്ഥത്തിലൂടെ പ്രകൃതിനിർധാരണസിദ്ധാന്തം ലോകത്തിനുമുന്നിൽ അവതരിപ്പിച്ചത്. നില നിന്നിരുന്ന സങ്കൽപ്പങ്ങളെ മാറ്റിമറിച്ച ഈ സിദ്ധാന്തം ശാസ്ത്രലോകത്ത് വൻ സ്വീകാരൃത നേടി.

ഗാലപ്പഗോസ് ദ്വീപസമൂഹങ്ങളിൽ ഡാർവിൻ പഠനവിധേയമാക്കിയ ജീവികളിൽ സവിശേഷ പ്രാധാന്യമുള്ളവയാണ് കുരുവികൾ. ഈ കുരുവികളുടെ കൊക്കിന്റെ വൈവിധ്യം ഡാർവിന്റെ ശ്രദ്ധയാകർഷിച്ചു.


ചാൾസ് ഡാർവിൻ

ചിത്രീകരണം 8.4 ഗാലപ്പഗോസ് കുരുവികൾ

ഷഡ്പദഭോജികളായ കുരുവികൾക്ക് ചെറിയ കൊക്കുകളും കള്ളിമുൾച്ചെടികൾ ഭക്ഷിക്കുന്നവയ്ക്ക് നീണ്ട മൂർച്ചയുള്ള കൊക്കുകളുമായിരുന്നു. കൂർത്ത കൊക്കു കൾ കൊണ്ട് ചില്ലകൾ കൊത്തിയൊടിച്ച് മരപ്പൊത്തുകളിൽ നിന്ന് പുഴുക്കളെ കുത്തിയെടുത്ത് ഭക്ഷിക്കുന്ന മരംകൊത്തിക്കുരുവികളും വിത്തുകൾ ആഹാരമാ ക്കിയിരുന്ന വലിയ കൊക്കുകളുള്ള നിലക്കുരുവികളും ഇക്കൂട്ടത്തിലുണ്ടായിരുന്നു. ചിത്രീകരണത്തിൽ സൂചിപ്പിച്ചിരിക്കുന്ന മറ്റു കുരുവികളുടെ കൊക്കിന്റെ സവിശേ ഷതകൾ കണ്ടെത്തു,

ചിത്രീകരണം 8.5 പ്രകൃതിനിർധാരണ സിദ്ധാന്തം

കൃതിനിർധാരണ സിദ്ധാന്ത

ഓരോ ജീവിവർഗവും നിലനിൽക്കാനാകുന്നതിലും കൂടുതൽ സന്താനങ്ങളെ ഉൽപ്പാദിപ്പിക്കുന്നു ണ്ട്. അവ ഭക്ഷണത്തിനും വാസസ്ഥലത്തിനും ഇണയ്ക്കും വേണ്ടി മത്സരിക്കും. ജീവികളുടെ എണ്ണം കൂടുതലും, വിഭവങ്ങൾ കുറവും ആകുന്ന സാഹചര്യത്തിൽ ഈ മത്സരം കൂടുതൽ കടുത്ത താകും. ജീവികളിൽ നിരവധി വൃതിയാനങ്ങൾ പ്രകടമാണ്. ഇത്തരം വൃതിയാനങ്ങൾ അനുകൂല മായതോ അല്ലാത്തതോ ആകാം. നിലനിൽപ്പിനുവേണ്ടിയുള്ള മത്സരത്തിൽ അനുകൂല വൃതിയാന ങ്ങൾ ഉള്ളവ നിലനിൽക്കുന്നു. അല്ലാത്തവ നശിക്കുന്നു. തലമുറ തലമുറകളായി കൈമാറ്റം ചെയ്യ പ്പെടുകയും വൃതൃസ്തരീതിയിൽ ആവർത്തിക്കുകയും ചെയ്യുന്ന വൃതിയാനങ്ങൾ മുൻഗാമിക ളിൽനിന്ന് വൃതൃസ്തമായ ജീവജാതികളെ രൂപപ്പെടുത്തുന്നു. പ്രകൃതിയുടെ ഈ തിരഞ്ഞെടുപ്പാണ് (പ്രകൃതി നിർധാരണം) ഇന്നുള്ള വൃതൃസ്തജീവജാതികൾ രൂപപ്പെടാനുള്ള കാരണം എന്ന ഡാർവിന്റെ വിശദീകരണമാണ് പ്രകൃതിനിർധാരണ സിദ്ധാന്തം എന്നറിയപ്പെടുന്നത്.

Prepared By : Abdul khadir E K (G H S S PATTIKKAD)