UNIT 5
 Refraction of Light

01/01/2021 - Class 45

Activity 1

Let's draw the ray diagram of formation of images by lenses.

Object at 2F

Discussion

- Where is the position of the object (OB)? At 2F.
- Which are the rays incident on the lens from the object? One ray is incident parallel to the principal axis and the second ray is incident on the optic centre of the lens.
- What happens to the ray of light, incident on the lens, parallel to the principal axis? It passes through the principal focus after refraction.
- What happens to the ray of light, incident on the optic centre of the lens? It passes without any deviation.
- Where does the refracted rays met? At 2F.
- Where is the position of the image? At 2F.
- What are the features of the image? Real, Inverted, Same size.

Inference

When the object is placed at $2 \mathbf{F}$ of a convex lens, the image is formed at $2 \mathbf{F}$ on the other side of the lens. Features of the image are real, inverted and same size.

Activity 2

Object between F and 2F

Discussion

- Where is the position of the object (OB)? Between F and 2F.
- Which are the rays incident on the lens from the object? One ray is incident parallel to the principal axis and the second ray is incident on the optic centre of the lens.
- What happens to the ray of light, incident on the lens, parallel to the principal axis? It passes through the principal focus after refraction.
- What happens to the ray of light, incident on the optic centre of the lens? It passes without any deviation.
- Where does the refracted rays met? Beyond 2F.
- Where is the position of the image? Beyond 2F.
- What are the features of the image? Real, Inverted, Magnified.

Inference

When the object is placed between \mathbf{F} and 2 F of a convex lens, the image is formed beyond $2 F$ on the other side of the lens. Features of the image are real, inverted and magnified.

Activity 3

Object at F

Discussion

- Where is the position of the object (OB)? At F.
- Which are the rays incident on the lens from the object? One ray is incident parallel to the principal axis and the second ray is incident on the optic centre of the lens.
- What happens to the ray of light, incident on the lens, parallel to the principal axis? It passes through the principal focus after refraction.
- What happens to the ray of light, incident on the optic centre of the lens? It passes without any deviation.
- What is the speciality of the refracted rays? They are parallel to each other.
- Where will this parallel rays of light meet? At infinity.
- So, where should be the position of the image? At infinity.
- What are the features of the image? Real, Inverted, Magnified.

Inference

When the object is placed at the focus (\mathbf{F}) of a convex lens, the image is formed at infinity. Features of the image are real, inverted and magnified.

Activity 4

Object between F and lens

Discussion

- Where is the position of the object (OB)? Between F and lens
- Which are the rays incident on the lens from the object? One ray is incident parallel to the principal axis and the second ray is incident on the optic centre of the lens.
- What happens to the ray of light, incident on the lens, parallel to the principal axis? It passes through the principal focus after refraction.
- What happens to the ray of light, incident on the optic centre of the lens? It passes without any deviation.
- What is the speciality of the refracted rays? They are diverging from each other.
- When these light rays are extended backwards with imaginary lines, what happens? They appear to meet at the same side of the object.
- So, where is the position of the image? At the same side of the object.
- The image is real or virtual? Virtual.
- Why? The refracted rays doesn't meet, they only appear to meet.
- Image is erect or inverted? Erect.
- What about the size of the image? Magnified.

Inference

When the object is placed between \mathbf{F} and lens of a convex lens, the image is formed at the same side of the object. Features of the image are virtual, erect and magnified.

Activity 5

Image formed by a concave lens

Discussion

- Which are the rays incident on the lens from the object (OB)? One ray is incident parallel to the principal axis and the second ray is incident on the optic centre of the lens.
- What happens to the ray of light, incident on the concave lens, parallel to the principal axis? It appears to diverge from the principal focus on the same side of the incident ray.
- What happens to the ray of light, incident on the optic centre of the lens? It passes without any deviation.
- Where does the two light rays from the object, appear to meet? \mathbf{M}
- So, where is the position of the image (IM)? At the same side of the object, between F and lens (\mathbf{P}).
- The image is real or virtual? Virtual.
- Why? The refracted rays doesn't meet, they only appear to meet.
- Image is erect or inverted? Erect.
- What about the size of the image? Diminished.

Inference

In a concave lens whatever may be the position of the object, the image is always formed at the same side of the object, in between the optic centre (\mathbf{P}) and focus(\mathbf{F}). The image is virtual, erect and diminished.

Assignment

(a) MN represents a lens. What type of lens is this?
(b) What are the characteristics of the image?
(c) Copy the ray diagrams in the science diary and complete it.

