

The petrol tank is the shape of a cylinder fined with hemispheres on both end faces.

Length of the cylinders = 4 m

Radius = 1 m

Volume of cylinder = $\pi \times 1 \times 1 \times 4\pi$ cu.m = 4π m³

Radius of the hemisphere = 1 m

Volume of 2 hemispheres = $2 \times \frac{2}{3} \pi r^3 = \frac{4}{3} \pi$ cu.m

Total volume of the tank = $4\pi + \frac{4}{3}\pi$

$$= \frac{12\pi + 4\pi}{3} = \frac{16\pi}{3} = \frac{16 \times 3.14}{3} = 16.74 \text{m}^3$$

Capacity of tank in liters = 16.74 x 1000 = 16740 ltr

n. 7

A solid sphere is cut into two hemispheres. From this spheres a maximum size of a square pyramid and cone are cut off. What is the ratio of their volumes?

Volume of square pyramid = $\frac{1}{3}a^2h$

$$a=\sqrt{2}r$$
 h=r

Volume $=\frac{1}{3} \times (\sqrt{2}r)^2 \times r = \frac{2}{3}r^3$

Radius of cone = r height of the cone = r

Volume = $\frac{1}{3}\pi r^2 \times r = \frac{1}{3}\pi r^3$

The ratio of their volume $=\frac{2}{3}r^3:\frac{1}{3}\pi r^3$ = 2: π = 2: 3.14

