## Prove that for a cone made by rolling up a semicircle, the area of the curved surface is twice the base area.

Let the radius of the semicircle be R.

Its arc length 
$$=\frac{1}{2} \times 2\pi R = \pi R$$



Let the radius of the cone = r

Since the base circumference of the cone is  $\pi R$ 

$$2\pi r = \pi R$$
,  $r = \frac{\pi R}{2\pi} = \frac{R}{2}$ 

Curved surface area of the cone

$$= \pi r l = \pi \times \frac{R}{2} \times R = \frac{1}{2} \pi R^2$$

Base area of the cone  $= \pi r^2 = \pi \times \left(\frac{R}{2}\right)^2$ 

$$R$$
 $\frac{R}{2}$ 

$$2 \times \frac{1}{4} \pi R^2 = \frac{1}{2} \pi R^2$$

That means the curved surface area of this cone is twice its base area.

 $=\pi\times\frac{R^2}{4}=\frac{1}{4}\pi R^2$