Physics Class Notes

Click here to watch the video

Magnification (m)

Magnification is the ratio of the height of the image to the height of the object.
Magnification $=$ height of image $/$ height of object.
That is, $m=h_{i} / h_{0}=-v / u$
Since magnification is a ratio, it has no unit.
Proof of $m=h_{i} / h_{o}=-v / u$

The figure shows the image formation of an object OB placed beyond the centre of curvature (C) of a concave mirror.

In the figure Δ OBP and Δ IMP are similar triangles.
We know that, the ratio of corresponding sides of similar triangles are equal.
Hence IM / OB = PI / PO
According to New Cartesian Sign Convention, $I M=-h_{i}, O B=h_{0}, P I=-v$, and $P O=-u$ On substituting the values in the above equation,
$-h_{i} / h_{0}=-v /-u$
or $h_{i} / h_{0}=-v / u$
Therefore $m=h_{i} / h_{0}=-v / u$

Problems

1. When an object of height $\mathbf{6 ~ c m}$ is placed in front of a concave mirror at a distance of $\mathbf{1 0} \mathbf{~ c m}$ away from it, an image is obtained 16 cm away, on the same side. Find out height of the image and magnification.
Ans: $\mathbf{u}=\mathbf{- 1 0} \mathbf{c m}$

$$
\begin{aligned}
& \mathrm{v}=-16 \mathrm{~cm} \\
& \mathrm{~h}_{0}=6 \mathrm{~cm}
\end{aligned}
$$

magnification, $m=-v / u=-(-16) /(-10)$

$$
\begin{aligned}
& =16 /(-10) \\
& =-1.6
\end{aligned}
$$

magnification, $m=h_{i} / h_{0}$

$$
\begin{aligned}
-1.6 & =h_{i} / 6 \\
h_{i} & =-1.6 \times 6 \\
& =-9.6 \mathrm{~cm}
\end{aligned}
$$

2. An object is placed $\mathbf{8 c m}$ away in front of a concave mirror of focal length $5 \mathbf{c m}$. Find out position of image and magnification.
Ans: $\mathrm{u}=-8 \mathrm{~cm}$

$$
f=-5 \mathrm{~cm}
$$

$$
\begin{aligned}
& \begin{aligned}
\mathbf{v} & =\mathrm{fu} /(\mathrm{u}-\mathrm{f}) \\
& =(-5 \mathrm{x}-8) /(-8-(-5)) \\
& =40 /-3 \\
& =-13.33 \mathrm{~cm}
\end{aligned} \\
& \text { magnification, } \mathrm{m}=-\mathrm{v} / \mathrm{u} \\
&=-(-13.33) /(-8) \\
&=-1.66
\end{aligned}
$$

