1. In the figure PA, PB are tangents, 0 is the centre of the circle. If the radius of the circle is 3 cm and PA = 4 cm.

(2)

- (a) What is the length of PB?
- (b) Find the length of OP.

(a)
$$PB = PA = 4 \text{ cm}$$

(b) In right triangle OAP,
$$OP^2 = OA^2 + AP^2$$

$$= 3^2 + 4^2 = 9 + 16 = 25$$

$$OP = \sqrt{25} = 5 \text{ cm}$$

2. In the figure PA and PB are tangents. $\angle C = 50^{\circ}$.

- (a) Write the angle measures of triangle PAB.
- (b) What is the measure of $\angle P$, if $\angle C = \angle P$?

(a)
$$\angle PAB = \angle ACB = 50^{\circ}$$

 $\angle PBA = \angle ACB = 50^{\circ}$
 $\angle APB = 180 - (50 + 50) = 80^{\circ}$

- (b) $\angle C = \angle PAB = \angle PBA$ When \angle PAB and \angle PBA are equal to \angle P, these angles should be 60° each. $\therefore \angle P = 60^{\circ}$
- 3. The inradius of a triangle is 2.5 cm and two of its angles are 60°, 50°. Draw the triangle. Draw a circle with centre I and radius 2.5 cm. Mark a point P on the circle.

4. In the figure, PA and PB are tangents to the circle with centre 0. If OP = 20B

- (b) Prove that triangle QPB is isosceles.
- (c) If QB = 5 cm, what is the circumradius of quadrilateral OAPB?

In a triangle with sides in the ratio 1: $\sqrt{3}$:2, the angles are 30°, 60° and 90°.

$$\therefore \angle OPA = 30^{\circ}, \angle AOP = 60^{\circ}$$

$$\angle BOP = \angle AOP = 60^{\circ}$$

$$\therefore \angle AOB = 60 + 60 = 120^{\circ}$$

Central angle of the major arc
$$AB = 360 - 120 = 240^{\circ}$$

$$\angle BQA = 240 \div 2 = 120^{\circ}$$

b.
$$\angle AOB + \angle P = 180^{\circ}$$

$$\angle P = 180 - 120 = 60^{\circ}$$

$$\angle QPB = 60 \div 2 = 30^{\circ}$$

Since
$$\angle BQA = 120^{\circ}$$
, $\angle BQO = 60^{\circ}$

In
$$\triangle OBQ$$
, $\angle BOQ = 60^{\circ}$, $\angle BQO = 60^{\circ}$

Since
$$\angle OBP = 90^{\circ}$$
, $\angle QBP = 90 - 60 = 30^{\circ}$

Since two angles of $\triangle QPB$ are equal it is isosceles.

c. Since three angles of Δ 0QB are equal, its sides are also equal.

Also
$$PQ = 5$$
 cm (reason (1))

Diameter of the circumcircle of the quadrilateral OAPB

$$= 0Q + PQ = 5 + 5 = 10 \text{ cm}$$

Circum radius = $10 \div 2 = 5$ cm

SSLC Model Examination - 2019

Draw a circle of radius 3 centimetres. Mark a point
 centimetres away from its centre. Draw the tangents to the circle from that point.

6. Draw a triangle of sides 5 centimetres, 6 centimetres and 7 centimetres. Draw its incircle. (5)

SSLC Examination - 2019

7. Draw a circle of radius 3 centimetres. Mark a point P at a distance 6 centimetres from the centre of the circle. Draw tangents from P to the circle. (3)

8. In triangle ABC, $\angle A = 30^{\circ}$, $\angle B = 80^{\circ}$, circumradius of the triangle is 4 centimetres. Draw the triangle, Measure and write the length of its smallest side.

9. In the figure chord BC is extended to P. Tangent from P to the circle is PA. AQ is the bisector of ∠BAC.

- (a) Write one pair of equal angles from the figure.
- (b) If $\angle PAC = x$ and $\angle PCA = y$, prove that $\angle BAC = y x$.

(c) Prove that
$$\angle PAQ = \frac{y+x}{2}$$
. (4)

- (a) $\angle ABC = \angle PAC$
- (b) If $\angle PAC = x$, $\angle ABC = x$ $\angle PCA = y$

∴ \angle BCA = 180 – y (Linear pair)

Since the sum of the angles of a triangle is 180°,

$$\angle ABC + \angle BCA + \angle BAC = 180^{\circ}$$

 $\angle BAC = 180 - \angle ABC - \angle BCA = 180 - x - (180 - y)$
 $= 180 - x - 180 + y$

$$= y - x$$
(c) $\angle PAQ = \angle PAC + \angle CAQ$

$$= x + \frac{y - x}{2} (\angle CAQ \text{ is half of } \angle BAC)$$

$$= x + \frac{y}{2} - \frac{x}{2}$$

$$= \frac{2x}{2} + \frac{y}{2} - \frac{x}{2} = \frac{2x - x + y}{2}$$

$$x + y$$

10. Circle with centre O touches the sides

of the triangle at P, Q and R, AB = AC, AQ = 4 centimetres and

cq = 6 centimetre.

(a) What is the length of CP?

(b) Find the perimeter and the area of the triangle.

(c) What is the radius of the circle?

- (a) CP = 6 cm (Lengths of tangents CP and CQ are equal.)
- (b) AC = 4 + 6 = 10 cmAB = 10 cm (AB = AC)BC = 6 + 6 = 12 cmPerimeter of AABC = 10 + 10 + 12 = 32 cm

- Area = $\frac{1}{2} \times 12 \times 8 = 48$ sq.cm.
- Radius of the circle $=\frac{A}{s} = \frac{48}{16} = 3$ cm

Second Terminal Evaluation 2017

11. In the figure OA is a radius and PA is the tangent to the circle at A. If OP = 5 cm, 0A = 3 cm then

- a. What is the measure of ∠OAP?
- b. Calculate the length of the tangent PA.
 - (2)

a.
$$\angle OAP = 90^{\circ}$$

b.
$$PA = \sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4 \text{ cm}$$

12. In the figure PA, PB are two tangents to the circle with centre 0. If $\angle PAB = 50^{\circ}$, write the measures of ∠AQB, ∠AOB, ∠APB.

 $\angle AQB = 50^{\circ}$ (In a circle the angle which a chord makes with the tangent at its ends on any side are equal to the angle which it makes on the part of the circle on the other side.)

$$\angle AOB = double of \angle AQB = 100^{\circ}$$

Since the tangents PA and PB are equal,

ΔAPB is an isosceles triangle.

$$\angle ABP = 50^{\circ}$$

$$\angle APB = 180 - (50 + 50) = 180 - 100 = 80^{\circ}$$

13. In the figure PT, PS are tangents to the large circle and small circle respectively.

The circles cut each other at points A and B. If PB = 4 cm.

AB = 5 cm.

- a. Find the length of PA
- b. Calculate the lengths of PS and PT.

b.
$$PA \times PB = PS^2$$
, $4 \times 9 = PS^2$, $PS^2 = 36$
 $PS = \sqrt{36} = 6$ cm

$$PA \times PB = PT^2$$

$$PT^2 = 4 \times 9 = 36$$
, $PT = \sqrt{36} = 6$ cm

14. Draw a circle of radius 3 cm. Mark a point 7 cm away from its centre. Draw tangents from that point to the circle and measure lengths of the tan-

(3)

15. In triangle ABC, AB = 6 cm, \angle A = 60°, \angle B = 65° Draw triangle ABC and construct its incircle and (5)measure the inradius. C

Inradius = 1.8 cm