THIRUVANANTHAPURAM EDUCATIONAL DISTRICT

WS 5.1

MATHEMATICS

STANDARD: 10

TRIGONOMETRY

WORKSHEET 5.1

1.

In triangle ABC , <A=60° ,<B= 30°, Find <C and complete the table below.

		-
AB	BC	AC
10	$5\sqrt{3}$	5
	$4\sqrt{3}$	
100	9	
		11
		3.5
6		

In the figure AC = 12cm, <A = 60^o , <B= 45^o and line CD is perpendicular to side AB. Find the area and perimeter of triangle ABC

In triangle ADC , angles are of measures 30° , 60° and 90° . So sides are in the ratio ___ : ___ : ___

In triangle BDC , angles are of measures $45^{\rm o},\,45^{\rm o}$ and $90^{\rm o}$. So sides are in the

ratio ___: ___: _

$$AB = + = +$$

Area of triangle =
$$\frac{1}{2}$$
 bh
= $\frac{1}{2} \times --- \times ---$
= $\frac{1}{2} \times 6$ (_____ + ____) x _____

3.

In parallelogram ABCD , AB = 12 cm , AD = 8 cm and <B = 150°

- a) What is the measure of <A?
- b) What is the perpendicular distance from D to AB?
- c) What is the area of the parallelogram?
 - a) <A = 180 <B = ___
 - b) The angles of \triangle AED are 30°, 60° and 90° . So sides are in the ratio ___ : ___ : ___ : ___ : ___ So DE = -----
- c) Area of the parallelogram = bh

In the figure , <B = 70° , <C = 40° and BC = 9.4 cm

- a) What is the measure of <A?
- b) What is the diameter of the circle?
- c) Find the length of AB and AC

b) △ABC is -----

Given
$$BC = -----$$
 . So , $AC = -----$ (reason)

BC = 2r SinA

$$----= 2r Sin----$$

$$2r = \frac{----}{---}$$

From trigonometric tables the value of Sin70 = 0.94

$$2r = \frac{----}{----} = ----$$

Therefore, Diameter = ---

= ----

In the figure , BC = 8cm , $\langle B = \langle D = 90^{\circ}$, $\langle ACB = 45^{\circ}$, $\langle CAD = 60^{\circ}$

- a) Find <BAC
- b) Find the length of AC
- c) Find the area of \triangle ABC
- d) What is the perimeter of quadrilateral ABCD
- a) < BAC = ----
- b) The angles of $\triangle ABC$ are 45°, 45° and 90° . So sides are in the ratio

__: ___: ___

BC = ---- (given), AB = ----, AC = ----

- c) Area of \triangle ABC = $\frac{1}{2}bh$ = ----
- d) <ACD = ----

The angles of \triangle ACD are 30°, 60° and 90°. So sides are in the ratio

___:___:___

AC = -----

AD = -----

CD = -----

Perimeter of quadrilateral ABCD = AB + BC + CD + AD

= -----+ + ------+ + -------

THIRUVANANTHAPURAM EDUCATIONAL DISTRICT

WS 5.1

MATHEMATICS

STANDARD: 10

TRIGONOMETRY

WORKSHEET 5.1

1.

In triangle ABC , $<\!\!A\!=\!60^{o}$, $<\!\!B\!=30^{o}\!,$ Find $<\!\!C$ and complete the table below.

$$< C = \frac{90^{\circ}}{}$$

AB	BC	AC
AD	DC DC	AC
10	$5\sqrt{3}$	5
8	$4\sqrt{3}$	4
$6\sqrt{3}$	9	$3\sqrt{3}$
22	$11\sqrt{3}$	11
7	$3.5\sqrt{3}$	3.5
6	$3\sqrt{3}$	3

In the figure AC = 12cm, <A = 60° , <B= 45° and line CD is perpendicular to side AB. Find the area and perimeter of triangle ABC

In triangle ADC , angles are of measures 30°, 60° and 90° . So sides are in the ratio $1:\sqrt{3}:2$

Given
$$AC = 12 \text{ cm}$$

$$AD = 6 cm$$

$$CD = 6\sqrt{3} \text{ cm}$$

In triangle BDC , angles are of measures 45°, 45° and 90° . So sides are in the ratio $\,1:1:\sqrt{2}\,$

$$CD = 6\sqrt{3} cm$$

$$BD = 6\sqrt{3} \text{ cm}$$

BC =
$$6\sqrt{3} \times \sqrt{2} = 6\sqrt{6}$$

$$AB = AD + BD = 6 + 6\sqrt{3}$$

Area of triangle =
$$\frac{1}{2}$$
 bh
= $\frac{1}{2}$ x AB x CD
= $\frac{1}{2}$ (6 + 6 $\sqrt{3}$) × 6 $\sqrt{3}$
= $\frac{1}{2}$ x 6 (1 + $\sqrt{3}$) x 6 $\sqrt{3}$

$$= 3 (1 + \sqrt{3}) \times 6\sqrt{3}$$

$$= 18 \sqrt{3} + 54$$
Perimeter
$$= AB + BC + AC$$

$$= 6 + 6\sqrt{3} + 6\sqrt{6} + 12$$

$$= 18 + 6\sqrt{3} + 6\sqrt{6}$$

3.

In parallelogram ABCD , AB = 12 cm , AD = 8 cm and <B = 150°

- a) What is the measure of <A?
- b) What is the perpendicular distance from D to AB?
- c) What is the area of the parallelogram?

a)
$$<$$
A = $180 - <$ B = $180 - 150 = 30$

- b) The angles of \triangle AED are 30°, 60° and 90°. So sides are in the ratio $1:\sqrt{3}:2$ So DE = 4
- c) Area of the parallelogram = bh

In the figure , $\langle B = 70^{\circ}$, $\langle C = 40^{\circ}$ and BC = 9.4 cm

- a) What is the measure of <A?
- b) What is the diameter of the circle?
- c) Find the length of AB and AC

a)
$$<$$
A = $180 - (70 + 40)$
= $180 - 110 = 70^{\circ}$

b) \triangle ABC is isosceles

Given BC = 9.4 cm . So , AC = 9.4 cm (sides opposite to equal angles are equal)

$$BC = 2r SinA$$

$$9.4 = 2r \sin 70$$

$$2r = \frac{9.4}{Sin70}$$

From trigonometric tables the value of Sin70 = 0.94

$$2r = \frac{9.4}{0.94} = 10$$

Therefore, Diameter = 10 cm

c)
$$AB = 2r Sin C$$

= $10 \times 0.64 = 6.4 cm$

In the figure , BC = 8cm , <B = <D = 90° , <ACB = 45° , <CAD = 60°

- a) Find <BAC
- b) Find the length of AC
- c) Find the area of \triangle ABC
- d) What is the perimeter of quadrilateral ABCD
- a) <BAC = 45°
- b) The angles of \triangle ABC are 45°, 45° and 90°. So sides are in the ratio

1:1:
$$\sqrt{2}$$

BC = **8** (given) , AB =
$$\frac{8}{100}$$
, AC = $\frac{8}{100}$

- c) Area of \triangle ABC = $\frac{1}{2}bh = \frac{1}{2} \times 8 \times 8 = 32$
- d) <ACD = 30°

The angles of \triangle ACD are 30°, 60° and 90°. So sides are in the ratio

$$1:\sqrt{3}:2$$

$$AC = 8 \sqrt{2}$$

$$AD = 4\sqrt{2}$$

$$CD = \sqrt{3} X4\sqrt{2} = 4\sqrt{6}$$

Perimeter of quadrilateral ABCD = AB + BC + CD + AD

$$= 8 + 8 + 4 \sqrt{6} + 4 \sqrt{2}$$

$$= 16 + 4\sqrt{6} + 4\sqrt{2}$$