

3) The length of the line joining the midpoints of two sides of a triangle is half the length of the third side. Also, this line will be always parallel to the third side.

To Remember: -

In questions, to prove

- 1) If the figure is not given, draw a rough picture related to the statement.
- 2) If the figure is given, the lines required for the proof should be drawn.
- 3) Find out two triangles with the sides mentioned and then prove that these triangles are equal or similar.
- 4) If the diameter of a circle is given, draw lines where angle in a semicircle is 90.

ii) AEB = ____ [60°, 90°, 30°]

 $\therefore \angle ADC = \angle AEB$

A C B

For widened thoughts...

1) In figure, AB is a diameter and D is a point on the circle.
If AC = BC and ∠ ABC = 70° then,
a) ADB = _____
b) BAC = _____
c) BAD = _____
d) DAC = _____
e) ACD = _____

- 2) In figure, M is the midpoint of AB and AM = MC.
 - a) Find another side which is equal to AM and MC.
 - b) What type of triangles are Δ AMC and Δ BMC?
 - c) If a circle is drawn with AB as diameter, check whether the point C is inside, on or outside the circle.

d) What is the measure of $\angle ACB$?

In the figure,

- p is the external angle of ΔABC
- y and z are two internal angles which are away from p.
- $x + (y + z) = 180^{\circ}$ (sum of angles in a triangle)
- and $x + p = 180^{\circ}$ (linear pairs)
- So, p = y + z

Is it true even when the measure of $\angle B$ is changed?

Q 3

In figure, AC and BC are perpendicular to each other and $\angle ABC = 50^\circ$. Then, i) $\angle CAB = _______$ $ii) \angle PCB = _______$ $iii) If <math>\angle PBC = 30^\circ$, $\angle CPB = ______$ $iv) \angle ACB - PBC = ______$ $<math>\angle CPB = \angle ACB - \angle PBC$

Is it true even when the measure of $\angle ABC$ is changed?

\mathbf{Q} 4

In figure, O is the centre, $\angle CAB = 35^{\circ} \text{ and } \angle CBP = 25^{\circ}$.

Then,

- i) $\angle ACB = __$
- ii) $\angle ABC = _$
- iii) $\angle APB = _$

P is a point outside the circle. The angle subtended by the diameter at a point outside the circle is less than 90°

More questions

$\mathbf{Q} \mathbf{1}$

In figure, PQ is a diameter. If the ratio between $\angle PAQ$, $\angle PBQ$ and $\angle PCQ$ are 1: 2: 3 then, a) $\angle PBQ = _$

- b) $\angle PAQ = _$
- c) $\angle PCQ = _$

$\mathbf{Q} \ \mathbf{2}$

In figure, $\angle P = 90^{\circ}$, $\angle Q = 70^{\circ}$ and $\angle S = 125^{\circ}$ then, i) Check whether the points Q and S are inside, on or outside the circle whose diameter is PR. ii) Check whether the points P and R are inside, on or outside the circle whose diameter is QS.

Q 3

A circle is drawn with AB as diameter . A point C marked inside the circle. On drawing triangle ABC and measuring $\angle C$ Remya got 70[°] while Reema got 100[°]. Which is correct measure of $\angle C$? Why?

Do yourself and learn yourself	CLICK HERE
	CLICK HERE
	CLICK HERE
Test yourself	CLICK HERE

in the figure? (The sum of the angles of a triangle is 180 degree).

2) in the figure , what is the measure of $\angle A + \angle B$?

Watch and learn.....

CLICK HERE

CIRCLES AROUND US

Have you observed an umbrella? Are they of same size? yours and your grandpa's? Are the number of spokes equal? What about the angle between 2 spokes? What does the size 345 mm of an umbrella means relating to a circle? Send your findings to your teacher.

Class - 18 (Worksheet -2)

- 1) For the arithmetic sequence 4, 12, 20, 28
 - (a) What is the first term?
 - (b) What is the common difference?
 - (c) What is the relation between the first term and the common differnce?
 - (d) What is the sum of first two terms?
 - (e) What is the sum of first three terms?
 - (f) What is the sum of first four terms?
 - (g) What is the sum of first five terms?

(a)	First term	4
(b)	Common difference	8
(c)	Relation between the first term and the common differnce	Common difference is two times the first term
(d)	Sum of first two terms	$4 + 12 = 16 = 4^2$
(e)	Sum of first three terms	$4 + 12 + 20 = 36 = 6^2$
(f)	Sum of first four terms	$4 + 12 + 20 + 28 = 64 = 8^2$
(g)	Sum of first five terms	$4 + 12 + 20 + 28 + 36 = 100 = 10^2$

- 2) For the arithmetic sequence 16, 48, 80,
 - (a) What is the first term?
 - (b) What is the common difference?
 - (c) What is the relation between the first term and the common differnce?
 - (d) What is the sum of first two terms?
 - (e) What is the sum of first three terms?
 - (f) What is the sum of first four terms?
 - (g) What is the sum of first five terms?

(a)	First term	16
(b)	Common difference	48 - 16 = 32
(c)	Relation between the first term and the common differnce	Common difference is two times the first term
(d)	Sum of first two terms	$16 + 48 = 64 = 8^2$
(e)	Sum of first three terms	$16 + 48 + 80 = 144 = 12^2$
(f)	Sum of first four terms	$16 + 48 + 80 + 112 = 256 = 16^2$
(g)	Sum of first five terms	$16 + 48 + 80 + 112 + 144 = 400 = 20^2$

Conclusion:

In an arithmetic sequence, if the first term is a perfect sqaure and the common difference is twice the first term then the sum of any number of terms of the sequence will be a perfect square. Now, we know that for the arithmetic sequence, 1, 3, 5, 7, 9, the sum of any number of terms is a perfect square.

Example:

One term	Two terms	Three terms
1	1 + 3 = 4	1 + 3 + 5 = 9
1 ²	2 ²	3 ²

What about in the sequence 4, 12, 20, 28, 36,?

One term	Two terms	Three terms
4	4 + 12 = 16	4 + 12 + 20 = 36
2 ²	4 ²	6 ²
$(1 \times 2)^2$	$(2 \times 2)^2$	$(3 \times 2)^2$

And what do you think in this sequence? 9, 27, 45, 63,

One term	Two terms	Three terms
9	9 + 27 = 36	9 + 27 + 45 = 81
3 ²	6 ²	9 ²
$(1 \times 3)^2$	$(2 \times 3)^2$	$(3 \times 3)^2$

Similarly, we can find any number of sequences and sum of any number of terms of each sequence.

Conclusion:

Here, each term in the sequence of sum is in the form $n^2 \times f$. For an arithmetic sequence, if the common difference is twice the first term, the sum of first n terms will always be in the form $n^2 \times f$. It is understood that the first term 'f' of the sequence should be a perfect square in order to get the sum a perfect square.

*LET'S ASSES

- 1. Can you write an arithmetic sequence, the sum of whose any number of terms, starting from the first, is 400?
- 2. Prove that the sum of any number of terms of the arithmetic sequence 16, 24, 32, starting from the first, added to 9 gives a perfect square.

ONLINE TEST ----> <u>CLICK HERE</u>

18 TH CLASS

Consider the following Arithmetic Sequences,

i) 1,2,3,4,5..... Sequence of *Natural Numbers*. $1^2=1$, $2^2=4$, $2^3=8$, $2^4=16$, $3^2=9$, $3^3=27$, $4^2=16$

If we take any power of this sequence it is a Natural Number. Hence ' Every power of every term is again a term of the same Arithmetic Sequence.'

ii) 2,4,6,8,.....sequence of *Even Numbers*

2²=4, 2³=8, 2⁴=16, 4²=16, 4³= 64, 6² = 36 If we take any power of this sequence it is an Even Number. Hence ' Every power of every term is again a term of the same Arithmetic Sequence.'

iii) 3,6,9,12..... sequence of *Multiples of 3*

We know the powers of 3 is again a multiple of 3,Hence 'Every power of every term is again a term of the same Arithmetic Sequence.'

Similarly we can say in the sequence of *Multiples of 4*,' Every power of every term is again a term of the same Arithmetic Sequence.'

iv) 3, 5 7,9.....Arithmetic sequence of Odd Numbers excluding 1.

 $3^2=9$, $3^3 = 27$, $3^4=81$, $5^2=25$, $5^3=125$ All the powers are Odd Numbers which belongs to the same sequence.

v) 5,9,13,17..... When we check we can say that ' Every power of every term is again a term of the same Arithmetic Sequence.'

vi) 4,7,10,13....Here also When we check we can say that ' Every power of every term is again a term of the same Arithmetic Sequence.'

Let's write the Algebraic form of the above sequences.

ARITHMETIC SEQUENCE	Xn
1,2,3,4,5	n
2,4,6,8,	2n
3,6,9,12	3n
3, 5 7,9	2n+1
5,9,13,17	4n+1
4,7,10,13	3n+1

The algebraic form of all the above sequences are in the form of **''an''** or in the form of **''an+1''**

CONCLUSION:

IF THE GENERAL FORM OF AN ARITHMETIC SEQUENCE IS IN THE FORM "an" or "an + 1", THEN EVERY POWER OF EVERY TERM IS AGAIN A TERM OF THE SAME SEQUENCE. WHERE "a" IS A NATURAL NUMBER.

*LET'S ASSES

In the following Arithmetic Sequences check whether every power of every term is again a term of the same sequence. Write the reason. a) 5,10,15,20,..... b) 6,11,16,21....

- c) 8,15, 22, 29...
- d) 10,20,30,40.....

Note: When an is divided by the common difference a, the remainder is 0. We know that the remainder we get when $(an)^2 = a^2n^2$ is divided by a, is also 0. But the remainder we get when (an + 1) is divided by a is 1. The remainder we get when $(an + 1)^2 = a^2n^2 + 2an + 1$ is divided by a is also 1. Hence, if any power of (an + 1) is divided by the common difference a , the remainder is 1. Isn't it?