Chapter 1 : SETS - ASSIGNMENT-3

(Based on KITE VICTERS Plus One Mathematics Class 03)

- 1. Which of the following sets are Finite or Infinite ?
 - (i) Set of the Months of a year.

Solution: Finite set {January,February,March,...,December}

(ii) The set of prime numbers less than 100.

Solution: Finite set $\{2,3,5,\ldots,97\}$

(iii) $B = \{y : y \in \mathbb{R} \text{ and } 1 \leq y < 3\}$

Solution: Infinite set

Between 1 and 3, there are infinitely many real numbers.

Consider the Arithmetic Mean(A.M) of 1 and 3

 $\text{i.e.}, \tfrac{1+3}{2} = 2 \in B$

Using the same concept , A.M of 1 and 2 is $1.5 \in \mathbf{B}$ and so on. (iv) $C = \{(x, y) : x^2 + y^2 = 25, x, y \in \mathbb{Z}\}$

Solution: Finite set

Here each x and y can take a minimum value -5 and its maximum value is 5.But integer values are $\pm 5, \pm 4, \pm 3, \pm 2, \pm 1, 0$ and perfect square numbers ≤ 25 are 0,1,4,9,16,25 Given sum of the squares of two numbers =25 \therefore possibilities are $0 + 25 = 25 \implies 0^2 + (\pm 5)^2 = 25 \implies (0, -5), (0, 5) \in C$ and $25 + 0 = 25 \implies (-5, 0), (5, 0) \in C$ Also $9 + 16 = 25 \implies (\pm 3)^2 + (\pm 4)^2 = 25$ $\implies (3, 4)(-3, 4), (3, -4)(-3, -4) \in C$ and $16 + 9 = 25 \implies (\pm 4)^2 + (\pm 3)^2 = 25$ $\implies (4, 3)(4, -3), (-4, 3)(-4, -3) \in C$ \therefore C contains 12 elements.

- 2. From the following Sets, select Equal Sets.
 - (i) $A = \{2,4,6,8\}$ (ii) $B = \{1,3,5,...\}$ (iii) $C = \{-2,4,6,8\}$ (iv) $D = \{x : x = 2n - 1, n \in \mathbb{N}\}$ (v) $E = \{2x : x \in \mathbb{N}, x < 5\}$

(vi) $F = \{x : x = 2n + 1, n \in \mathbb{N}\}$

Solution:

i) $A=\{2,4,6,8\}$ ii) $B=\{1,3,5,\ldots\}$ iii) $C=\{-2,4,6,8\}$ iv) Putting $n=1,2,3,\ldots$, then $D=\{1,3,5,\ldots\}$ v) Here x takes the values 1,2,3,4 then 2x takes the values 2,4,6,8 $\therefore E = \{2,4,6,8\}$ vi) Putting $n=1,2,3,4,\ldots$ $F = \{3,5,7,\ldots\}$ From the above sets A = E, B = DRemark:i) A and C have same number of elements but the elements are not equal .i.e., the cardinality of A and C are equal. ii) In above set F, if $n \in \mathbb{W}$ (set of Whole numbers), what will happen??

3. Check whether each of the following set is empty or non-empty. Also write the cardinality of each set.

Note : Cardinality of a set A is the "number of elements" of the set A, denoted by n(A).

(i)
$$A = \{x : x \in \mathbb{Z} \text{ and } x^2 - 1 = 0\}$$

Solution: $x^2 - 1 = 0 \implies x^2 = 1 \implies x = -1, 1$ $\therefore A = \{-1,1\}$, the set is non-empty Then the cardinality(number of elements in a set), n(A) = 2

(ii) $B = \{x : x \in \mathbb{N} \text{ and } 0 < x < 1\}$

Solution: There is no natural numbers between 0 and 1 . i.e., $B = \{ \} \text{ or } \phi$ so $n(B) = n(\phi) = 0$

(iii) $C = \{x : x \in Z \text{ and } 4x^2 - 1 = 0\}$

Solution: \mathbb{Z} is set of integers . $4x^2 = 1 \implies x^2 = \frac{1}{4} \implies x = \frac{1}{2} \text{ and } -\frac{1}{2}$ But $\frac{1}{2}$ and $-\frac{1}{2} \notin \mathbb{Z}$ $\therefore C = \{ \} \text{ so } n(C) = 0$

(iv) $D = \{x : x \in \mathbb{Q} \text{ and } 4x^2 - 1 = 0\}$

Solution: Here instead of \mathbb{Z} the set is \mathbb{Q} (set of rational numbers). $\therefore 4x^2 = 1 \implies x^2 = \frac{1}{4} \implies x = \pm \frac{1}{2} \in \mathbb{Q}$ i.e., $D = \left\{-\frac{1}{2}, \frac{1}{2}\right\}$, D is non empty and n(D) = 2

(v)
$$E = \{x : x \text{ is an irrational number and } x^2 - 1 = 0\}$$

Solution: $x^2 = 1 \implies x = \pm 1 \notin \mathbb{Q}'$ (set of irrational numbers) i.e., $E = \{ \}$, an empty set and n(E) = 0

(vi)
$$F = \left\{ \frac{n}{n+1}, n \in \mathbb{N} \right\}$$

Solution: $F = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}$ is an infinite set .As the cardinality is the number of elements in a set ,here we can't say the cardinality of F.

- 4. Which of the following pair of sets are Equal? Justify your answer.
 - (i) $A = \{x : x \text{ is a letter in the word "MARS"}\}$

 $B = \{y : y \text{ is a letter in the word "ARMS"} \}$

Solution: $A = \{M, A, R, S\}$ and $B = \{A, R, M, S\}$ so A = B

(ii)
$$A = \{x : x \in \mathbb{R} \text{ and } x^2 < 1\}$$

 $B = \{x : x \in \mathbb{R} \text{ and } x < 1\}$

Solution:

A is the set of all real numbers between -1 and +1 but B is the set of all real number less than $1, \Longrightarrow A \neq B$. For example Consider a real number less than 1. Let us take x=-2. Clearly $-2 \in B$ But $x^2 = (-2)^2 = 4 > 1$ so $-2 \notin A$ $\therefore A \neq B$ Or $A = \{x : -1 < x < 1\}$ and $B = \{x : -\infty < x < 1\}$ so $A \neq B$

(iii)
$$A = \{x : x \in \mathbb{Z} \text{ and } x^2 \leq 8\}$$

 $B = \{x : x \in \mathbb{R} \text{ and } x^3 = 4x\}$

Solution:

$$A = \{x : x \in \mathbb{Z} \text{ and } x^2 \le 8\} \implies A = \{-2, -1, 0, 1, 2\}$$

$$B = \{x : x \in \mathbb{R} \text{ and } x^3 = 4x\} \implies x^3 - 4x = 0$$

$$\implies x(x^2 - 4) = 0$$

$$\implies x = 0 \text{ or } (x^2 - 4) = 0$$

$$\implies x = 0, -2, 2$$

$$\therefore B = \{-2, 0, 2\} \implies A \neq B$$

(iv)
$$A = \{x : x = 2n - 1, n \in \mathbb{Z}\}$$

 $B = \{x : x = 2n + 1, n \in \mathbb{Z}\}$

Solution:

Putting
$$n = ... - 2, -1, 0, 1, 2, ...$$

 $A = \{..., -3, -1, 1, 3, ...\}$
 $B = \{..., -3, -1, 1, 3, ...\}$
 $\therefore A = B$ i.e., both represents set of odd integers.

(v)
$$A = \{x : x = 2n, n \in \mathbb{R}\}$$

 $B = \{x : x = 4n, n \in \mathbb{R}\}$

Solution:

Here $n \in \mathbb{R}$ i.e., n is a real number so x is also a real number in both cases so $A = B = \mathbb{R}$

5. Which of the following sets are Singleton sets ?

(i) $A = \{x : x \in \mathbb{Z} \text{ and } x - 2 = 0\}$

Solution: $A = \{2\}$ so A is a singleton set.

(ii)
$$B = \{x : x \in \mathbb{Z} \text{ and } -2 \le x \le 2\}$$

Solution: $B = \{-2, -1, 0, 1, 2\}$, contains 5 elements.

(iii) $C = \{x : x \in \mathbb{R}^+ \text{ and } x^2 - 2 = 0\}$

Solution: $x^2 = 2 \implies x = \pm \sqrt{2}$ Here R^+ is the set of positive real numbers, $-\sqrt{2} \notin R^+$ $\therefore C = \{\sqrt{2}\}$, a singleton set. (iv) $D = \{x : x \in \mathbb{Q} \text{ and } 3x - 2 = 0\}$

Solution:
$$D = \left\{\frac{2}{3}\right\}$$
, a singleton set.

(v) $E = \{x : |x| = 5, x \in \mathbb{Z}\}$

Solution:

Here |x| is absolute value of x so $|x| = 5 \implies x = -5, 5$ $\therefore E = \{-5, 5\}$, contains 2 elements.

(vi)
$$F = \{x : |x| = 5, x \in \mathbb{N}\}$$

Solution: $|x| = 5 \implies x = -5, 5$ Here $x \in \mathbb{N} \implies x = 5$ only. $\therefore F = \{5\}$, a singleton set.

6. Which of the following sets are Equal ?

(i)
$$A = \{x \in \mathbb{Z} : -1 < x < 2\}$$

(ii) $B = \{x \in \mathbb{Z} : 0 \le x \le 1\}$
(iii) $C = \{x \in \mathbb{R} : x^2 = x\}$
(iv) $D = \{n \in \mathbb{N} : \frac{1}{2} (1 + (-1)^n)\}$

Solution:

(i) $A = \{0, 1\}$ (ii) $B = \{0, 1\}$ (iii) For C $,x^2 - x = 0 \implies x(x - 1) = 0$ so $C = \{0, 1\}$ (iv) In D by putting n=1,2,3,... we are getting $D = \{0, 1\}$ So A = B = C = D

7. If $A = \{x : x \text{ is a vowel of English alphabets}\}$, and

 $B = \{y : y \in N \text{ and } y \leq 5\}$. Is

(i) A = B ?

(ii)
$$A \approx B$$
 ?

Note : Two sets A and B are said to be <u>Equivalent</u> (denoted by $A \approx B$), if the number of elements of A and B are equal. i.e., n(A) = n(B)

Solution:

 $A = \{a, e, i, o, u\}$ and $B = \{1, 2, 3, 4, 5\}$ Here the elements are not equal but the number of elements are equal $\therefore i \} A \neq B$ ii) $A \approx B$ 8. A = {x : x ∈ N and sum of digits of x is same as the number of digits of x}. Is A finite or infinite set ?

Solution: Infinite set.

Let us consider numbers 1,11,111,1111,1111,.....all these are elements of our required set and there are infinite numbers like this.So the required set is infinite.

Note:-

i.e., stands for id est, which means "that is"