CBSE-2003 CLASS XII CHEMISTRY

General Instructions:

1. All questions are compulsory.
2. Marks for each question are indicated against it.
3. Question numbers $\mathbf{1}$ to $\mathbf{1 0}$ are very short-answer questions each of $\mathbf{1} \mathbf{~ m a r k}$. Answer them hi about one sentence each.
4. Question numbers $\mathbf{1 1}$ to $\mathbf{2 6}$ are short-answer questions of $\mathbf{2}$ marks each. Answer them in not more than 30 words each.
5. Question numbers $\mathbf{2 7}$ to $\mathbf{3 2}$ are short-answer questions of $\mathbf{3}$ marks each. Answer them in not more than 40 words each.
6. Question numbers $\mathbf{3 3}$ and $\mathbf{3 4}$ are long-answer questions of $\mathbf{5}$ marks each. Answer them in not more than 70 words each.
7. Use Log Tables, If necessary.

Note: Except for the following questions, all the remaining questions have been asked in Set I.
Q. 4. Why is the equilibrium constant K related to only $E 0_{\text {cell }}$ and not $E_{\text {cell }}$? $\mathbf{1}$
Q. 6. Write IUPAC name of the complex $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}^{2}\right] \mathrm{Cl}_{2}$.
Q. 7. How is ammonia molecule a good ligand? 1
Q. 8. Complete the nuclear equation: 1
${ }_{42}^{96} \mathrm{Mo}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{43}^{97} \mathrm{Te}+$ \qquad
Q. 15. A piece of wood was found to have ${ }^{14} \mathrm{C} /^{12} \mathrm{C}_{\text {ratio }} 0.7$ times then that in the living plant. Calculate the period when the piece of wood separated from the living plant. 2 [$\mathrm{t}_{1 / 2}$ for ${ }^{14} \mathrm{C}=5760$ years]
Q. 21. Using the valence bond approach, predict the shape and magnetic character of 2 $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$-ion. $[$ At. no. of $=26]$
Q. 22. Write one chemical reaction each to exemplify the following:
(i) Cannizzaro reaction
(ii) Williamson's synthesis 2
Q.25. Account for the following:
(a) Zirconium and Hafnium exhibit almost similar properties.
(b) Zinc salts are white while Cu^{2+} salts are coloured. [At. nos. $\left.\mathrm{Zn}=30, \mathrm{Cu}=29\right] 2$
Q. 29. How is the third law of thermodynamics useful in calculation of the absolute entropies? Calculate the value of ΔS^{0} for the following reaction at 400 K :
$2 \mathrm{NOCl}(\mathrm{g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
If the value of equilibrium constant for the reaction at 400 K is 1.958×10^{-4} and $\Delta H^{0}=77.2 \mathrm{kj} \mathrm{mol}^{-1} \cdot\left[R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right.$
Q. 30. Write chemical tests to distinguish between: $\mathbf{3}$
(i) Acetaldehyde and Acetone
(ii) Acetic acid and Acetaldehyde
(iii) Phenol and Propanoic acid
Q. 31. Calculate the cell emf at $25^{\circ} \mathrm{C}$ for the following cell:
$\mathrm{Mi}(s)\left|\mathrm{M}^{2+}(0.01 M) \| C u^{2+}(0.1 M)\right| C u(s)$

Calculate the maximum work that can be accomplished by the operation of this cell. 3

