KUTTIPPURAM Sub dist.

Silent BellS

Lesson : Second Degree Equations

Activity: 1

In figure, the chords $A B$ and $C D$ are extended to meet at $P . A B=6 \mathrm{~cm}, C D=3 \mathrm{~cm}$, $P C=5 \mathrm{~cm}$.
a) If $\mathbf{P A}=\mathrm{x}, \mathrm{PB}=$
b) PA X ----- = PC X -----
c) $\times \times-\cdots=5 \times 8$
d) $\mathrm{x}^{2}+\ldots--=40$
e) $\mathrm{x}^{2}+----+---=40+$
f) $(x+\ldots--)^{2}=$ \qquad
g) $\mathbf{x}+$ \qquad
h) $x=$ \qquad

i) $\mathbf{P A}=$ \qquad $\mathbf{P B}=$ \qquad

Activity: 2

One side of a rectangle is 2 cm longer than the other side and its area is 168 square centimetres. What are the lengths of the sides?

Activity: 3

A rod 32 cm long is to be bent to make a rectangle. Its area is $\mathbf{6 0} \mathrm{cm}^{2}$. Calculate the lengths of the sides?

Activity: 4

A $\mathbf{2 m}$ wide portion is taken from the eastern side of a square shaped playground to make a road. The area of the remaining portion is 440 square metres. What are the length and breath of the remaining portion ?

2 m

Silent Bells

Class:10 Subject:Maths Date:16/10/2020 WorksheetNo:34

LESSON:SECOND DEGREE EQUATIONS

Activity:1

The product of a number and 4 added to it ,gives 221.What are the numbers?

Activity:2

In a right angled triangle, one of the perpendicular sides is $\mathbf{2 ~ c m}$ longer than the other side and its area is $24 \mathrm{~cm}^{2}$. What are the lengths of its sides?

Activity:3

16 added to the sum of the first few terms of the arithmetic sequence $\mathbf{9 , 1 1 , 1 3}$ gives 256. How many terms are added?

Activity:4

The length of a rectangle is $\mathbf{3} \mathbf{~ c m}$ more than thrice its breadth. Its diagonal is $\mathbf{1} \mathbf{~ c m}$ more than the length. What are the length and breadth of the rectangle ?
(Hint:Let the breadth= x and length $=3 x+3$)

CLASS LINK	QR CODE
CAES	

Class: 10 Subject: Maths \quad Date: 19-10-20 \quad Worksheet No: 35

Lesson : Second Degree Equations

Activity 1

Find two numbers with sum 10 and product 20.

$$
\begin{aligned}
& \text { sum }=10 \\
& \text { if first number is } \mathrm{x} \text {, } \\
& \text { then second number }=10-\ldots . . \\
& \text { product }=20 \\
& \text { then, } \quad x(10-\ldots . .)=20 \\
& 10 \mathrm{x}-\ldots . .=\ldots . \\
& -x^{2}+10 x=\ldots . . \\
& x^{2}-10 x= \\
& x^{2}-10 x+\ldots . .=\ldots \ldots+5^{2} \\
& (x-5)^{2}= \\
& (x-5)= \pm \sqrt{ } \ldots \ldots \\
& x=5 \pm \sqrt{ } \cdots \cdot . \\
& \text { if } x=5+\sqrt{ } \ldots \text {.... } \\
& \text { first number }=x=5+\sqrt{ } \text {..... } \\
& \text { second number }=10-(5+\sqrt{ } \ldots . .) \\
& =5-\sqrt{ } \cdots . . \\
& \text { if } x=5-\sqrt{ } \cdot \ldots . \\
& \text { first number }=x=5-\sqrt{ } \ldots \ldots \\
& \text { second number }=10-(5-\sqrt{ } \text {..... }) \\
& =5+\sqrt{ } \text {..... }
\end{aligned}
$$

Activity 2

If the sum and product of two numbers are 6 , find the numbers.

Activity3

The sum of first few terms of the arithmetic sequence $3,5,7, \ldots$. is 224 . Find the number of terms.

Activity 4

A rod 56 cm long is to be bent to make a rectangle.
i) Can a rectangle of diagonal 10 cm be made?
ii) Can a rectangle of diagonal 20 cm be made?

CLASS VIDEO LINK	SCAN QR CODE

KUTTIPPURAM Sub dist.

Class:10 Subject: Maths \quad Date:20-10-2020 \quad Worksheet No: 36
Lesson \& LO :Second Degree Equations, Equations and Polynomials
To get $a x^{2}+b x+c=0$, we must take $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Find the values of x in the second degree equation $2 x^{2}+7 x+3=0$

$$
\begin{aligned}
& 2 x^{2}+7 x+3=0 \\
& \begin{array}{l}
\mathrm{a}=2, \mathrm{~b}=7, \mathrm{c}=3
\end{array} \\
& b^{2}-4 a c=7^{2}-4 \times 2 \times 3 \\
& \quad=49-24=25 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-7 \pm \sqrt{25}}{2 \times 2} \\
& =\frac{-7 \pm 5}{4} \\
& x=\frac{-7+5}{4}=\frac{-2}{4}=\frac{-1}{2}
\end{aligned}
$$

OR
$x=\frac{-5-7}{4}=\frac{-12}{4}=-3$
Therefore, $\quad x=\frac{-1}{2},-3$

KUTTIPPURAM Sub dist.

Find the values of \mathbf{x} in the following second degree equations.

1) $x^{2}+5 x+6=0$
2) $2 x^{2}+9 x+4=0$
3) $4 x^{2}+13 x+3=0$
4) $3 x^{2}+5 x+2=0$

Class Link	QR Code

