ONLINE MATHS CLASS - X - 49 ($23 / 10 / 2020$)

5. TRIGNOMETRY

PREVIOUS KNOWLEDGE

Equal triangles

If three sides of a triangle are equal to three sides of another triangle , then the angles opposite to equal sides are equal . Such triangles are known as equal triangles .

Similar triangles

If three angles of a triangle are equal to three angles of another triangle, then the sides opposite to equal angles are in the same ratio. Such triangles are known as similar triangles .

Trignometry is the study of the relationship between the measure of angles and the length of the sides of a triangle .

Activity 1

In triangle $A B C,<B=90^{\circ}$ and $<C=45^{\circ}$
Then $<A=180-(90+45)=180-135=45^{0}$
(Sum of the angles of a triangle is 180°)
If $B C=3 \mathrm{~cm}$,

$A B=3 \mathrm{~cm}$ (The sides opposite to equal angles of a triangle are equal)

We know that relation connecting the sides of a right angled triangle is the Pythagoras theorem.

$$
\text { Base }^{2}+\text { Altitude }^{2}=\text { Hypotenuse }^{2}
$$

$$
\begin{aligned}
A C & =\sqrt{B C^{2}+A B^{2}} \\
& =\sqrt{3^{2}+3^{2}} \\
& =\sqrt{9+9}=\sqrt{18}=\sqrt{3 \times 3 \times 2}=3 \sqrt{2} \text { ณั.ه }
\end{aligned}
$$

The ratio of the sides opposite to the angles $45^{\circ}, 45^{\circ}$ and $90^{\circ}=3: 3: 3 \sqrt{2}$

$$
=1: 1: \sqrt{2}
$$

In triangle $P Q R,<Q=90^{\circ}$ and $<R=45^{\circ}$ Then $<P=180-(90+45)=180-135=45^{\circ}$
(Sum of the angles of a triangle is 180°)
If $\mathrm{QR}=5 \mathrm{~cm}$,
$\mathrm{PQ}=5 \mathrm{~cm}$ (The sides opposite to equal angles of a triangle

$$
\begin{aligned}
P R & =\sqrt{Q R^{2}+P Q^{2}} \\
& =\sqrt{5^{2}+5^{2}} \\
& =\sqrt{25+25}=\sqrt{50}=\sqrt{5 \times 5 \times 2}=5 \sqrt{2} \text { ณぃ.ه }
\end{aligned}
$$

The ratio of the sides opposite to the angles $45^{\circ}, 45^{\circ}$ and 90°

$$
\begin{aligned}
& =5: 5: 5 \sqrt{2} \\
& =1: 1: \sqrt{2}
\end{aligned}
$$

Is the ratio of the sides of any triangle with angles $45^{\circ}, 45^{\circ}$ and $90^{\circ}, 1: 1: \sqrt{2}$?
Let's examine .

Suppose in triangle $A B C,<B=90^{\circ}$ and $<C=45^{\circ}$ Then $<A=180-(90+45)=180-135=45^{\circ}$

Let's take $B C=x$ units ,

Then $\mathrm{AB}=x$ units.

$$
\begin{aligned}
A C & =\sqrt{B C^{2}+A B^{2}} \\
& =\sqrt{x^{2}+x^{2}} \\
& =\sqrt{2 x^{2}}=\sqrt{2 \times x \times x}=x \sqrt{2} \text { units }
\end{aligned}
$$

The ratio of the sides opposite to the angles $45^{\circ}, 45^{\circ}$ and 90°

$$
\begin{aligned}
& =x: x: x \sqrt{2} \\
& =1: 1: \sqrt{2}
\end{aligned}
$$

Finding

$$
\text { In any triangle of angles } 45^{\circ}, 45^{\circ}, 90^{\circ} \text { the sides are in the ratio } 1: 1: \sqrt{2}
$$

More activities

Find the other two sides of the triangles given below

ONLINE MATHS CLASS - X - 50 ($27 / 10 / 2020$)

5 . TRIGNOMETRY - Class 2

What did we learn in the last class ?

In any triangle of angles $45^{\circ}, 45^{0}, 90^{\circ}$ the sides are in the ratio $1: 1: \sqrt{2}$

Activity 1

In triangle $A B C<B=90^{\circ},<B A C=30^{\circ}$
then $<C=180-(90+30)=180-120=60^{\circ}$
(Sum of the angles of a triangle is 180°)
If $B C=3 \mathrm{~cm}$, what are the length of the other sides ?

In the figure triangle $A B C$ is joined with another triangle of same measure. The angles of triangle ADC are 60° each

$$
\mathrm{AD}=\mathrm{AC}=\mathrm{DC}=6 \mathrm{~cm}
$$

In right triangle $A B C$,

$$
\begin{gathered}
B C^{2}+A B^{2}=A C^{2} \\
3^{2}+A B^{2}=6^{2} \\
9+A B^{2}=36 \\
A B^{2}=36-9=27 \\
A B=\sqrt{27}=\sqrt{3 \times 3 \times 3}=3 \sqrt{3} \mathrm{~cm}
\end{gathered}
$$

The ratio of the sides opposite to the angles $30^{\circ}, 60^{\circ}, 90^{\circ}=3: 3 \sqrt{3}: 6$

$$
=1: \sqrt{3}: 2
$$

In triangle $P Q R<Q=90^{\circ},<Q P R=30^{\circ}$
then $<R=180-(90+30)=180-120=60^{\circ}$
(Sum of the angles of a triangle is 180°)
If $Q R=5 \mathrm{~cm}$, what are the length of the other sides ?

In right triangle $P Q R$,

$$
\begin{aligned}
Q R^{2}+P Q^{2}=P R^{2} \\
5^{2}+P Q^{2}=10^{2} \\
25+P Q^{2}=100 \\
P Q^{2}=100-25=75
\end{aligned}
$$

$$
P Q=\sqrt{75}=\sqrt{5 \times 5 \times 3}=5 \sqrt{3} \mathrm{~cm}
$$

The ratio of the sides opposite to the angles $30^{\circ}, 60^{\circ}, 90^{0}=5: 5 \sqrt{3}: 10$

$$
=1: \sqrt{3}: 2
$$

Is the ratio of the sides of any triangle with angles $30^{\circ}, 60^{\circ}$ and 90°, $1: \sqrt{3}: 2$ Let's examine .

In triangle $A B C,<B=90^{\circ},<B A C=30^{\circ}$ then $<C=180-(90+30)=180-120=60^{\circ}$
(Sum of the angles of a triangle is 180°)

In the figure triangle $A B C$ is joined with another triangle of same measure. The angles of triangle ADC are $\mathbf{6 0}{ }^{\circ}$ each

If $B C=x$ units, $A D=A C=D C=2 x$ units

In right triangle $A B C \quad, \quad B C^{2}+A B^{2}=A C^{2}$

$$
\begin{gathered}
x^{2}+A B^{2}=(2 x)^{2} \\
x^{2}+A B^{2}=4 x^{2} \\
A B^{2}=4 x^{2}-x^{2}=3 x^{2} \\
A B=\sqrt{3 x^{2}}=\sqrt{3 \times x \times x}=x \sqrt{3}
\end{gathered}
$$

The ratio of the sides opposite to the angles $30^{0}, 60^{0}, 90^{0}=x: x \sqrt{3}: 2 x$

$$
=1: \sqrt{3}: 2
$$

Finding

In any triangle of angles $30^{\circ}, 60^{\circ}, 90^{\circ}$ the sides are in the ratio $1: \sqrt{3}: 2$

Find the area of an equilateral triangle of side 4 cm .

Answer
$A B=B C=A C=4 \mathrm{~cm}$

Draw AD perpendicular to $B C$.

$$
\begin{aligned}
& A D=2 \sqrt{3} \mathrm{~cm} \\
& \text { Area of triangle } A B C \quad=\frac{1}{2} \times B C \times A D \\
&=\frac{1}{2} \times 4 \times 2 \sqrt{3} \\
&=4 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

More activity

Find the area of an equilateral triangle of side 7 cm .

ONLINE MATHS CLASS - X - 51 ($30 / 10 / 2020$)

5 . TRIGNOMETRY - Class 3

What did we learn in the last class ?

In any triangle of angles $45^{\circ}, 45^{\circ}, 90^{\circ}$ the sides are in the ratio $1: 1: \sqrt{2}$

In any triangle of angles $30^{\circ}, 60^{0}, 90^{0}$ the sides are in the ratio $1: \sqrt{3}: 2$

Using these two kinds of triangles, we can compute the ratios of the sides of some non-right |triangles also .

Activity 1

|In the figure , $<\mathrm{A}=105^{\circ},<\mathrm{B}=45^{\circ}$, $<\mathrm{C}=30^{\circ}$. Draw AD perpendicular to BC .

Since $A D$ is perpendicular to $B C \quad, \angle A D B=\angle A D C=90^{\circ}$
In triangle $A D B,<B A D=180-(90+45)=180-135=45{ }^{0}$
(Sum of the angles of a triangle is 180°)
$\therefore \mathrm{DAC}=105-45=60^{\circ} \quad\left(<\mathrm{BAC}=105^{\circ}\right)$

To calculate the ratio of the sides, take x as their common side .Then using the ratios seen earlier, we can write the lengths of the sides.

Take , $A D=x$,

IIn triangle $A D B, \quad A D=B D=x, \quad A B=x \sqrt{2}$
(In any triangle of angles $45^{\circ}, 45^{0}, 90^{\circ}$ the sides are in the ratio $1: 1: \sqrt{2}$)

In triangle ADC ,

$$
A D=x, D C=x \sqrt{3}, \quad A C=2 x
$$

(In any triangle of angles $30^{\circ}, 60^{\circ}, 90^{\circ}$ the sides are in the ratio $1: \sqrt{3}: 2$)
'In triangle ABC ,

$$
\begin{aligned}
& A B=x \sqrt{2}, A C=2 x \\
& B C=x+x \sqrt{3}=x(1+\sqrt{3})
\end{aligned}
$$

The ratio of the sides opposite to the angles $30^{0}, 45^{\circ}, 105^{\circ}=A B: A C: B C$

$$
=x \sqrt{2}: 2 x: x(1+\sqrt{3})=\sqrt{2}: 2: 1+\sqrt{3}
$$

In any triangle of angles $30^{0}, 45^{0}, 105^{0}$ the sides are in the ratio $\sqrt{2}: 2: \sqrt{3}+1$
(1) In the triangle shown, what is the perpendicular distance from the top vertex to the bottom side? What is the area of the triangle ?

Answer
In triangle $A B C$,

$$
\begin{gathered}
A B=A C=4 \mathrm{~cm} \\
\angle B A C=120^{\circ}
\end{gathered}
$$

$<A B C=<A C B=\frac{180-120}{2}=\frac{60}{2}=30^{\circ}$
(In a triangle sides opposite to equal angles are equal)
Draw AD perpendicular to BC
$\angle A D B=\angle A D C=90^{\circ}$
$B D=C D$ (In any isosceles triangle, the perpendicular from the point joining equal sides to the opposite side bisects the angle at this point and the side opposite)
$<B A D=\angle C A D=60^{\circ}$
In triangle $A D B, \quad A D: B D: A B=1: \sqrt{3}: 2$
(In any triangle of angles $30^{\circ}, 60^{\circ}, 90^{\circ}$ the sides are in the ratio $1: \sqrt{3}: 2$)

$$
A D=2 \mathrm{~cm}, B D=2 \sqrt{3} \mathrm{~cm}, A B=4 \mathrm{~cm}
$$

In triangle ADC ,

$$
A D: C D: A C=1: \sqrt{3}: 2
$$

$$
A D=2 \mathrm{~cm}, C D=2 \sqrt{3} \mathrm{~cm}, A C=4 \mathrm{~cm}
$$

In triangle ABC ,

$$
B C=2 \sqrt{3}+2 \sqrt{3}=4 \sqrt{3} \mathrm{~cm}
$$

Perpendicular distance from the top vertex to the bottom side $=A D=2 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area of the triangle } & =\frac{1}{2} B C \times A D \\
& =\frac{1}{2} 4 \sqrt{3} \times 2=4 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

(2) In the parallelogram shown ,

What is the area of the parallelogram?

Answer

Draw AE perpendicular to BC.

$<\mathrm{B}=\angle \mathrm{BAE}=45^{\circ}$
In triangle AEB ,
$B E: A E: A B=1: 1: \sqrt{2}$
(In any triangle of angles $45^{\circ}, 45^{\circ}, 90^{\circ}$ the sides are in the ratio $1: 1: \sqrt{2}$)

Distance between the top and bottom sides $=A E=\frac{2}{\sqrt{2}}=\sqrt{2} \mathrm{~cm}$

$$
\begin{aligned}
\text { Area of the parallelogram } & =B C \times A E \\
& =4 \times \sqrt{2}=4 \sqrt{2} \mathrm{~cm}^{2}
\end{aligned}
$$

More activity

In the parallelogram shown ,
what is the distance between the top and bottom sides ?

What is the area of the parallelogram?

ONLINE MATHS CLASS - X - 53 ($03 / 11 / 2020$)

5 . TRIGNOMETRY - Class 5

Calculate the area of the triangle shown

4 cm
Answer
In triangle $\mathrm{ABC}<\mathrm{B}=45^{\circ},<C=60^{\circ}$

$$
B C=4 \mathrm{~cm}
$$

Draw AD perpendicular to BC.
$\angle A D B=\angle A D C=90^{\circ}$
If $D C=x$, then $B D=4-x$

In triangle ADB ,

$$
B D=A D=4-x \quad, \quad A B=(4-x) \sqrt{2}
$$

(In any triangle of angles $45^{\circ}, 45^{\circ}, 90^{\circ}$ the sides are in the ratio $1: 1: \sqrt{2}$) In triangle ADC ,

$$
D C=x, A D=x \sqrt{3}, A C=2 x
$$

(In any triangle of angles $30^{\circ}, 60^{\circ}, 90^{0}$ the sides are in the ratio $1: \sqrt{3}: 2$)

Equating the values of $A D$ from the triangles $A D B$, $A D C$, we get

$$
\begin{aligned}
& 4-x=x \sqrt{3} \\
& 4=x \sqrt{3}+x
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \begin{aligned}
& x(\sqrt{3}+1)= 4 \\
& x=\frac{4}{\sqrt{3}+1} \\
& A D=x \sqrt{3}=\frac{4}{\sqrt{3}+1} \times \sqrt{3}=\frac{4 \sqrt{3}}{\sqrt{3}+1} \\
&=\frac{1}{2} B C \times A D \\
& \text { Area of triangle ABC }=\frac{1}{2} \times 4 \times \frac{4 \sqrt{3}}{\sqrt{3}+1} \\
&=\frac{8 \sqrt{3}}{\sqrt{3}+1} \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

New measure of angles

We have calculated the ratios of the sides of some triangles of specific angles .
Do the angles of any triangle determine the ratio of its sides? Let's see
Consider the following triangles

c

They have same angles . Let's write the sides of the small triangle as a, b, c in increasing size and those of the larger as p, q, r. Then we have ,

$$
\frac{a}{p}=\frac{b}{q}=\frac{c}{r} \quad \begin{gathered}
\text { (The sides of triangle with the same angles, taken in the } \\
\text { order of size, are in the same ratio) }
\end{gathered}
$$

Let $\quad \frac{a}{p}=\frac{b}{q}=\frac{c}{r}=k$

Then we get ,

$$
\frac{a}{p}=k \quad==>\quad a=k p
$$

$$
\frac{b}{\boldsymbol{q}}=\boldsymbol{k}==>\quad b=\boldsymbol{k} \boldsymbol{q}
$$

$$
\frac{c}{\boldsymbol{r}}=\boldsymbol{k}==>\quad \boldsymbol{c}=\boldsymbol{k r}
$$

So,

$$
a: b: c=k p: k q: k r
$$

$$
=p: q: r
$$

Finding

In triangles of the same angles drawn in different sizes, the lengths of the sides are different
but their ratios are same

Conclusion

The angles of a triangle determines the ratio of its sides

sine and cosine of angles

It has been found that, for a right triangle of one angle 40°, the side opposite to this angle is |approximately 0.6428 times the hypotenuse and the other perpendicular side is approximately 0.7660 times the hypotenuse . These numbers have special names .

The number 0.6428 shows how much of the hypotenuse is the side opposite to the $40{ }^{\circ}$ angle . It is called sine of 40° and written $\sin 40^{\circ}$

$$
\sin 40^{\circ}=\frac{\text { opposite side of } 40^{\circ} \text { angle }}{\text { hypotenuse }}
$$

That is
In triangle $A B C,<B=90^{\circ},<C=40^{\circ}$, then

$$
\sin 40^{\circ}=\frac{\text { side opposite to } 40^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{A B}{A C}
$$

The number 0.7660 shows how much of the hypotenuse is the adjacent side to the $40{ }^{\circ}$ (the other side of the 40° angle). It is called cosine of 40° and written $\cos 40^{\circ}$

$$
\cos 40^{\circ}=\frac{\text { adjacent side of } 40^{\circ} \text { angle }}{\text { hypotenuse }}
$$

More activity

Find the sin and cos values of the following angles from the table given in the text book $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$

ONLINE MATHS CLASS - X - 54 ($05 / 11 / 2020$)

5 . TRIGNOMETRY - Class 6

Activity 1
In triangle $A B C,<B=90^{\circ},<A=<C=45^{\circ}$
$A B: B C: A C=1: 1: \sqrt{2}$

(In any triangle of angles $45^{\circ}, 45^{\circ}, 90^{\circ}$ the sides are in the ratio $1: 1: \sqrt{2}$) IIf $A B=x$, then $\quad B C=x, A C=x \sqrt{2}$

$$
\sin 45^{\circ}=\frac{\text { opposite side of } 45^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{A B}{A C}=\frac{x}{x \sqrt{2}}=\frac{1}{\sqrt{2}}
$$

$$
\cos 45^{\circ}=\frac{\text { adjacent side of } 45^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{B C}{A C}=\frac{x}{x \sqrt{2}}=\frac{1}{\sqrt{2}}
$$

$\sin 45^{\circ}=\frac{1}{\sqrt{2}}$	$\cos 45^{\circ}=\frac{1}{\sqrt{2}}$

Activity 2

In triangle $P Q R, \angle Q=90^{\circ}, \angle P=30^{\circ},<R=60^{\circ}$

$$
Q R: P Q: P R=1: \sqrt{3}: 2
$$

(In any triangle of angles $30^{\circ}, 60^{\circ}, 90^{\circ}$ the sides are in the ratio $1: \sqrt{3}: 2$) If $Q R=x$, then $\quad P Q=x \sqrt{3}, \quad P R=2 x$

$$
\sin 30^{\circ}=\frac{\text { opposite side of } 30^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{Q R}{P R}=\frac{x}{2 x}=\frac{1}{2}
$$

$$
\cos 30^{\circ}=\frac{\text { adjacent side of } 30^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{P Q}{P R}=\frac{x \sqrt{3}}{2 x}=\frac{\sqrt{3}}{2}
$$

$$
\sin 60^{\circ}=\frac{\text { opposite side of } 60^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{P Q}{P R}=\frac{x \sqrt{3}}{2 x}=\frac{\sqrt{3}}{2}
$$

$$
\cos 60^{\circ}=\frac{\text { adjacent side of } 60^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{Q R}{P R}=\frac{x}{2 x}=\frac{1}{2}
$$

$\sin 30^{\circ}=\frac{1}{2}$	$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}$	$\cos 60^{\circ}=\frac{1}{2}$

Angle	30°	45°	60°
\sin	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
\cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$

(1) Calculate the area of the triangle shown in the figure

Answer

Draw $A D$ perpendicular to $B C$.
Area of triangle $A B C=\frac{1}{2} B C \times A D$
In triangle $A D B$,

$$
\sin 50^{\circ}=\frac{\text { opposite side of } 50^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{A D}{A B}
$$

$$
\sin 50^{\circ}=\frac{A D}{4}
$$

$$
4 \times \sin 50^{\circ}=A D
$$

$A D=4 \times 0.7660$ กฺ.ญி

Area of triangle $A B C$

$$
\begin{aligned}
=\frac{1}{2} B C \times A D= & \frac{1}{2} \times 6 \times 4 \times 0.7660 \\
& =9.192 \mathrm{~cm}^{2}
\end{aligned}
$$

(2) Calculate the area of the triangle
shown in the figure .

6 cm

Answer

$A D$ is the perpendicular drawn from A to the side $B C$.
$\angle \mathrm{ABD}=180-130=50^{\circ}$
Area of triangle $A B C \quad=\frac{1}{2} B C \times A D$
In triangle ADB ,

$$
\begin{aligned}
& \sin 50^{\circ}=\frac{\text { opposite side of } 50^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{A D}{A B} \\
& \sin 50^{\circ}=\frac{A D}{4} \\
& 4 \times \sin 50^{\circ}=A D \\
& A D=4 \times 0.7660 \text { กை.வி }
\end{aligned}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} B C \times A D=\frac{1}{2} \times 6 \times 4 \times 0.7660
$$

$$
=9.192 \mathrm{~cm}^{2}
$$

(3)The sides of a parallelogram are $\mathbf{8 ~ c m}$ and 12 cm and the angle between them is 50^{0}.
Calculate its area

Answer

Draw AE perpendicular to BC.

$$
\text { Area of the parallelogram } \quad=B C \times A E
$$

In triangle AEB

$$
\begin{aligned}
\sin 50^{\circ} & =\frac{\text { opposite side of } 50^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{A E}{A B} \\
\sin 50^{\circ} & =\frac{A E}{8}
\end{aligned}
$$

$$
8 \times \sin 50^{\circ}=A E
$$

$$
A E=8 \times 0.7660 \text { ๓ก.® }
$$

Area of the parallelogram $=B C \times A E=12 \times 8 \times 0.7660$

$$
=73.536 \mathrm{~cm}^{2}
$$

More activity

Angles of 50° and 60° are drawn at the ends of a 5 cm long line, to make a triangle . Calculate its area .

ONLINE MATHS CLASS - X - 55 ($06 / 11 / 2020$)

5 . TRIGNOMETRY - Class 7

(1) Angles of 50° and 65° are drawn at the ends of a 5 cm long line, to make a triangle.

Calculate its area .

Answer

In triangle $A B C,<B=50^{\circ},<C=65^{\circ}$
$B C=5 \mathrm{~cm}$
$<B A C=180-(50+65)=180-115=65^{0}$
(Sum of the angles of a triangle is 180°)
$B C=A B=5 \mathrm{~cm} \quad\left(<B A C=<C=65^{\circ}\right.$,
Sides opposite to equal angles of a triangle are
 equal)

Draw AD perpendicular to BC.
Area of triangle $A B C=\frac{1}{2} B C \times A D$
In right triangle ADB ,

$$
\begin{aligned}
& \sin 50^{\circ}=\frac{\text { opposite side of } 50^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{A D}{A B} \\
& \begin{aligned}
\sin 50^{\circ}=\frac{A D}{5} \\
5 \times \sin 50^{\circ}=A D \\
A D=5 \times 0.7660 \mathrm{~cm} \\
\begin{aligned}
\text { Area of triangle } A B C & =\frac{1}{2} B C \times A D
\end{aligned} \\
\begin{aligned}
& =\frac{1}{2} \times 5 \times 5 \times 0.7660 \\
& =9.575 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

(2) The length of two sides of a triangle are 8 cm and 10 cm and the angle between them is $40{ }^{0}$. Calculate its area

What is the area of the triangle with sides of the same length, but angle between them 140° ?

Answer
|a)
In triangle $A B C \quad, A B=10 \mathrm{~cm}$,

$$
B C=8 \mathrm{~cm} \text { and } \angle B=40^{\circ}
$$

Draw AD perpendicular to BC.

Area of triangle $A B C \quad=\frac{1}{2} B C \times A D$
'In right triangle ADB ,

$$
\sin 40^{\circ}=\frac{\text { opposite side of } 40^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{A D}{A B}
$$

$$
\sin 40^{\circ}=\frac{A D}{10}
$$

$$
10 \times \sin 40^{\circ}=A D
$$

$$
A D=10 \times 0.6428 \mathrm{~cm}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} B C \times A D=\frac{1}{2} \times 8 \times 10 \times 0.6428
$$

$$
=25.712 \mathrm{~cm}^{2}
$$

(b)

In triangle $A B C, A B=10 \mathrm{~cm}, B C=8 \mathrm{~cm}, \angle A B C=140^{\circ}$
$A D$ is the perpendicular drawn from the vertex A to the side $B C$.
Area of triangle $A B C=\frac{1}{2} B C \times A D$
In right triangle ADB ,

$$
\begin{aligned}
& \sin 40^{\circ}=\frac{\text { opposite side of } 40^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{A D}{A B} \\
& \sin 40^{\circ}=\frac{A D}{10} \\
& 10 \times \sin 40^{\circ}=A D \\
& A D=10 \times 0.6428 \mathrm{~cm} \\
& \text { Area of triangle } A B C \quad=\frac{1}{2} B C \times A D=\frac{1}{2} \times 8 \times 10 \times 0.6428
\end{aligned}
$$

$=25.712 \mathrm{~cm}^{2}$

For any two triangles, if the two sides are equal and angles between them are supplementary, then their areas are equal
(3) The sides of a rhombus are $5 \mathbf{c m}$ long and one of its angles is $\mathbf{1 0 0}^{\mathbf{0}}$. Compute its area

Answer

In rhombus $A B C D, A B=5 \mathrm{~cm}, \angle A B C=100^{\circ}$
The diagonals of the rhombus intersect at E.
$<A E B=90$ (Diagonals of a rhombus bisect
each other at right angles)
$\angle A B E=\angle C B E=50^{\circ}$ (Diagonals of a rhombus bisect its angles)

Area of the rhombus

$$
=\frac{1}{2} B D \times A C
$$

In right triangle $A E B$,

$$
\sin 50^{\circ}=\frac{\text { opposite side of } 50^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{A E}{A B}
$$

$$
\sin 50^{\circ}=\frac{A E}{5}
$$

$$
5 \times \sin 50^{\circ}=A E
$$

$$
A E=5 \times 0.7660 \mathrm{~cm}
$$

$$
A C=2 \times A E=2 \times 5 \times 0.7660=7.660 \mathrm{~cm}
$$

($A E=C E \quad$ Diagonals of a rhombus bisect each other at right angles)
$\cos 50^{\circ}=\frac{\text { adjacent side of } 50^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{B E}{A B}$

$$
\cos 50^{\circ}=\frac{B E}{5}
$$

$5 \times \cos 50^{\circ}=B E$

$$
B E=5 \times 0.6428 \mathrm{~cm}
$$

$$
B D=2 \times B E=2 \times 5 \times 0.6428=6.428 \mathrm{~cm}
$$

$$
\begin{array}{ll}
\text { Area of the rhombus } & =\frac{1}{2} B D \times A C \\
& =\frac{1}{2} \times 6.428 \times 7.660=24.62 \mathrm{~cm}^{2}
\end{array}
$$

More activity

A triangle is to be drawn with one side $\mathbf{8 ~ c m}$ and an angle on it is $\mathbf{4 0}^{\circ}$. What should be the minimum length of the side opposite this angle ?

ONLINE MATHS CLASS - X-56 (09 / 11/2020)

5 . TRIGNOMETRY - Class 8

A triangle is to be drawn with one side $\mathbf{8 ~ c m}$ and an angle on it is $\mathbf{4 0}^{\mathbf{0}}$. What should be the minimum length of the side opposite this angle?

Answer

We can draw so many triangles with these measures as shown in the figure . Among these triangles, the minimum length of the side opposite to 40° is the perpendicular distance from B to its opposite side .
'In triangle $A B C, A B=8 \mathrm{~cm}, \angle A=40^{\circ}, \angle C=90^{\circ}$

$$
\sin 40^{\circ}=\frac{\text { opposite side of } 40^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{B C}{A B}
$$

$$
\sin 40^{\circ}=\frac{B C}{8}
$$

$$
8 \times \sin 40^{\circ}=B C
$$

$B C=8 \times 0.6428=5.1424 \mathrm{~cm}$

Length of an arc

The length of an arc of a circle can be computed from its central angle .

The length of an arc of a circle is that fraction of the perimeter as the fraction of 360 ㅇ that its central angle is .

In a circle of radius r, the length of an arc of central angle x^{0}

$$
=2 \pi r \times \frac{x}{360}
$$

Length of a chord

Length of a chord of central angle 60°

In the figure, chord $A B$ makes an angle 60° at the centre of the circle and O is the centre .

$$
\begin{aligned}
& O A=O B \quad(\text { Radii of a circle are equal) } \\
& <O A B=<O B A=\frac{180-60}{2}=\frac{120}{2}=60^{\circ}
\end{aligned}
$$

(The sides opposite to equal angles of a triangle are equal) Since all the angles of the triangle ABC are equal , it is an equilateral triangle . That is, $A B=O A=O B$

The length of a chord of a circle of central angle 60° is equal to the radius

Length of a chord of central angle 120°

In the figure, chord $A B$ makes an angle 120° at the centre of the circle and O is the centre.

Draw OC perpendicular to AB

$$
<A O C=<B O C=\frac{120}{2}=60^{\circ}
$$

$$
\mathbf{A C}=\mathbf{B C}
$$

|(In any isosceles triangle the perpendicular from the point joining equal sides to the opposite side bisects the angle at this point and the opposite side) .

In right triangle OCA
If $O A=r$, then $\quad O C=\frac{r}{2} \quad, \quad A C=\sqrt{3} \times \frac{r}{2}$
(In any triangle of angles $30^{0}, 60^{0}, 90^{0}$ the sides are in the ratio $1: \sqrt{3}: 2$)

$$
\text { Length of the chord } A B \quad=2 A C=2 \times \sqrt{3} \times \frac{r}{2}=\sqrt{3} r
$$

The length of a chord of a circle of central angle 120° is $\sqrt{3}$ times the radius .

Length of a chord of central angle 90°

In the figure, chord AB makes an angle 90° at the centre of the circle and O is the centre.

$$
O A=O B \quad(\text { Radii of a circle are equal })
$$

$$
<O A B=<O B A=\frac{180-90}{2}=\frac{90}{2}=45^{\circ}
$$

('The sides opposite to equal angles of a triangle are equal)

If $O A=O B=r$,

$$
A B=\sqrt{2} r
$$

(In any triangle of angles $45^{\circ}, 45^{\circ}, 90^{\circ}$ the sides are in the ratio $1: 1: \sqrt{2}$)

The length of a chord of a circle of central angle 90° is $\sqrt{2}$ times the radius .

What is the length of the chord shown in the picture ?

In the figure, chord $A B$ makes an angle 100° at the centre of the circle and O is the centre .

Draw OC perpendicular to $A B$.

$$
\begin{aligned}
& <A O C=<B O C=\frac{100}{2}=50^{\circ} \\
& \mathbf{A C}=\mathbf{B C}
\end{aligned}
$$

(In any isosceles triangle the perpendicular from the point joining equal sides to the opposite side bisects the angle at this point and the opposite side)

In right triangle OCA ,

$$
\sin 50^{\circ}=\frac{\text { opposite side of } 50^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{A C}{O A}
$$

$$
\sin 50^{\circ}=\frac{A C}{3}
$$

$$
3 \times \sin 50^{\circ}=A C
$$

$$
A C=3 \times 0.7660 \mathrm{~cm}
$$

Length of the chord $A B=2 \times A C=2 \times 3 \times 0.7660=4.596 \mathrm{~cm}$

Length of a chord of central angle x -

In the figure, chord $A B$ makes an angle 60° at the centre of the circle and O is the centre .

Draw OC perpendicular to $A B$.

$$
\begin{aligned}
& <\boldsymbol{A O C}=<B O C=\left(\frac{\boldsymbol{x}}{2}\right)^{\circ} \\
& \mathbf{A C}=\mathbf{B C}
\end{aligned}
$$

(In any isosceles triangle the perpendicular from the point
joining equal sides to the opposite side bisects the angle at this point and the opposite side) In right triangle OCA

$$
\sin \left(\frac{x}{2}\right)^{\circ}=\frac{\text { opposite side of }\left(\frac{x}{2}\right)^{\circ} \text { angle }}{\text { hypotenuse }}=\frac{A C}{O A}
$$

$$
\sin \left(\frac{x}{2}\right)^{\circ}=\frac{A C}{r}
$$

$r \times \sin \left(\frac{x}{2}\right)^{\circ}=A C$

Length of the chord $A B=2 A C=2 \times r \times \sin \left(\frac{x}{2}\right)^{\circ}$

$$
A B=2 r \times \sin \left(\frac{x}{2}\right)^{\circ}
$$

In a circle, the length of any chord is double the product of the radius and sin of the half the central angle .

More activity

Raju and Babu are standing at the starting point A of a circular track of radius 20 metres. Raju walks through the arc AB and Babu walks through the chord AB to reach B. If the central angle of the arc is 160°, how much distance did Raju walk more than Babu ?

