SAMPLE QUESTION PAPER Mathematics - Class XII (Code A)

Time : 3 Hours
Max. Marks : 100

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consist of 29 questions divided into three sections A, B and C. Section A comprises of 10 questions of one mark each, section B comprises of 12 questions of four marks each and section \mathbf{C} comprises of 7 questions of six marks each.
(iii) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
(iv) There is no overall choice. However, Internal choice has been provided in 4 questions of four marks and 2 questions of six marks. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculator is not permitted. You may ask for logarithmic tables, if required.

SECTION - A

1. Show that the function $f: R \rightarrow R$, defined by $f(x)=x^{3}$ is one one.
2. Show that the operation '*' on R defined as $a * b=\max (a, b)$ is a binary operation on R.
3. If $\sin ^{-1} x+\sin ^{-1}\left(\frac{5}{13}\right)=\frac{\pi}{2}$, then find value of ' x '.
4. Find A^{2}, where $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]$.
5. Find the value of k for which the following function is continuous at $x=1$.
$f(x)=\left\{\begin{array}{cc}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ k, & x=1\end{array}\right.$
6. Let $\phi(x)=\lambda x^{2}+7 x-4$, if $\phi^{\prime}(5)=97$, find λ.
7. An edge of a variable cube is increasing at the rate of $10 \mathrm{~cm} / \mathrm{s}$. How fast the volume of the cube is increasing when the edge is 5 cm long?
8. Find the slope of tangent to the curve $y=a^{2 x-1}, a>0$ at $x=\frac{1}{2}$.
9. Evaluate $\int_{0}^{3}[x] d x$, where [.] represents greatest integral function.
10. Find the degree of the differential equation $\frac{\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{\frac{3}{2}}}{\frac{d^{2} y}{d x^{2}}}=k$.

SECTION - B

11. Find the value of α for which the function $f(x)=1+\alpha x, \alpha \neq 0$ is the inverse of itself.
12. Solve the equation
$\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$
13. Show that the function f defined as $f(x)=2 x-|x|$ is continuous at $x=0$.
14. If $y=\left(x+\sqrt{x^{2}+a^{2}}\right)^{n}$, then prove that $\frac{d y}{d x}=\frac{n y}{\sqrt{x^{2}+a^{2}}}$.

OR

If $x^{2}+y^{2}=t-\frac{1}{t}$ and $x^{4}+y^{4}=t^{2}+\frac{1}{t^{2}}$, then prove that $\frac{d y}{d x}=\frac{1}{x^{3} y}$.
15. Find the equation of the tangent and normal to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=2$ at (1, 1).

OR

Find the intervals in which the function f defined by $f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi$ is strictly increasing or decreasing.
16. Evaluate $\int \frac{1}{1-2 \sin x} d x$.

OR

Evaluate $\int \frac{1}{\sqrt{3} \sin x+\cos x} d x$
17. If a, b, c are different and $\Delta=\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$, then show that $1+a b c=0$.
18. Evaluate $\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$

OR

Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
19. Prove that the relation R on the set $N \times N$ defined by $(a, b) R(c, d) \Leftrightarrow a+d=b+c$ for all (a, b), $(c, d) \in N \times N$ is an equivalence relation.
20. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq \overrightarrow{0}$ then show that $\vec{b}=\vec{c}$.
21. Find the shortest distance between the lines $\vec{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$.
22. A bag contains 5 white, 7 red and 8 black balls. Four balls are drawn one by one with replacement. Find the probability that at least one ball is white.

SECTION - C

23. Find the inverse of the following matrix using elementary operations
$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
24. A card from a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn and are found to be hearts. Find the probability of the missing card to be a heart.

OR

In a bolt factory, machines A, B and C manufacture respectively $25 \%, 35 \%$ and 40% of the total bolts. Of their output 5,4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product. If the bolt drawn is found to be defective, what is the probability that it is manufactured by the machine B ?
25. A house wife wishes to mix together two kinds of food, X and Y, in such a way that the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units of vitamin C. The vitamin contents of one kg of food is given below.

	Vitamin A	Vitamin B	Vitamin C
Food X :	1	2	3
Food Y:	2	2	1

One kg of food X costs Rs. 6 and one kg of food Y costs Rs.10. Find the least cost of the mixture which will produce the diet.
26. Find the length and the foot of the perpendicular from the point $(7,14,5)$ to the plane $2 x+4 y-z=2$.

OR

Find the image of the point having position vector $\hat{i}+3 \hat{j}+4 \hat{k}$ in the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})+3=0$.
27. Sketch the curves and identify the region bounded by the curves $x=\frac{1}{2}, x=2, y=\log x$ and $y=2^{x}$. Find the area of this region.
28. Show that the rectangle of maximum perimeter which can be inscribed in a circle of radius a is a square of side $\sqrt{2} a$.
29. Solve $\frac{d y}{d x}-2 y=\cos 3 x$.

Mathematics - Class XII

SOLUTIONS

SECTION - A

1. Let $x_{1}, x_{2} \in N$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, then

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
\Rightarrow & x_{1}^{3}=x_{2}^{3} \\
\Rightarrow & x_{1}=x_{2}, \text { (as } x_{1}=x_{2} \text { is unique solution) } \\
\Rightarrow & f \text { is one-one. }
\end{aligned}
$$

2. We have
$a * b=$ maximum of a and $b= \begin{cases}a, & \text { if } a>b \\ b, & \text { if } a \leq b\end{cases}$
Thus $a * b \in R$ for all $a, b \in R$, hence ' $*$ ' is binary operation on R
3. $\sin ^{-1} x+\sin ^{-1}\left(\frac{5}{13}\right)=\frac{\pi}{2}$
$\sin ^{-1} x+\cos ^{-1}\left(\sqrt{1-\left(\frac{5}{13}\right)^{2}}\right)=\frac{\pi}{2}$
$\sin ^{-1} x+\cos ^{-1}\left(\frac{12}{13}\right)=\frac{\pi}{2}$
$\Rightarrow \quad x=\frac{12}{13}\left(\right.$ as $\left.\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right)$
4. We have

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right] \\
A^{2} & =\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 \times 1+3 \times 2 & 1 \times 3+3 \times 1 \\
2 \times 1+1 \times 2 & 2 \times 3+1 \times 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
7 & 6 \\
4 & 7
\end{array}\right]
\end{aligned}
$$

5. Given,
$f(x)= \begin{cases}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ k, & x=1\end{cases}$
for $f(x)$ to be continuous

$$
\begin{aligned}
& \lim _{x \rightarrow 1} f(x)=f(1) \\
\Rightarrow & \lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right)}{(x-1)}=k \\
\Rightarrow & \lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{(x-1)}=k \\
\Rightarrow & k=2
\end{aligned}
$$

6. $\phi(x)=\lambda x^{2}+7 x-4$
$\phi^{\prime}(x)=2 \lambda x+7$
$\phi^{\prime}(5)=2 \lambda \times 5+7=97$
$\Rightarrow \lambda=9$
7. Let ' a ' be the length of an edge of the cube and v be its volume.

Given, $\frac{d a}{d t}=10 \mathrm{~cm} / \mathrm{s}$
$v=a^{3}$

$$
\begin{aligned}
\frac{d v}{d t} & =3 a^{2} \cdot \frac{d a}{d t} \\
& =3 \times(5)^{2} \times 10 \mathrm{~cm}^{3} / \mathrm{s} \\
& =750 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

8. $y=a^{2 x-1}$

$$
\frac{d y}{d x}=2 \log a \cdot a^{2 x-1}
$$

$$
\begin{aligned}
(\text { Slope at } x & \left.=\frac{1}{2}\right)=\left(\frac{d y}{d x}\right)_{x=\frac{1}{2}} \\
& =2 \text { loga } \cdot(a)^{2.1 / 2-1} \\
& =2 \text { loga }
\end{aligned}
$$

9. $\int_{0}^{3}[x] d x$
$=\int_{0}^{1} 0 . d x+\int_{1}^{2} 1 . d x+\int_{2}^{3} 2 . d x$

$$
\left\{\begin{array}{rll}
\text { for } & 0<x<1 & , \\
1 \leq x]=0 \\
& 2 \leq x<3 & ,
\end{array}\right]
$$

$=(x)_{1}^{2}+(2 x)_{2}^{3}$
$=2-1+2(3-2)$
$=1+2=3$
10. Given,

$$
\begin{aligned}
& \frac{\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{\frac{3}{2}}}{\frac{d^{2} y}{d x^{2}}}=k \\
\Rightarrow & \left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{3}=k^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2} \quad \text { [on squaring] }
\end{aligned}
$$

Clearly, power of $\left(\frac{d^{2} y}{d x^{2}}\right)$ is 2 , hence degree is 2 .

SECTION - B

11. Clearly, $f(x)$ is a bijection from R to R

$$
\begin{gathered}
\text { Now, } \quad f \circ f^{-1}(x)=x \\
\\
f\left(f^{-1}(x)\right)=x \\
\Rightarrow \quad 1+\alpha f^{-1}(x)=x \\
\Rightarrow \\
f^{-1}(x)=\frac{x-1}{\alpha}
\end{gathered}
$$

It is given that

$$
\begin{aligned}
& f(x)=f^{-1}(x) \forall x \in R \\
& 1+\alpha x=\frac{x-1}{\alpha} \forall x \in R \\
& \Rightarrow \alpha x+1=\frac{1}{\alpha} x+\frac{-1}{\alpha} \forall x \in R
\end{aligned}
$$

Comparing the coefficients of like terms, we get

$$
\begin{aligned}
& \Rightarrow \alpha=\frac{1}{\alpha} \text { and } 1=\frac{-1}{\alpha} \\
& \Rightarrow \alpha=-1
\end{aligned}
$$

12. We have

$$
\begin{aligned}
& \tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4} \\
\Rightarrow & \tan ^{-1}\left(\frac{x-1}{x-2}\right)=\tan ^{-1} 1-\tan ^{-1} \frac{x+1}{x+2} \\
\Rightarrow & \tan ^{-1}\left(\frac{x-1}{x-2}\right)=\tan ^{-1}\left(\frac{1-\frac{x+1}{x+2}}{1+\frac{x+1}{x+2}}\right)
\end{aligned}
$$

$\Rightarrow \tan ^{-1}\left(\frac{x-1}{x-2}\right)=\tan ^{-1}\left(\frac{1}{2 x+3}\right)$
$\Rightarrow \frac{x-1}{x-2}=\frac{1}{2 x+3}$
$\Rightarrow \quad x= \pm \frac{1}{\sqrt{2}}$
13. We have,
$f(x)=2 x-|x|=\left\{\begin{array}{cc}2 x-x, & \text { if } x \geq 0 \\ 2 x-(-x), & \text { if } x<0\end{array}\right.$
$\Rightarrow f(x)= \begin{cases}x, & x \geq 0 \\ 3 x, & x<0\end{cases}$
LHL at $x=0$
$=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 3 x=\lim _{h \rightarrow 0} 3(0-h)=0$
RHL at $x=0$
$=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x=\lim _{h \rightarrow 0}(0+h)=0$
and $f(0)=0$
$\therefore \quad \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
$\therefore f(x)$ is continuous at $x=0$
14. $y=\left(x+\sqrt{x^{2}+a^{2}}\right)^{n}$
$\frac{d y}{d x}=\frac{d}{d x}\left(x+\sqrt{x^{2}+a^{2}}\right)^{n}$
$\frac{d y}{d x}=n\left(x+\sqrt{x^{2}+a^{2}}\right)^{n-1} \cdot \frac{d}{d x}\left(x+\sqrt{x^{2}+a^{2}}\right)$
$\frac{d y}{d x}=n\left(x+\sqrt{x^{2}+a^{2}}\right)^{n-1}\left\{1+\frac{1 \times 2 x}{2 \sqrt{x^{2}+a^{2}}}\right\}$
$\frac{d y}{d x}=n\left(x+\sqrt{x^{2}+a^{2}}\right)^{n-1}\left\{1+\frac{x}{\sqrt{x^{2}+a^{2}}}\right\}$
$\frac{d y}{d x}=n\left\{x+\sqrt{x^{2}+a^{2}}\right\}^{n-1}\left\{\frac{\sqrt{x^{2}+a^{2}}+x}{\sqrt{x^{2}+a^{2}}}\right\}$
$=\frac{n y}{\sqrt{x^{2}+a^{2}}}$

We have,

$$
\begin{aligned}
& x^{2}+y^{2}=t-\frac{1}{t} \\
& \Rightarrow \quad\left(x^{2}+y^{2}\right)^{2}=\left(t-\frac{1}{t}\right)^{2} \\
& \Rightarrow \quad x^{4}+y^{4}+2 x^{2} y^{2}=t^{2}+\frac{1}{t^{2}}-2 \\
& \Rightarrow \quad x^{4}+y^{4}+2 x^{2} y^{2}=x^{4}+y^{4}-2 \\
& \Rightarrow \quad 2 x^{2} y^{2}=-2 \Rightarrow x^{2} y^{2}=-1 \\
& \Rightarrow \quad y^{2}=\frac{-1}{x^{2}}
\end{aligned}
$$

Now, Differentiating w.r.t. x
$\Rightarrow \quad 2 y \frac{d y}{d x}=-(-2) x^{-3}$
$\Rightarrow \quad y \frac{d y}{d x}=\frac{1}{x^{3}} \Rightarrow \frac{d y}{d x}=\frac{1}{x^{3} y}$
15. Given

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=2
$$

On differentiating w.r.t. x
$\frac{2}{3} x^{\frac{-1}{3}}+\frac{2}{3} y^{\frac{-1}{3}} \cdot \frac{d y}{d x}=0$
Now, $\frac{d y}{d x}=-\left(\frac{x^{\frac{-1}{3}}}{y^{\frac{-1}{3}}}\right)$
$\left(\frac{d y}{d x}\right)_{(1,1)}=-1$
Equation of tangent at $(1,1)$ is

$$
y-1=-1(x-1)
$$

$\Rightarrow y+x-2=0$
Slope of normal = 1
Equation of normal is
$y-1=1(x-1) \Rightarrow y=x$

$$
\begin{aligned}
f(x) & =\sin x+\cos x \\
\Rightarrow \quad f(x) & =\sqrt{2}\left(\sin x \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cos x\right) \\
f(x) & =\sqrt{2} \cos \left(x-\frac{\pi}{4}\right) \\
f^{\prime}(x) & =-\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)
\end{aligned}
$$

for $f(x)$ to be strictly increasing

$$
\begin{aligned}
& f^{\prime}(x)>0 \\
\Rightarrow & -\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)>0 \\
\Rightarrow & \sin \left(x-\frac{\pi}{4}\right)<0 \\
\Rightarrow & \pi<x-\frac{\pi}{4}<2 \pi \\
\Rightarrow & \pi+\frac{\pi}{4}<x<2 \pi+\frac{\pi}{4} \\
\Rightarrow & (2 n-1) \pi+\frac{\pi}{4}<x<2 n \pi+\frac{\pi}{4}
\end{aligned}
$$

as $x \in[0,2 \pi]$
$\therefore \quad x \in\left[0, \frac{\pi}{4}\right) \cup\left(\frac{5 \pi}{4}, 2 \pi\right]$
and for $f(x)$ to be decreasing
$f^{\prime}(x)<0$

$$
\begin{aligned}
& -\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)<0 \\
\Rightarrow & \sin \left(x-\frac{\pi}{4}\right)>0 \\
\Rightarrow & 0<x-\frac{\pi}{4}<\pi \\
\Rightarrow & \frac{\pi}{4}<x<\pi+\frac{\pi}{4} \\
\Rightarrow & x \in\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)
\end{aligned}
$$

16. $\int \frac{1}{1-2 \sin x} d x$

$$
\begin{aligned}
& I=\int \frac{1}{1-2 \frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}} d x \\
& I=\int \frac{1+\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}-4 \tan \frac{x}{2}} d x
\end{aligned}
$$

Put $\tan \frac{x}{2}=t$
$\Rightarrow \sec ^{2}\left(\frac{x}{2}\right) d x=2 d t$
$I=\int \frac{2 d t}{1+t^{2}-4 t}=2 \int \frac{d t}{(t-2)^{2}-(\sqrt{3})^{2}}$
$I=2 \times \frac{1}{2 \sqrt{3}} \log \left|\frac{t-2-\sqrt{3}}{t-2+\sqrt{3}}\right|+C$
$=\frac{1}{\sqrt{3}} \log \left|\frac{\tan \frac{x}{2}-2-\sqrt{3}}{\tan \frac{x}{2}-2+\sqrt{3}}\right|+C$
$I=\int \frac{1}{\sqrt{3} \sin x+\cos x} d x$
$=\int \frac{1}{2\left(\frac{\sqrt{3}}{2} \sin x+\frac{1}{2} \cos x\right)} d x$
$=\int \frac{1}{2\left(\cos \left(x-\frac{\pi}{3}\right)\right)} d x$
$=\frac{1}{2} \int \sec \left(x-\frac{\pi}{3}\right) d x$
$=\frac{1}{2} \log \left|\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)\right|+C$
17. $\Delta=\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$
$=\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|+\left|\begin{array}{lll}a & a^{2} & a^{3} \\ b & b^{2} & b^{3} \\ c & c^{2} & c^{3}\end{array}\right|$
$=(-1)^{2}\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|+(a b c)\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right| \quad$ (using $c_{3} \leftrightarrow c_{2}, c_{1} \leftrightarrow c_{2}$)
$=(1+a b c)\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$
$=(1+a b c)\left|\begin{array}{ccc}1 & a & a^{2} \\ 0 & b-a & b^{2}-a^{2} \\ 0 & c-a & c^{2}-a^{2}\end{array}\right|$
(using $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$)
$=(1+a b c)(b-a)(c-a)\left|\begin{array}{ccc}1 & a & a^{2} \\ 0 & 1 & b+a \\ 0 & 1 & c+a\end{array}\right|$
$=(1+a b c)(b-a)(c-a)(c-b) \quad$ (on expanding along $\left.c_{1}\right)$
$\Delta=0$ and a, b, c are different
$\therefore a-b, b-c, c-a \neq 0$
$\Rightarrow 1+a b c=0$
18. $\quad I=\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$
$I=\int_{0}^{\pi} \frac{(\pi-x) d x}{a^{2} \cos ^{2}(\pi-x)+b^{2} \sin ^{2}(\pi-x)}$
$I=\int_{0}^{\pi} \frac{(\pi-x) d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}$
(i) + (ii)
$2 I=\int_{0}^{\frac{2 \pi}{2}} \frac{\pi}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$

$$
\begin{aligned}
2 I & =2 \pi \int_{0}^{\frac{\pi}{2}} \frac{1}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x \\
& =2 \pi \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x d x}{a^{2}+b^{2} \tan ^{2} x}
\end{aligned}
$$

Let us put $\tan x=t, \sec ^{2} x d x=d t$
when $x \rightarrow 0^{+} \Rightarrow \tan x \rightarrow 0$

$$
x \rightarrow \frac{\pi}{2}-\quad \Rightarrow \quad \tan x \rightarrow \infty
$$

$I=\pi \int_{0}^{\infty} \frac{d t}{a^{2}+b^{2} t^{2}}$
$=\frac{\pi}{a b}\left[\tan ^{-1}\left(\frac{b t}{a}\right)\right]_{0}^{\infty}$
$=\frac{\pi}{a b}\left[\frac{\pi}{2}-0\right]$
$=\frac{\pi^{2}}{2 a b}$

OR

$I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
$I=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x$
$I=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x$
(i) + (ii)
$2 I=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x$
$I=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x$
Let $\cos x=t$, so that $-\sin x d x=d t$
at $x=0, t=1, x=\pi, t=-1$

$$
\begin{aligned}
I & =\frac{\pi}{2} \int_{1}^{-1} \frac{-d t}{1+t^{2}} \\
& =\frac{-\pi}{2}\left[\tan ^{-1} t_{1}^{-1}\right. \\
& =\frac{-\pi}{2}\left[\frac{-\pi}{4}-\frac{\pi}{4}\right]=\frac{\pi^{2}}{4}
\end{aligned}
$$

19. Reflexivity : Let (a, b) be an arbitrary element of $N \times N$. Then,
$(a, b) \in N \times N$
$\Rightarrow a, b \in N$
$\Rightarrow a+b=b+a$
$\Rightarrow(a, b) R(a, b)$ for all $(a, b) \in N \times N$, So R is reflexive on $N \times N$
symmetry : Let $(a, b),(c, d) \in N \times N$ be such that $(a, b) R(c, d$,
$(a, b) R(c, d$,
$\Rightarrow a+d=b+c$
$\Rightarrow c+b=d+a$
$\Rightarrow \quad(c, d) R(a, b)$
Thus $(a, b) R(c, d) \Rightarrow(c, d) R(a, b)$ for all $(a, b),(c, d) \in N \times N$
So, R is symmetric on $N \times N$.
Transitivity
Let $(a, b),(c, d),(e, f) \in N \times N$ such that
$(a, b) R(c, d)$ and $(c, d) R(e, f)$ then
$\left.\begin{array}{r}(a, b) R(c, d) \Rightarrow a+d=b+c \\ (c, d) R(e, f) \Rightarrow c+f=d+e\end{array}\right\} \Rightarrow(a+d)+(c+f)=(b+c)+(d+e)$

$$
\begin{aligned}
& \Rightarrow(a+f)=b+e \\
& \Rightarrow(a, b) R(e, f)
\end{aligned}
$$

Thus $(a, b) R(c, d)$ and $(c, d) R(e, f) \Rightarrow(a, b) R(e, f),(a, b),(c, d),(e, f) \in N \times N$
So, R is transitive on $N \times N$
Hence, R is an equivalence relation.
20. We have
$\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ and $\vec{a} \neq \overrightarrow{0}$
$\Rightarrow \vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}=\overrightarrow{0}$ and $\vec{a} \neq \overrightarrow{0}$

$$
\begin{aligned}
& \Rightarrow \vec{a} \cdot(\vec{b}-\vec{c})=0 \text { and } \vec{a} \neq \overrightarrow{0} \\
& \Rightarrow \vec{b}-\vec{c}=\overrightarrow{0} \text { or } \vec{a} \perp(\vec{b}-\vec{c}) \\
& \Rightarrow \vec{b}=\vec{c} \text { or } a \perp(\vec{b}-\vec{c})
\end{aligned}
$$

Again, $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and $\vec{a} \neq \overrightarrow{0}$
$\Rightarrow \vec{a} \times \vec{b}-\vec{a} \times \vec{c}=\overrightarrow{0}$ and $\vec{a} \neq \overrightarrow{0}$
$\Rightarrow \vec{a} \times(\vec{b}-\vec{c})=\overrightarrow{0}$ and $\vec{a} \neq \overrightarrow{0}$
$\Rightarrow \vec{b}-\vec{c}=\overrightarrow{0}$ or $\vec{a} \|(\vec{b}-\vec{c})$
$\Rightarrow \vec{b}=\vec{c}$ or $\vec{a} \|(\vec{b}-\vec{c})$
Combining the above two cases we get $\vec{b}=\vec{c}$.
21. Shortest distance between the lines $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$ is given by

$$
d=\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|
$$

comparing the given equations with the equations $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$ respectively we get
$\vec{a}_{1}=4 \hat{i}-\hat{j}, \vec{a}_{2}=\hat{i}-\hat{j}+2 \hat{k}, \vec{b}_{1}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}_{2}=2 \hat{i}+4 \hat{j}-5 \hat{k}$
Now $\quad \vec{a}_{2}-\vec{a}_{1}=-3 \hat{i}-0 \hat{j}+2 \hat{k}$
and

$$
\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & -3 \\
2 & 4 & -5
\end{array}\right|=2 \hat{i}-\hat{j}
$$

$\therefore \quad\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)=(-3 \hat{i}+0 \hat{j}+2 \hat{k}) \cdot(2 \hat{i}-\hat{j})$
$=-6+0+0=-6$
and, $\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{4+1+0}=\sqrt{5}$
$\therefore \quad$ Shortest distance $=\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|=\left|\frac{-6}{\sqrt{5}}\right|=\frac{6}{\sqrt{5}}$
22. Let A_{i} be the event that ball drawn in $i^{\text {th }}$ draw is white, where, $1 \leq i \leq 4$.

Since the balls are drawn with replacement. Therefore, $A_{1}, A_{2}, A_{3}, A_{4}$ are independent events such that $P\left(A_{\mathrm{i}}\right)=\frac{5}{20}=\frac{1}{4}, i=1,2,3,4$

Now required Probability
$=P\left(A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right)$
$=1-P\left(\bar{A}_{1}\right) P\left(\bar{A}_{2}\right) P\left(\bar{A}_{3}\right) P\left(\bar{A}_{4}\right)$
$=1-\left(\frac{3}{4}\right)^{4}$

SECTION - C

23. $A=I A$
i.e., $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
or $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 3 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] A$ (applying $R_{1} \leftrightarrow R_{2}$)
or $\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -5 & -8\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -3 & 1\end{array}\right] A\left(\right.$ applying $\left.R_{3} \rightarrow R_{3}-3 R_{1}\right)$
or $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & -5 & -8\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -3 & 1\end{array}\right] A\left(\right.$ applying $\left.R_{1} \rightarrow R_{1}-2 R_{2}\right)$
or $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & 0 & 0 \\ 5 & -3 & 1\end{array}\right] A\left(\right.$ applying $\left.R_{3} \rightarrow R_{3}+5 R_{2}\right)$
or $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2}\end{array}\right] A\left(\right.$ applying $\left.R_{3} \rightarrow \frac{1}{2} R_{3}\right)$
or $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2}\end{array}\right] A\left(\right.$ applying $\left.R_{1} \rightarrow R_{1}+R_{3}\right)$
or $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right] A\left(\right.$ applying $\left.R_{2} \rightarrow R_{2}-2 R_{3}\right)$
Hence $A^{-1}=\left[\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right]$
24. Let $E_{1}, E_{2}, E_{3}, E_{4}$ and A be the events as defined below
$E_{1}=$ the missing card is a heart card,
$E_{2}=$ the missing card is a spade card
$E_{3}=$ the missing card is a club card
$E_{4}=$ the missing card is a diamond card
$A=$ Drawing two heart cards from the remaining cards.
Then,
$P\left(E_{1}\right)=\frac{13}{52}=\frac{1}{4}$
$P\left(E_{2}\right)=\frac{13}{52}=\frac{1}{4}$
$P\left(E_{3}\right)=\frac{13}{52}=\frac{1}{4}$
$P\left(E_{4}\right)=\frac{13}{52}=\frac{1}{4}$
$P\left(\frac{A}{E_{1}}\right)=$ Probability of drawing two heart cards given that one heart card is missing
$\Rightarrow \quad P\left(\frac{A}{E_{1}}\right)=\frac{{ }^{12} C_{2}}{{ }^{51} C_{2}}$
Similarly, $P\left(\frac{A}{E_{2}}\right)=\frac{{ }^{13} C_{2}}{{ }^{51} C_{2}}$

$$
\begin{aligned}
& P\left(\frac{A}{E_{3}}\right)=\frac{{ }^{13} C_{2}}{{ }^{51} C_{2}} \\
& P\left(\frac{A}{E_{4}}\right)=\frac{{ }^{13} C_{2}}{{ }^{51} C_{2}}
\end{aligned}
$$

By Baye's theorem, we have,
Required probability $=P\left(\frac{E_{1}}{A}\right)$

$$
\begin{aligned}
& =\frac{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)}{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)+P\left(E_{3}\right) \cdot P\left(\frac{A}{E_{3}}\right)+P\left(E_{4}\right) \cdot P\left(\frac{A}{E_{4}}\right)} \\
& =\frac{\frac{1}{4} \times \frac{{ }^{12} C_{2}}{51} C_{2}}{\frac{1}{4} \times \frac{{ }^{12} C_{2}}{{ }^{51} C_{2}}+\frac{1}{4} \times \frac{{ }^{13} C_{2}}{{ }^{51} C_{2}}+\frac{1}{4} \times \frac{{ }^{13} C_{2}}{{ }^{51} C_{2}}+\frac{1}{4} \times \frac{{ }^{13} C_{2}}{{ }^{51} C_{2}}} \\
& =\frac{{ }^{12} C_{2}}{{ }^{12} C_{2}+{ }^{13} C_{2}+{ }^{13} C_{2}+{ }^{13} C_{2}}=\frac{11}{50}
\end{aligned}
$$

OR

Let E_{1}, E_{2}, E_{3} and A be the events defined as follows.
$E_{1}=$ the bolt is manufactured by machine A
$E_{2}=$ the bolt is manufactured by machine B
$E_{3}=$ the bolt is manufatured by machine C
$A=$ the bolt is defective.
Then,
$P\left(E_{1}\right)=$ Probability that the bolt drawn is manufactured by machine A

$$
=\frac{25}{100}=\frac{1}{4}
$$

$P\left(E_{2}\right)=$ Probability that the bolt drawn is manufactured by machine B

$$
=\frac{35}{100}
$$

$P\left(E_{3}\right)=$ Probability that the bolt drawn is manufactured by machine C

$$
=\frac{40}{100}
$$

$P\left(\frac{A}{E_{1}}\right)=$ Probability that the bolt drawn is defective given that it is manufactured by A

$$
=\frac{5}{100}
$$

Similarly, $P\left(\frac{A}{E_{2}}\right)=\frac{4}{100}$

$$
P\left(\frac{A}{E_{3}}\right)=\frac{2}{100}
$$

Now
Required probability = Probability that the bolt is manufactured by machine B given that the bolt drawn is defective

$$
\begin{gathered}
=P\left(\frac{E_{2}}{A}\right) \\
=\frac{P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)}{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)+P\left(E_{3}\right) \cdot P\left(\frac{A}{E_{3}}\right)} \\
=\frac{\frac{35}{100} \times \frac{4}{100}}{\frac{25}{100} \times \frac{5}{100}+\frac{35}{100} \times \frac{4}{100}+\frac{40}{100} \times \frac{2}{100}} \\
=\frac{\frac{28}{69}}{}
\end{gathered}
$$

25. Let $x \mathrm{~kg}$ of food X and $y \mathrm{~kg}$ of food Y are mixed together to make the mixture.

Amount of vitamin $A=x+2 y$ unit
Amount of vitamin $B=2 x+2 y$
Amount of vitamin $C=3 x+y$
According to requirement of vitamin A, B, C

$$
\begin{aligned}
& x+2 y \geq 10 \\
& 2 x+2 y \geq 12 \\
& 3 x+y \geq 8
\end{aligned}
$$

and, $x \geq 0, y \geq 0$
We have to minimize $z=6 x+10 y$

The feasible region of $\angle P P$ is shaded region
$A_{1}(10,0), P_{1}(2,4), P_{2}(1,5)$ and $P_{3}(0,8)$ are corner points.

Now, $z=6 x+10 y$ at $A_{1}(10,0)=6 \times 10+10 \times 0=60$
$z=6 x+10 y$ at $P_{1}(2,4)=6 \times 2+10 \times 4=52$
$z=6 x+10 y$ at $P_{2}(1,5)=6 \times 1+10 \times 5=56$
$z=6 x+10 y$ at $P_{1}(0,8)=6 \times 0+10 \times 8=80$
Clearly z is minimum at $x=2$ and $y=4$
The minimum value of z is 52
Now, let if possible $6 x+10 y<52$ and line does not enter in feasible region
Hence, minimum value of $6 x+10 y=52$
Hence, the least cost is Rs. 52.
26. Let M be the foot of the perpendicular from P on the plane $2 x+4 y-z=2$. Then $P M$ is normal to the plane So, its direction ratios are $2,4,-1$. Since $P M$ passes through $P(7,14,5)$.
\therefore Equation of $P M$ is

$$
\frac{x-7}{2}=\frac{y-14}{4}=\frac{z-5}{-1}=r(\text { say })
$$

Let the co-ordinate of M be $(2 r+7,4 r+14,-r+5)$
$\because M$ lies on the plane $2 x+4 y-z=2$
$\therefore 2(2 r+7)+4(4 r+14)-(-r+5)=2$
$\Rightarrow 21 r+63=0$

$$
r=-3
$$

\therefore Co-ordinates of M is $(1,2,8)$

$$
P M=\text { Length of perpendicular from } P
$$

$$
\begin{aligned}
P M & =\sqrt{(7-1)^{2}+(14-2)^{2}+(5-8)^{2}} \\
& =3 \sqrt{21} \text { unit }
\end{aligned}
$$

OR

Let Q be the image of the point $P(\hat{i}+3 \hat{j}+4 \hat{k})$ in the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})+3=0$. Then $P Q$ is normal to the plane. Since $P Q$ passes through P and is normal to the given plane, therefore equation of line $P Q$ is

$$
\vec{r}=(\hat{i}+3 \hat{j}+4 \hat{k})+\lambda(2 \hat{i}-\hat{j}+\hat{k})
$$

$\because Q$ lies on line $P Q$ so
The position vector of Q is

$$
\begin{aligned}
& =(\hat{i}+3 \hat{j}+4 \hat{k})+\lambda(2 \hat{i}-\hat{j}+\hat{k}) \\
& =(1+2 \lambda) \hat{i}+(3-\lambda) \hat{j}+(4+\lambda) \hat{k}
\end{aligned}
$$

$\because R$ is the mid point of $P Q$,
\therefore Position vector of R is

$$
\begin{aligned}
& \frac{[(1+2 \lambda) \hat{i}+(3-\lambda) \hat{j}+(4+\lambda) \hat{k}]+(\hat{i}+3 \hat{j}+4 \hat{k})}{2} \\
& =(\lambda+1) \hat{i}+\left(3-\frac{\lambda}{2}\right) \hat{j}+\left(4+\frac{\lambda}{2}\right) \hat{k}
\end{aligned}
$$

$\because R$ lies on plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})+3=0$
$\therefore\left\{(\lambda+1) \hat{i}+\left(3-\frac{\lambda}{2}\right) \hat{j}+\left(4+\frac{\lambda}{2}\right) \hat{k}\right\} \cdot(2 \hat{i}-\hat{j}+\hat{k})+3=0$
$\Rightarrow 2 \lambda+2-3+\frac{\lambda}{2}+4+\frac{\lambda}{2}+3=0$
$\Rightarrow \lambda=-2$
\therefore Position vector of Q is $(\hat{i}+2 \hat{j}+4 \hat{k})-2(2 \hat{i}-\hat{j}+\hat{k})$

$$
=-3 \hat{i}+4 \hat{j}+3 \hat{k}
$$

27. Required area $=$ area of shaded region

$$
\begin{aligned}
& =\int_{\frac{1}{2}}^{2}\left(2^{x}-\log x\right) d x \\
A & =\left(\frac{2^{x}}{\log 2}-x \log x+x\right]_{\frac{1}{2}}^{2} \\
& =\left\{\frac{4}{\log 2}-2 \log 2+2\right\}-\left\{\frac{\sqrt{2}}{\log 2}+\frac{1}{2} \log 2+\frac{1}{2}\right\} \\
A & =\frac{(4-\sqrt{2})}{\log 2}-\frac{5}{2} \log 2+\frac{3}{2} \text { sq. units }
\end{aligned}
$$

28. Let $A B C D$ be a rectangle in a given circle of radius a with centre at O.

Let $A B=2 x, A D=2 y$ be the sides of rectangle.

$$
\begin{gather*}
A M^{2}+O M^{2}=O A^{2} \\
\Rightarrow x^{2}+y^{2}=a^{2} \\
y=\sqrt{a^{2}-x^{2}} \tag{i}
\end{gather*}
$$

Let P be the perimeter of the rectangle $A B C D$.

$$
\begin{aligned}
& P=4 x+4 y \\
\Rightarrow & P=4 x+4 \sqrt{a^{2}-x^{2}} \\
\Rightarrow & \frac{d P}{d x}=4-\frac{4 x}{\sqrt{a^{2}-x^{2}}}
\end{aligned}
$$

for maximum value of P

$$
\begin{gathered}
\frac{d P}{d x}=0 \\
\Rightarrow \quad 4-\frac{4 x}{\sqrt{a^{2}-x^{2}}}=0 \\
\Rightarrow \quad x=\frac{a}{\sqrt{2}}
\end{gathered}
$$

Now, $\quad \frac{d^{2} P}{d x^{2}}=-\frac{4\left\{\sqrt{a^{2}-x^{2}} \cdot 1-\frac{x(-x)}{\sqrt{a^{2}-x^{2}}}\right\}}{\left(\sqrt{a^{2}-x^{2}}\right)^{2}}=\frac{-4 a^{2}}{\left(a^{2}-x^{2}\right)^{\frac{3}{2}}}$
$\therefore\left(\frac{d^{2} P}{d x^{2}}\right)_{x=\frac{a}{\sqrt{2}}}=-\frac{4 a^{2}}{\left(a^{2}-\frac{a^{2}}{2}\right)^{\frac{3}{2}}}=-\frac{8 \sqrt{2}}{a}<0$
$\therefore \quad P$ is maximum when $x=\frac{a}{\sqrt{2}}$
Putting $x=\frac{a}{\sqrt{2}}$ in (i)

$$
y=\frac{a}{\sqrt{2}}
$$

$\therefore \quad x=y=\frac{a}{\sqrt{2}}$

Hence, P is maximum when the rectangle is square of side $2 x=\frac{2 a}{\sqrt{2}}=\sqrt{2} a$
29. Given

$$
\begin{equation*}
\frac{d y}{d x}+(-2) y=\cos 3 x \tag{i}
\end{equation*}
$$

Clearly it is linear differential equation

$$
\text { I.F. }=e^{\int-2 d x}=e^{-2 x}
$$

Multiplying both sides of (i) by I.F. $=e^{-2 x}$

$$
e^{-2 x} \cdot \frac{d y}{d x}-2 y e^{-2 x}=\cos 3 x \cdot e^{-2 x}
$$

Integrating both sides w.r.t. x,
$y e^{-2 x}=\int e^{-2 x} \cos 3 x d x+c$
$y e^{-2 x}=I+C$
Now, $\quad I=\int e^{-2 x} \cdot \cos 3 x d x$

$$
\begin{aligned}
& I=\frac{1}{3} e^{-2 x} \cdot \sin 3 x-\int\left(\frac{-2}{3}\right) e^{-2 x} \sin 3 x d x \\
& I=\frac{1}{3} e^{-2 x} \cdot \sin 3 x+\frac{2}{3} \int e^{-2 x} \sin 3 x d x \\
& I=\frac{1}{3} e^{-2 x} \cdot \sin 3 x+\frac{2}{3}\left[-\frac{1}{3} e^{-2 x} \cdot \cos 3 x-\frac{2}{3} \int e^{-2 x} \cdot \cos 3 x d x\right] \\
& I=\frac{1}{3} e^{-2 x} \cdot \sin 3 x-\frac{2}{9} e^{-2 x} \cdot \cos 3 x-\frac{4}{9} I \\
& \Rightarrow\left(I+\frac{4}{9}\right) I=\frac{e^{-2 x}}{9}(3 \sin 3 x-2 \cos 3 x) \\
& \Rightarrow I=\frac{e^{-2 x}}{13}(3 \sin 3 x-2 \cos 3 x)
\end{aligned}
$$

Putting the value of I in (ii)
$y e^{-2 x}=\frac{e^{-2 x}}{13}(3 \sin 3 x-2 \cos 3 x)+C$ which is the required solution.

