## ONLINE MATHS CLASS - X - 37 (29 / 09 /2020)

Chapter 3 – Mathematics of chance

Let's discuss practical situations related to the idea of chance,

1. Coin is used to tossing in a cricket match .We can not predict early whether it is head or tail .

We can only assume the result .

2. While throwing a die in a snake and ladder game , we can not predict early which number is

coming upward . Here also we can only assume the result .

Mathematical analysis of cases where the result can not be calculated accurately, is discussing in this unit.

There are 9 red balls and one yellow ball in a box . If a ball is chosen without looking , it most likely to be red  $\cdot$ .

There are 8 red balls and 2 yellow balls in the second box. Here also if a ball is chosen without looking, it most likely to be red.

There are 5 red balls and 5 yellow balls in the third box. If a ball is chosen without looking it may be red or yellow.

For the first and second box the chance of getting a red ball is more . From the third box ,

chance of getting red ball and yellow ball are equal .

### Let's try to analyse mathematically such situations

 Five black and five white beads in one box . Six black and four white in another . One has choose a box and pick a bead . If it is black , he wins . Which box is the better choice ? Here each box contains equal number of beads . (Each box contains 10 beads ). The second box contains more blacks . So we have a greater probability of getting a black from the second box . 2. Six black and five white beads in one box . Five black and four white in another . One has choose a box and pick a bead. If it is black, he wins . Which box is the better choice ? Total number of beads in first box = 11of total beads is black 11 Total number of beads in second box = 9 $\mathbf{5}$ of total beads is black 9  $\mathbf{5}$ is greater than  $\frac{6}{11}$ Second box has a larger black part. So the second box is the better choice to win the game. (In other words, the probability of getting a black bead from the second box is larger. Further , the probability of getting a black bead from the first box is  $\frac{6}{11}$  and the probability of getting a black bead from the second box is  $\frac{5}{9}$ ) **NB**:  $\frac{6}{11}$   $\frac{5}{9}$  $6 \times 9$   $5 \times 11$  $54 < 55 = > \frac{6}{11} < \frac{5}{9}$ Conclusion Thus the probability is mathematically analysed by converting it into number by calculating how many of the favourable outcomes out of total outcomes. *Probability* = *Number of favourable outcomes* Total number of outcomes SARATH .A .S , HST , GHS ANCHACHAVADI

Let's solve some problems related to this idea 1. Numbers 1 to 25 are written on paper slips and put in a box . One slip is taken from it . a) What is the probability that it is an even number ? b) What is the probability of being a multiple of 3? c) What is the probability of being a multiple of 6? <u>Answer</u> . Total number of outcomes = 25a) Number of favourable outcomes = 12 (Here number of favourable outcomes is the number of even numbers) Probability = <u>Number of favourable outcomes</u> = 12 Total number of outcomes 25 b) Favourable outcomes = 3, 6, 9, 12, 15, 18, 21, 24Number of favourable outcomes = 8 (Here number of favourable outcomes is the number of multiples of 3) Probability = <u>Number of favourable outcomes</u> = Total number of outcomes 25 c) Favourable outcomes = 6, 12, 18, 21Number of favourable outcomes = 4 (Here number of favourable outcomes is the number of of multiples of 6) **Probability** = <u>Number of favourable outcomes</u> Total number of outcomes 2. There are 3 red balls and 7 green balls in a bag, 8 red balls and 7 green balls in another a) What is the probability of getting a red ball from the first bag? (b) What is the probability of getting a red ball from the second bag? c) If all the balls are put in a single bag, what is the probability of getting a red ball from it ? Answer. a) Total number of outcomes (Number of balls in first box) = 10SARATH .A .S , HST , GHS ANCHACHAVADI

Number of favourable outcomes = 3 (Here number of favourable outcomes is the number of red balls ) Probability = <u>Number of favourable outcomes</u> = Total number of outcomes b) Total number of outcomes (Number of balls in first box) = 15 Number of favourable outcomes = 8 (Here number of favourable outcomes is the number of red balls) Probability = <u>Number of favourable outcomes</u> = \_8\_ Total number of outcomes c) Total number of outcomes (Total Number of balls in two boxes ) = 25Number of favourable outcomes = 11 (Here number of favourable outcomes is the number of red balls in two boxes) Probability = <u>Number of favourable outcomes</u> = \_\_\_\_\_11\_\_\_ Total number of outcomes 25 3. One is asked to say a two digit number . What is the probability of it being a perfect square ? <u>Answer</u>. Total number of outcomes (total number of two digit numbers) = 90Favourable outcomes = 16, 25, 36, 49, 64, 81Probability = <u>Number of favourable outcomes</u> = <u> 6 </u> **Total number of outcomes** 90 15 More activities (Text book page 71) (1)A box contains 6 black and 4 white balls. If a ball is taken from it, what is the probability of it being black? And the probability of it being white? (5) A bag contains 3 red beads and 7 green beads. Another contains one red and one green more. The probability of getting a red from which bag is more? SARATH .A .S , HST , GHS ANCHACHAVADI

### ONLINE MATHS CLASS - X - 37 (29 / 09 /2020)

#### **WORKSHEET**

1. One is asked to say a letter in the English alphabet .

a) How many letters are there in English alphabet?

b) What is the probability of telling a vowel?

c) What is the probability of telling a consonant?

d) What is the sum of the probabilities of telling a vowel and not telling a vowel ?

2. One is asked to say a two digit number.

a) How many two digit numbers are there ?

b) What is the probability of getting a number in which one of the digits is 1?

c) What is the probability of getting a number in which the product of the digits is a prime number ?

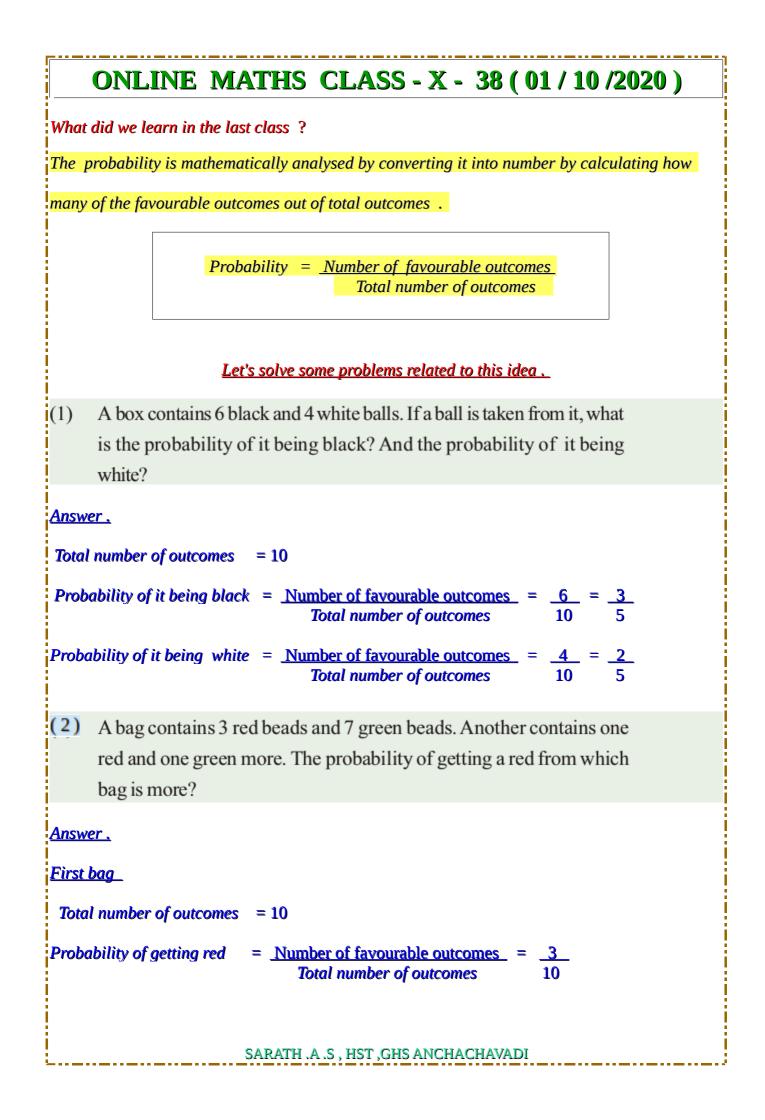
3. There are 10 red and 7 blue balls in a basket . A ball is taken from it

a) What is the probability of getting a red ball ?

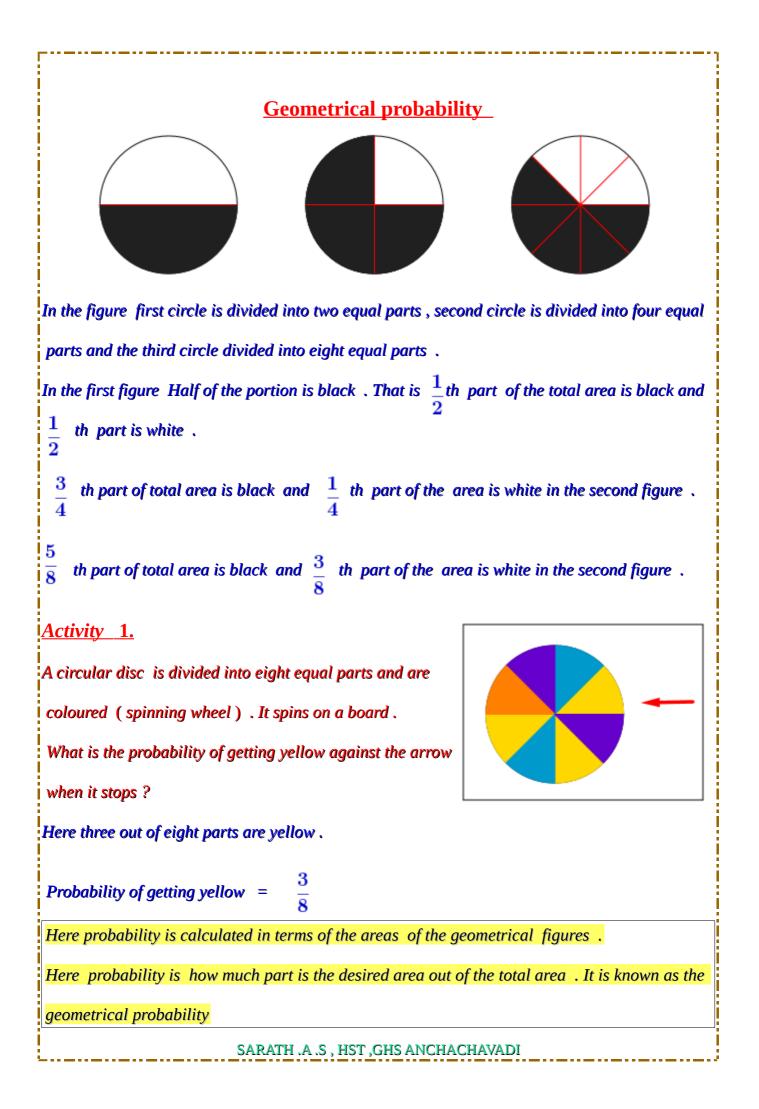
b) What is the probability of getting a blue ball ?

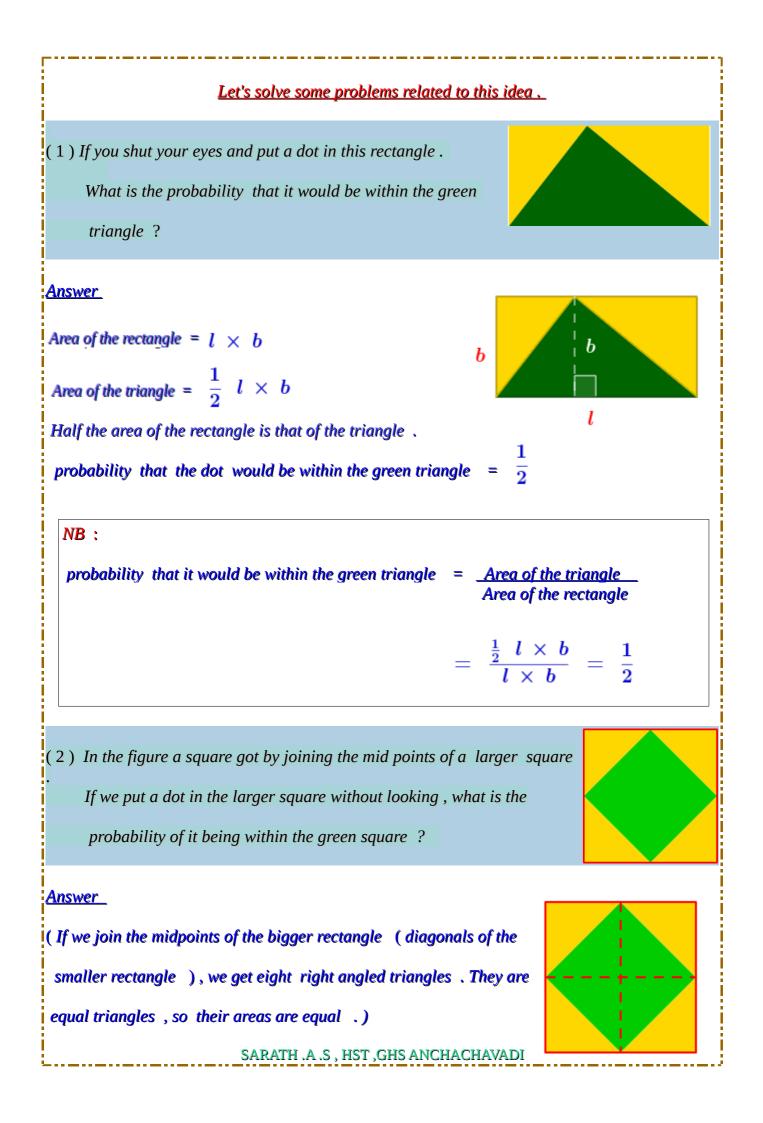
c) What is the sum of the probabilities of getting a red ball and not getting a red ball ?

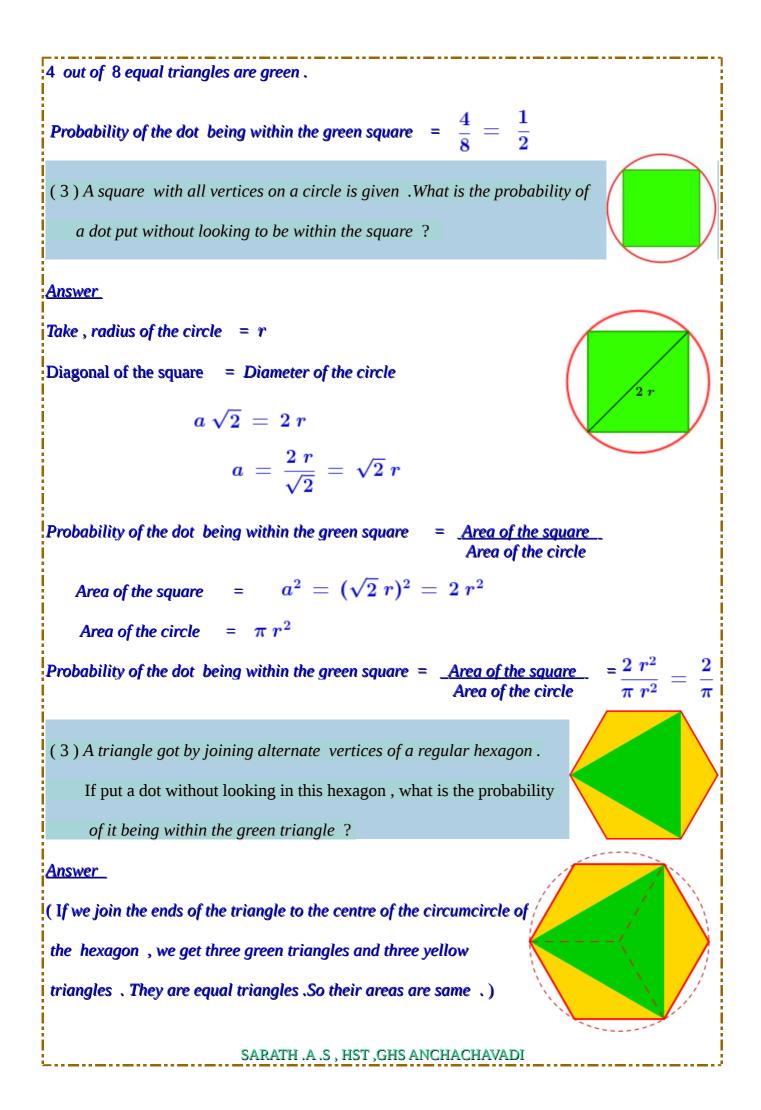
 $d \; ) \;$  If three more blue balls are added to the basket \; and one ball is taken \; , what \; is the


probability of getting a red ball ?

4. One is asked to say a three digit number .


a) How many three digit numbers are there ?


b) What is the probability of getting a number whose digits are same ?


c) What is the probability of getting a number in which all digits are different?



Second bag Total number of outcomes = 12Probability of getting red= Number of favourable outcomes= 4= 1Total number of outcomes123 1  $\frac{1}{3}$  is larger than $\frac{5}{10}$  $\frac{3}{10}$  $\frac{3}{10}$  $\frac{3}{10}$  $\frac{1}{3}$  $3 \times 3$  $1 \times 10$ 9 < 10 ==>  $\frac{3}{10}$  <</td> (3). Numbers 1 to 50 are written on slips of paper and put in a box. A slip is drawn from it, but before doing so, one must make a guess about the number, either prime number or a multiple of 5. Which is a better quess? Why? Answer. Total number of outcomes = 50Prime numbers = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47Number of favourable outcomes = 15 Probability of getting a prime number = <u>Number of favourable outcomes</u> = <u>15</u> = Total number of outcomes Multiples of five = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50*Number of favourable outcomes* = 10 Probability of getting a multiple of five = <u>Number of favourable outcomes</u> = <u>10</u> = <u>1</u> Total number of outcomes **50** is larger than  $\frac{1}{5}$ The guess of prime number is better .







3 out of 6 triangles are green  $\therefore$ Probability of the dot being within the green square  $= \frac{3}{6}$ <u>More activities</u>

 $rac{3}{6}=rac{1}{2}$ 

(1). Consider a circle exactly fitting inside the square . If we put a dot without looking in this square , what is the probability of it being within the circle ?.

(2). A regular hexagon formed by two overlapping equilateral triangles.

If we put a dot without looking in this figure , what is the probability

of it being within the hexagon ?

### ONLINE MATHS CLASS - X - 38 ( 01 / 10 /2020 ) WORK SHEET

1. There are two semicircles in the figure . O is the centre of the larger semicircle . Put a dot in this figure without looking .

a ) If the radius of the smaller semi circle is  $\ r$  , What is the

radius of the larger semicircle ?

b) What is the probability that the dot would be within the smaller semicircle ?

c) What is the probability that the dot would be outside the smaller semicircle ?

In the figure , an equilateral triangle is drawn inside a circle .
Put a dot in this figure without looking .

a ) If the radius of the circle is r , What is the length of the side of the triangle ?

b) What is the probability that the dot would be within the triangle?

c) What is the probability that the dot would be outside the triangle?

3 . Two rectangles are joined in the figure . If we put a dot in the figure without looking , the probability

of it would be within the rectangle AMND is  $\frac{4}{9}$ 

a) What is the probability that the dot would be within the rectangle MBCN?

b) If  $AM = 8 \ cm$  and  $MN = 5 \ cm$ , what is the area of the rectangle ABCD ?

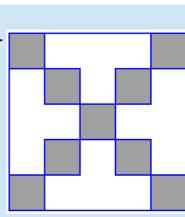
c) If the area of the rectangle AMND is y and the probability of the dot would be within this

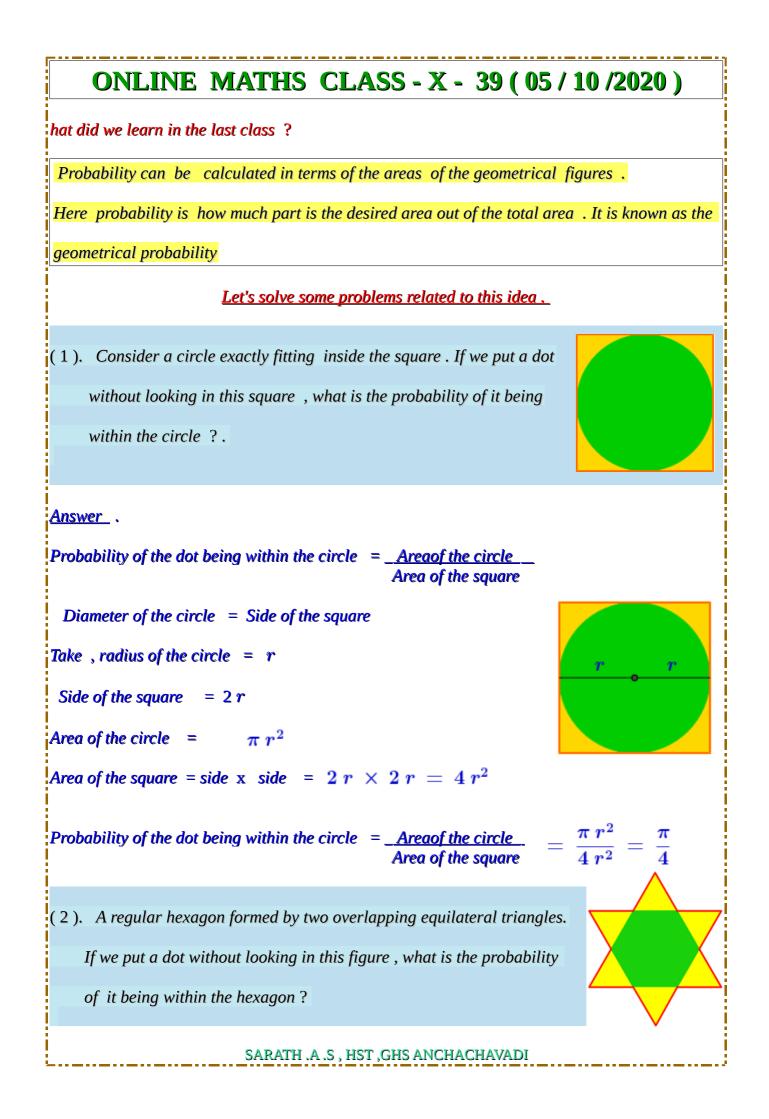
A

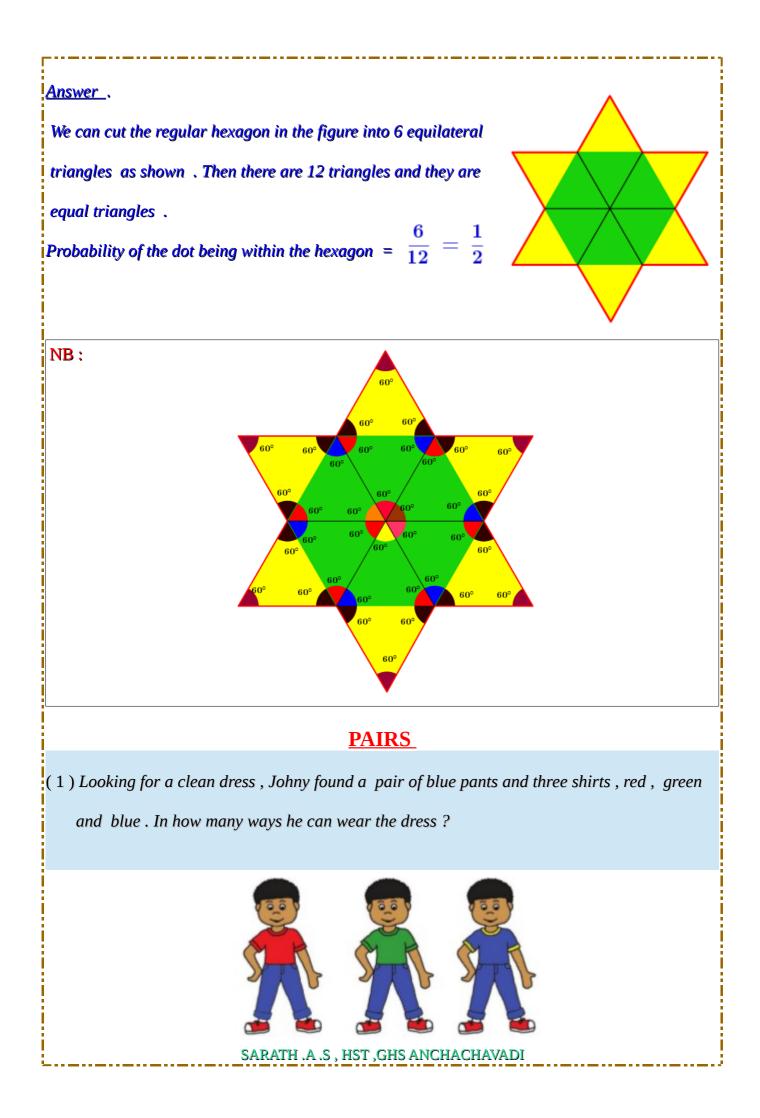
M

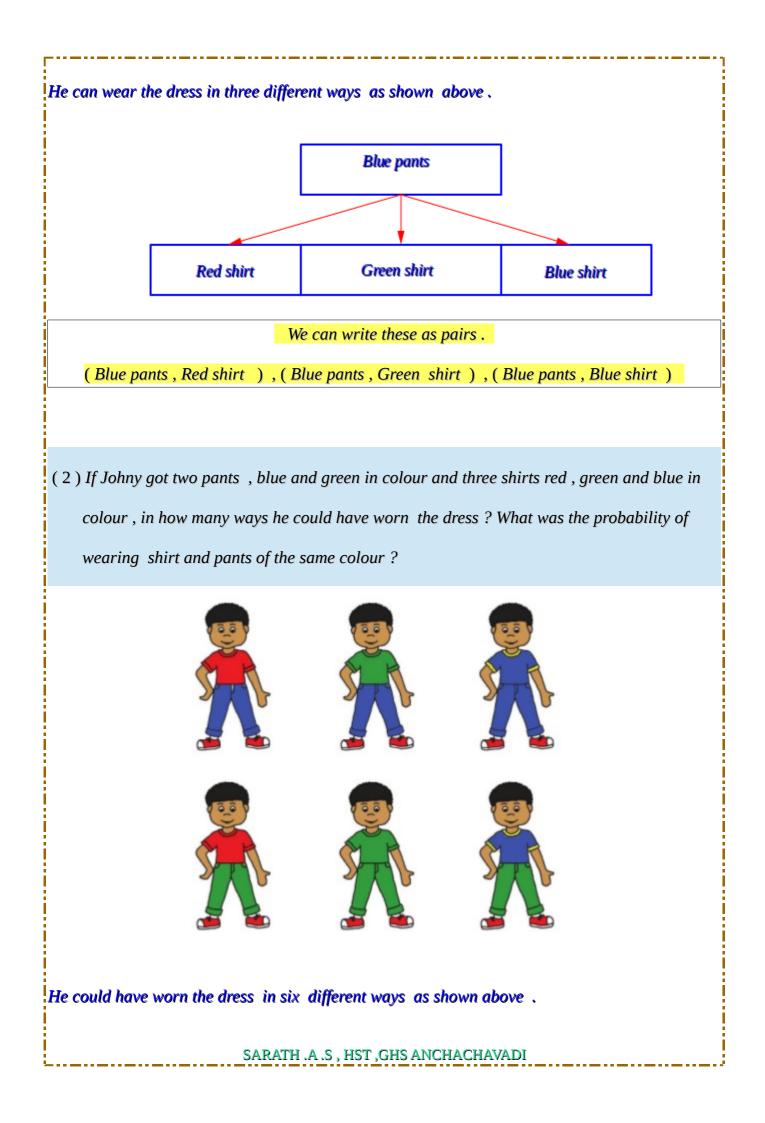
C

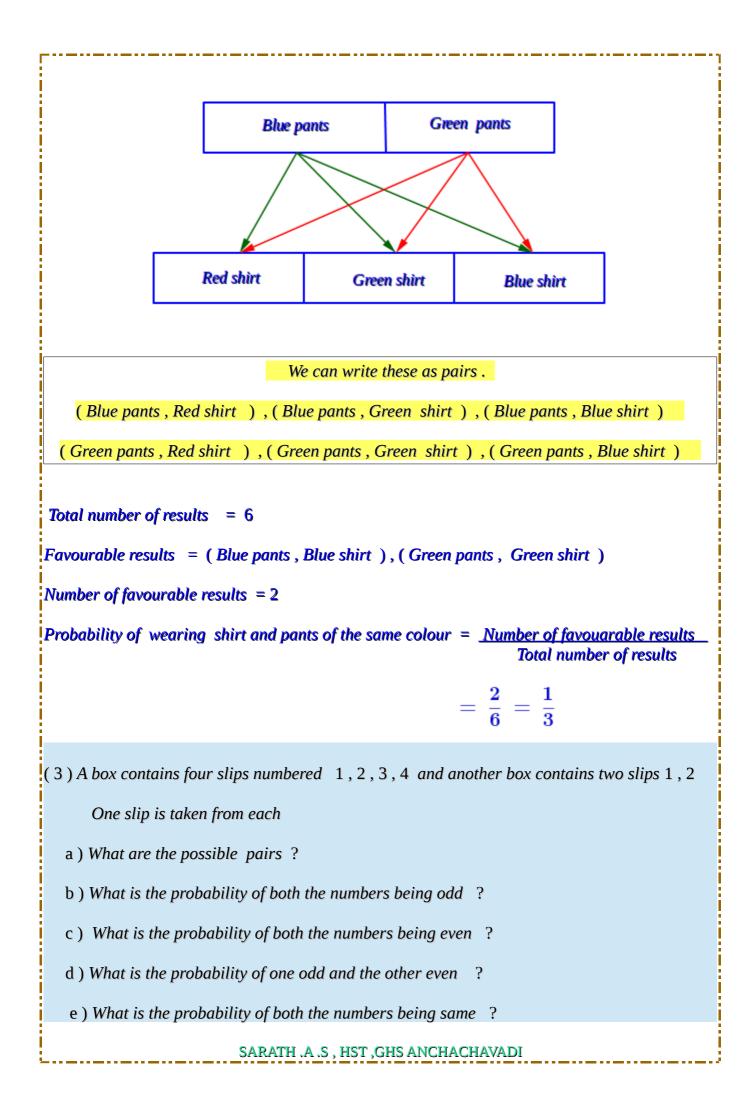
 $\boldsymbol{B}$ 


rectangle is  $\frac{y}{y}$ , what is the area of the rectangle MBCN ?


4. In the figure , an equilateral triangle is drawn inside a regular hexagon . Put a dot in this figure without looking .


- a) What is the maximum number of triangles of the given size can be cut from the hexagon ?
- b ) What is the probability that the dot would be within the triangle ?
- c) What is the probability that the dot would be outside the triangle ?
- 5 . In the figure , small equal squares are drawn inside a square . Put a dot in this figure without looking .
- a) What is the maximum number of small squares of the given size can be cut from the larger square ?


b )What is the probability that the dot would be within the shaded portion ?


c) What is the probability that the dot would be outside the shaded portion?











Answer . a) (1,1), (1,2) (2,1), (2,2) (3,1), (3,2) (4,1), (4,2)Total number of results = 8 b) Favourable results = (1,1), (3,1)

Probability of both the numbers being odd = <u>Number of favouarable results</u> Total number of results

$$=\frac{2}{8}=\frac{1}{4}$$

c) Favourable results = (2, 2), (4, 2)

Number of favourable results = 2

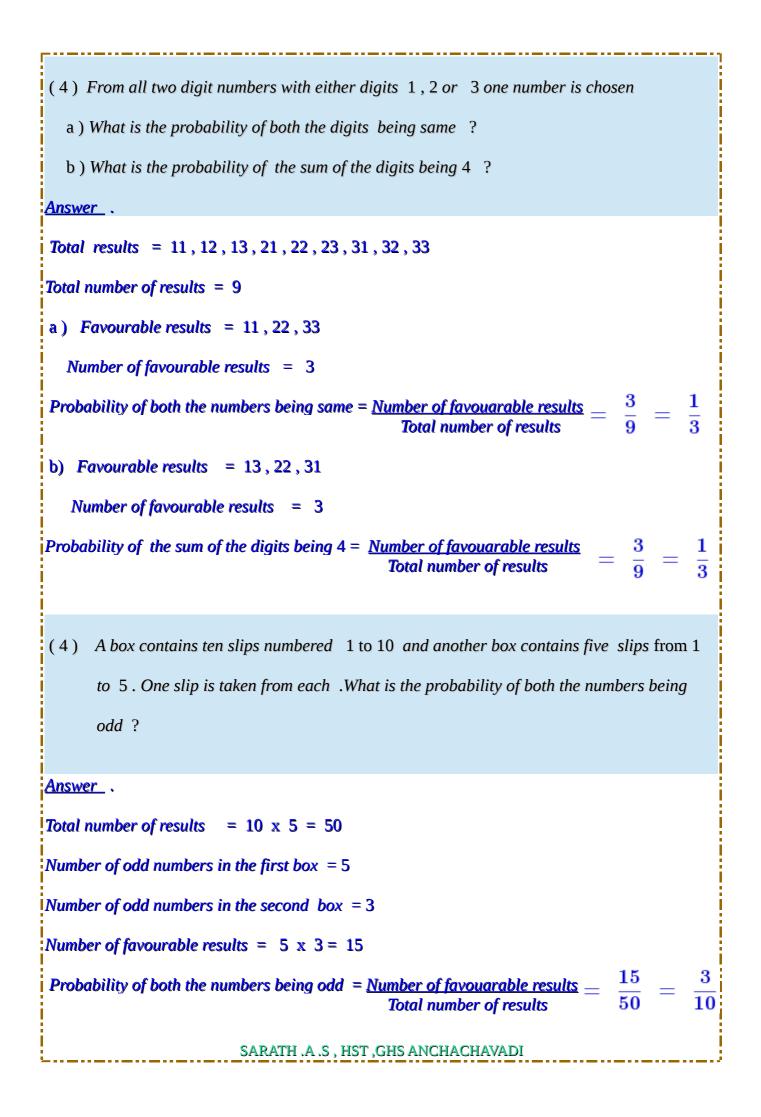
Number of favourable results = 2

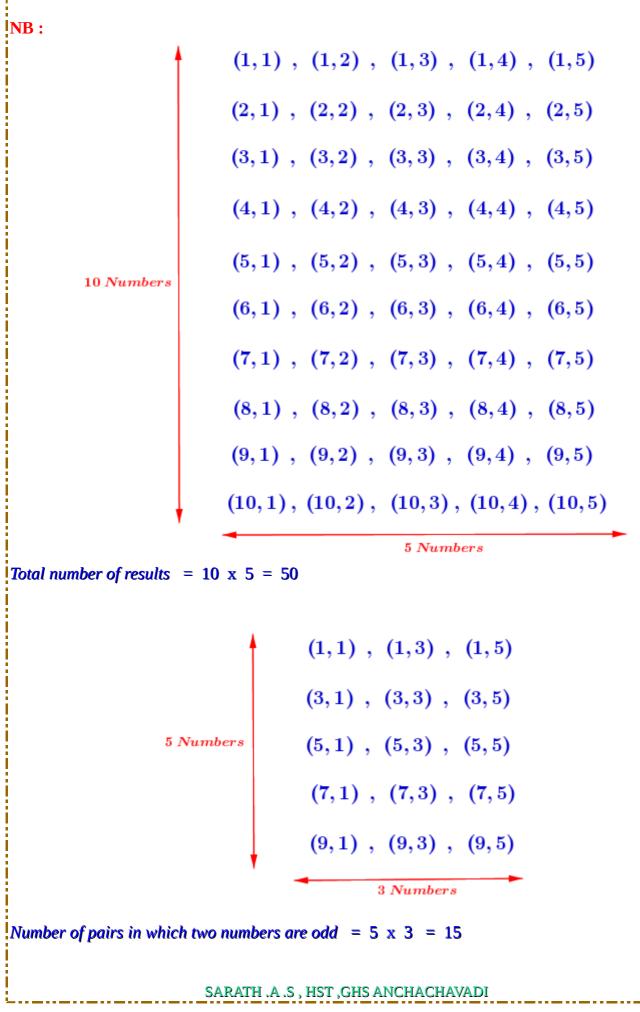
probability of both the numbers being even = <u>Number of favouarable results</u> Total number of results

$$= \frac{2}{8} = \frac{1}{4}$$

d) Favourable results = (1,2), (2,1), (3,2), (4,1)

Number of favourable results = 4


Probability of one odd and the other even = <u>Number of favouarable results</u> Total number of results


$$= \frac{4}{8} = \frac{1}{2}$$

e) Favourable results = (1, 1), (2, 2)

Number of favourable results = 2

Probability of both the numbers being same = <u>Number of favouarable results</u> =  $\frac{2}{8}$  = Total number of results





# ONLINE MATHS CLASS - X - 39 ( 05 / 10 /2020 )

#### WORK SHEET

(1) There are two boxes contain some slips numbered from 1. One slip is taken from each .

The numbers on the slips in each box is given in the table below .Complete the table.

| Box 1       | Box 2   | Possible pairs                                         | Number of<br>pairs | Product of the<br>number of slips<br>in each box |
|-------------|---------|--------------------------------------------------------|--------------------|--------------------------------------------------|
| 1,2         | 1       | (1,1),(2,1)                                            | 2                  | 2 x 1 = 2                                        |
| 1,2         | 1,2     | (1,1),(1,2)<br>(2,1),(2,2)                             | 4                  | 2 x 2 = 4                                        |
| 1,2,3       | 1,2     | <pre>(1,1),(1,2)<br/>(2,1),(2,2)<br/>(3,1),(3,2)</pre> | 6                  | 3 x 2 = 6                                        |
| 1,2,3       | 1,2,3   |                                                        |                    |                                                  |
| 1,2,3,4     | 1,2     |                                                        |                    |                                                  |
| 1,2,3,4,5   | 1,2,3   |                                                        |                    |                                                  |
| 1,2,3,4,5,6 | 1,2,3,4 |                                                        |                    |                                                  |

(3) A box contains five slips numbered 1, 2, 3, 4, 5 and another box contains three slips

1, 2, 3 One slip is taken from each

a ) What are the possible pairs ?

b ) What is the probability of both the numbers being odd ?

c) What is the probability of both the numbers being even ?

d ) What is the probability of the sum of the digits being even ?

### ONLINE MATHS CLASS - X - 40 (06 / 10 /2020)

(1) In class 10 A, there are 20 boys and 20 girls. In 10 B, there are 15 boys and 25 girls.

One student is to be selected from each class.

a ) What is the probability of both being girls ?

b) What is the probability of both being girl?

c) What is the probability of one boy and one girl?

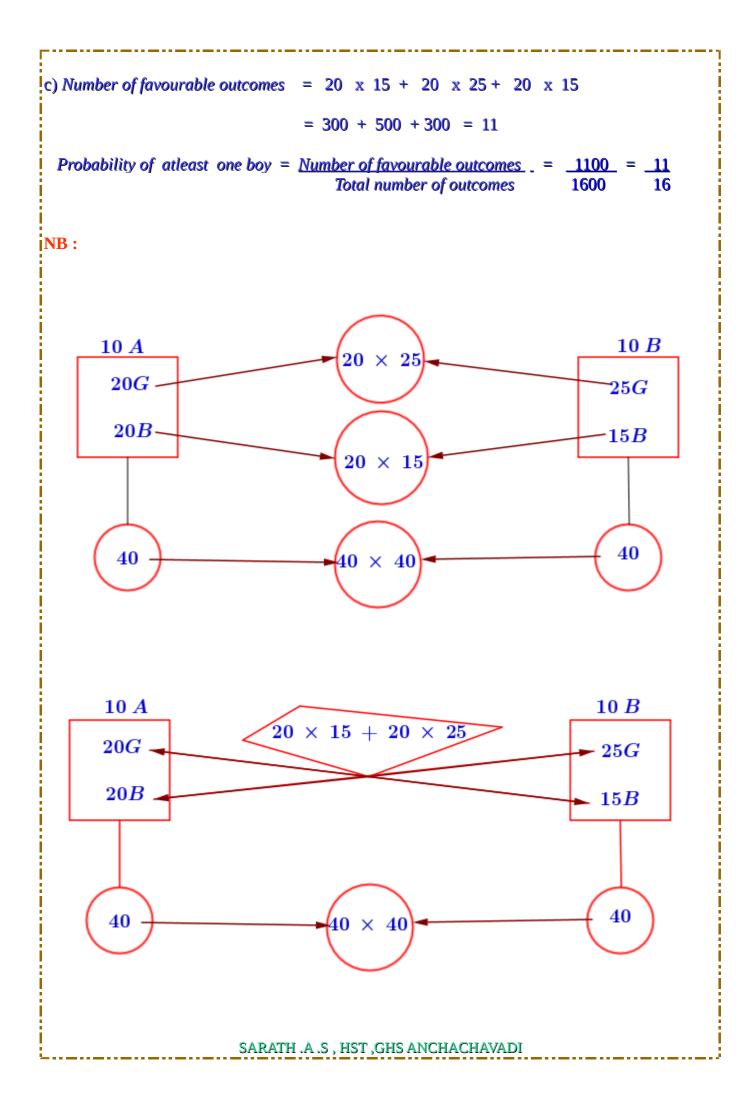
d) What is the probability of at least one boy?

#### <u>Answer .</u>

|                          | 10 A | 10 B |
|--------------------------|------|------|
| Number of boys           | 20   | 15   |
| Number of girls          | 20   | 25   |
| Total number of students | 40   | 40   |

Total number of outcomes =  $40 \times 40 = 1600$ 

a) Number of favourable outcomes = 20 x 25 = 500


Probability of both being girls = <u>Number of favourable outcomes</u> = <u>500</u> = <u>5</u> Total number of outcomes 1600 16

b) Number of favourable outcomes  $= 20 \times 15 = 300$ 

Probability of both being boys = <u>Number of favourable outcomes</u> = <u>300</u> = <u>3</u> Total number of outcomes 1600 16

c) Number of favourable outcomes =  $20 \times 25 + 20 \times 15 = 500 + 300 = 800$ 

Probability of one boy and one girl= Number of favourable outcomes= 800= 1Total number of outcomes16002



(2) Each two digit number is written on a paper slip and these are all put in a box. What is the probability that the product of the digits of a number drawn is a prime number ? What if three digit numbers are used instead ? Answer Total number of outcomes = 90 (Total number of two digit numbers) Two digit numbers in which product of the digits is prime = 12, 21, 13, 31, 15, 51, 17, 71Number of favourable outcomes = 8Probability that the product of the digits of a two digit number drawn is a prime number = <u>Number of favourable outcomes</u> Total number of outcomes  $= \frac{8}{90} = \frac{4}{45}$ Total number of outcomes = 900 (Total number of three digit numbers) Three digit numbers in which product of the digits is prime = 112, 121, 211,113, 131, 311, 115, 151, 511, 117, 171, 711 Number of favourable outcomes = 12 Probability that the product of the digits of a two digit number drawn is a prime number = <u>Number of favourable outcomes</u> Total number of outcomes <u>12</u> = 75 SARATH .A .S , HST , GHS ANCHACHAVADI

(3) One is asked to say a two digit number (i) What is the probability of both digits being same ? (ii) What is the probability of the first digit being larger ? (iii) What is the probability of the first digit being smaller ? <u>Answer</u> Total number of outcomes = 90 (Total number of two digit numbers) i) Two digit numbers in which digits are same = 11, 22, 33, 44, 55, 66, 77, 88, 99Number of favourable outcomes = 9 Probability of both digits being same = <u>Number of favourable outcomes</u> 9 = 1Total number of outcomes 90 10 ii) Two digit numbers in which the first digit being larger = 10, 20, 21, 30, 31, 32, 40,41, 42, 43, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98 Number of favourable outcomes = 45 = Number of favourable outcomes Probability of the first digit being larger Total number of outcomes 90 2 SARATH .A .S , HST , GHS ANCHACHAVADI

Two digit numbers in which the first digit being smaller = 12, 13, 14, 15, 16, 17, 18, 19, 1923, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48 49, 56, 57, 58, 59, 67, 68, 69, 78, 79, 89 Number of favourable outcomes = 36Probability of the first digit being smaller = <u>Number of favourable outcomes</u> Total number of outcomes = <u>2</u> <u> 36 </u> 90 5 (4) Two dice with faces numbered from 1 to 6 are rolled together .What are the possible sums? Which of these sums has the maximum probability? Answer. Total outcomes = (1,1) , (1,2) , (1,3) , (1,4) , (1,5) , (1,6)(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)Total number of outcomes  $= 6 \times 6 = 36$ Possible sums = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12SARATH .A .S , HST , GHS ANCHACHAVADI

|    | Pairs                                                                                                                                   | Number of pairs                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 2  | (1,1)                                                                                                                                   | 1                              |
| 3  | (1,2),(2,1)                                                                                                                             | 2                              |
| 4  | (1,3),(2,2),(3,1)                                                                                                                       | 3                              |
| 5  | (1,4),(2,3),(3,2),(4,1)                                                                                                                 | 4                              |
| 6  | (1,5),(2,4),(3,3),(4,2),(5,1)                                                                                                           | 5                              |
| 7  | (1,6),(2,5),(3,4),(4,3),(5,2),(6,1)                                                                                                     | 6                              |
| 8  | (2,6),(3,5),(4,4),(5,3),(6,2)                                                                                                           | 5                              |
| 9  | (3,6),(4,5),(5,4),(6,3)                                                                                                                 | 4                              |
| 10 | (4,6),(5,5),(6,4)                                                                                                                       | 3                              |
| 11 | (6,5),(5,6)                                                                                                                             | 2                              |
| 12 | (6,6)                                                                                                                                   | 1                              |
|    | eccurs more . So it has the maximum probability<br>getting sum " 7 " = <u>Number of favourable outcomes</u><br>Total number of outcomes | $= \frac{6}{36} = \frac{1}{6}$ |
|    |                                                                                                                                         |                                |
|    |                                                                                                                                         |                                |
|    |                                                                                                                                         |                                |
|    |                                                                                                                                         |                                |
|    |                                                                                                                                         |                                |

### ONLINE MATHS CLASS - X - 40 (06 / 10 /2020)

#### WORK SHEET

- (1) One is asked to say a two digit number.
  - a) How many two digit numbers are there ?
  - b) What is the probability of getting a multiple of 5?
  - c ) What is the probability of getting a multiple of 10 ?
  - d ) What is the probability of one of the digit being zero and the other being a prime number ?
- (2) In a basket there are 30 apples and 20 oranges .There are 25 apples and 35 oranges in another basket . A fruit is to be chosen from each basket
  - a) If each fruit from the first basket paired with a fruit from the second basket, how many possible pairs are there ?
  - b) What is the probability of both being oranges?
  - c) What is the probability of one apple and one orange?
  - d) What is the probability of at least one orange?

(3) Two dice with faces numbered from 1 to 6 are rolled together.

- a) How many possible pairs of numbers will be got ?
- b) What is the probability of both being even ?
- c ) What is the probability of both being odd ?
- d ) What is the probability of sum of the digits being even ?

(4) Consider a leap year .

a) How many days are there in a leap year ?

b) What is the probability of occurring 53 saturdays in a leap year?

c) What is the probability of occurring 53 saturdays in a non-leap year ?

(5) a) How many days are there in the month January ?

b) What is the probability of occurring 5 sundays in January ?

c) What is the probability of occurring 5 sundays in February of a leap year ?