THIRUVANANTHAPURAM EDUCATIONAL DISTRICT

W S 4.1

MATHEMATICS

STANDARD: 10

SECOND DEGREE EQUATIONS

ANSWERS

1	L	
1	L	

_			R C
Eg:	$(x-5)^2 = 900$	$x-5=\sqrt{900}=30$	x = 30+5 = 35
(a)	$(x-10)^2 = 100$	$x-10 = \sqrt{100} = \frac{10}{100}$	x = 10 + 10 = 20
(b)	$(x+1)^2 = 225$	$x+1 = \sqrt{225} = 15$	x = 15 - 1 = 14
(c)	$(x-1)^2 = 100$	$\mathbf{x} \cdot 1 = \sqrt{100} = \underline{10}$	$\mathbf{x} = \underline{10} + \underline{1} = \underline{11}$
(d)	$(x-3)^2 = 121$	x-3 = $\sqrt{121}$ = <u>11</u>	x = 11 + 3 = 14
(e)	$(x+7)^2 = 225$	$x+7 = \sqrt{225} = 15$	x = 15 - 7 = 8

2 Numbers = $x, \underline{x+8}$ $x(x+8) = \underline{105}$ $x^2 + 8x = 105$ $x^2 + 8x + 4^2 = 105 + 4^2$

 \therefore The least number added to the given product to get a perfect square = <u>16</u>

$$(x + 4)^{2} = 105 + \underline{16}$$
$$(x + 4)^{2} = \underline{121}$$
$$x + 4 = \sqrt{121}$$
$$x + 4 = \underline{11}$$
$$x = \underline{-4} + \underline{11}$$
$$x = \underline{7}$$
$$x + 8 = \underline{15}$$
$$\therefore \text{ Numbers} = \underline{7}, \underline{15}$$

3

$$x + 4 = 11$$

$$x = 4 + 11$$

$$x = 7$$

$$x + 8 = 15$$

$$\therefore \text{ Numbers} = 7, 15$$
3
Length of the smaller side = x
Length of the longer side = $x + 2$
Area = $x \times (x + 2)$

$$x \times (x + 2) = 224$$

$$x^2 + 2x = 15$$

$$x = 15 - 1 = 14$$
Length of the sides = 14, 16

Length of the sides = 14, 16

4

First term = 5

Common difference = $\underline{2}$

$$x_{n} = dn + f \cdot d$$

$$= 2n + \underline{3}$$

$$S_{n} = \frac{n}{2} [x_{1} + x_{n}]$$

$$\frac{n}{2} [5 + \underline{2n+3}] = 140$$

$$\frac{n}{2} [2n + \underline{8}] = 140$$

$$\frac{n}{2} \times 2 [n + \underline{4}] = 140$$

$$n (n + \underline{4}) = 140$$

$$n^{2} + n \times \underline{4} = 140$$

MALDISTRICS The number to be added to change it into a perfect square = 4

$$n^{2} + 4n + \underline{4} = 140 + \underline{4}$$

$$(n + \underline{2})^{2} = \underline{144}$$

$$n + \underline{2} = \sqrt{144} = 12$$

$$n = \underline{12} - \underline{2}$$

$$= \underline{10}$$

 \therefore The total number of consecutive terms added to get 140 = 10

5

One side of original square = \underline{x}

One side of new square = x + 2

Area of square = $\underline{x+2} \times \underline{x+2}$

Area of new square = 100

 $(x + \underline{2})^2 = 100$

$$x + \underline{2} = \sqrt{100}$$
$$x + \underline{2} = 10$$
$$x = \underline{10} - \underline{2}$$
$$= \underline{8}$$

HIMMANNAMAN