THIRUVANANTHAPURAM EDUCATIONAL DISTRICT

SECOND DEGREE EQUATIONS

ANSWERS

1

Eg:	$(x-5)^{2}=900$	$x-5=\sqrt{900}=30$	$x=30+5=35$
(a)	$(x-10)^{2}=100$	$x-10=\underline{\sqrt{100}}=\underline{10}$	$x=\underline{10}+\underline{10}=\underline{20}$
(b)	$(x+1)^{2}=225$	$x+1=\underline{\sqrt{225}}=\underline{15}$	$x=\underline{15}-\underline{1}=\underline{14}$
(c)	$(x-1)^{2}=100$	$x-1=\underline{\sqrt{100}}=\underline{10}$	$x=\underline{10}+\underline{1}=\underline{11}$
(d)	$(x-3)^{2}=121$	$x-3=\underline{\sqrt{121}}=\underline{11}$	$x=\underline{11}+\underline{3}=\underline{14}$
(e)	$(x+7)^{2}=225$	$x+7=\underline{\sqrt{225}}=\underline{15}$	$x=\underline{15}-\underline{7}=\underline{8}$

2

$$
\begin{aligned}
\text { Numbers } & =x, \underline{x+8} \\
x(x+8) & =\underline{105} \\
x^{2}+\underline{8 x} & =105 \\
x^{2}+8 x+\underline{4^{2}} & =105+\underline{4^{2}}
\end{aligned}
$$

\therefore The least number added to the given product to get a perfect square $=\underline{16}$

$$
\begin{aligned}
(x+4)^{2} & =105+\underline{16} \\
(x+4)^{2} & =\underline{121} \\
x+4 & =\sqrt{121} \\
x+4 & =\underline{11} \\
x & =\underline{-4}+11 \\
x & =\underline{7} \\
x+8 & =\underline{15}
\end{aligned}
$$

\therefore Numbers $=\underline{7}, \underline{15}$

3
Length of the smaller side $=x$
Length of the longer side $=\underline{x+2}$

$$
\begin{aligned}
\text { Area } & =x \times \underline{(x+2)} \\
x \times(x+2) & =224 \\
x^{2}+2 x & =224 \\
x^{2}+2 x+\underline{1} & =224+\underline{1} \\
(x+\underline{1})^{2} & =225 \\
x+\underline{1} & =\underline{15} \\
x & =\underline{15-1}=\underline{14}
\end{aligned}
$$

Length of the sides $=\underline{14}, \underline{16}$
4
First term $=\underline{5}$
Common difference $=\underline{2}$

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{n}}=\mathrm{dn}+\mathrm{f}-\mathrm{d} \\
&=2 \mathrm{n}+\underline{3} \\
& \mathrm{~S}_{\mathrm{n}}=\frac{n}{2}\left[\mathrm{x}_{1}+\mathrm{x}_{\mathrm{n}}\right] \\
& \frac{n}{2}[5+\underline{2 \mathrm{n}+3}]=140 \\
& \frac{n}{2}[2 \mathrm{n}+\underline{8}]=140 \\
& \frac{n}{2} \times 2[\mathrm{n}+\underline{4}]=140 \\
& \mathrm{n}(\mathrm{n}+\underline{4})= 140 \\
& \mathrm{n}^{2}+\mathrm{n} \times \underline{4}= 140
\end{aligned}
$$

The number to be added to change it into a perfect square $=\underline{4}$

$$
\begin{aligned}
\mathrm{n}^{2}+4 \mathrm{n}+\underline{4} & =140+\underline{4} \\
(\mathrm{n}+\underline{2})^{2} & =\underline{144} \\
\mathrm{n}+\underline{2} & =\underline{\sqrt{144}}=12 \\
\mathrm{n} & =\underline{12}-\underline{2} \\
& =\underline{10}
\end{aligned}
$$

\therefore The total number of consecutive terms added to get $140=\underline{10}$

5
One side of original square $=\underline{x}$
One side of new square $=x+\underline{2}$

$$
\text { Area of square }=\underline{x+2} \times \underline{x+2}
$$

Area of new square $=\underline{100}$

$$
(x+\underline{2})^{2}=100
$$

$$
\begin{aligned}
\mathrm{x}+\underline{2} & =\sqrt{100} \\
\mathrm{x}+\underline{2} \underline{2} & =10 \\
\mathrm{x} & =\underline{10}-\underline{2} \\
& =\underline{8}
\end{aligned}
$$

One side of the original square $=\underline{8 \mathrm{~cm}}$

