THIRUVANANTHAPURAM EDUCATIONAL DISTRICT

WS3. 2

MATHEMATICS

MATHEMATICS OF CHANCE

ANSWERS
1
Possible pairs are
$(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)$
$(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)$
$(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)$
$(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)$
$(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)$
$(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)$

Total pairs $=36$
(a) Pairs with both numbers odd
$(1,1)(1,3)(1,5)$
$(3,1)(3,3)(3,5)$
$(5,1)(5,3)(5,5)$

Total pairs with both number odd $=9$

$$
\text { Probability }=\frac{\text { Total number of favourable pairs }}{\text { Total pairs }}
$$

$$
=\frac{9}{36}=\frac{1}{4}
$$

(b) Pairs with both numbers are same are

$$
(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)
$$

Total pairs with both numbers are same $=6$

$$
\begin{gathered}
\text { Probability }=\frac{\text { Total number of favourable pairs }}{\text { Total pairs }} \\
=\frac{6}{36}=\frac{1}{6}
\end{gathered}
$$

2 Prime numbers less than 10 are $\underline{2}, \underline{3} \underline{5} \underline{7}$

Total prime numbers $=4$
Natural numbers up to 5 are 1, 2, 3, 4, 5
Total natural numbers $=5$

$$
\therefore \text { Total pairs }=4 \times 5=20
$$

Pairs with both natural numbers are prime are $(2,2)(2,3)(2,5)$
$(3,2)(3,3)(3,5)(5,2)(5,3)(5,5)(7,2)(7,3)(7,5)$
Total favourable pairs $=12$
Also favourable pairs $=4 \times 3$

$$
\begin{aligned}
\text { Probability } & =\frac{\text { Number of favourable pairs }}{\text { Total pairs }} \\
& =\frac{12}{20}=\frac{3}{5}
\end{aligned}
$$

(b) Pairs with both numbers are even are $(2,2)(2,4)$

Number of favourable pairs $=2$

$$
\text { Probability }=\frac{2}{20}=\frac{1}{10}
$$

3.

(a) Total number of students in first class $=35$

Number of boys $=20$
Number of girls $=15$
Total number of students in second class $=30$

$$
\text { Number of boys }=15
$$

Number of girls $=15$
Total pairs of students $=35 \times 30=1050$
(b)Number of pairs in which both are boys $=20 \times 15=300$

$$
\text { Probability of both being boys }=\frac{300}{1050}=\frac{2}{7}
$$

(c)Number of pairs in which both are girls $=15 \times 15=225$

$$
\text { Probability of both being girls }=\frac{225}{1050}=\frac{3}{14}
$$

(d)Number of pairs in which one is a boy

$$
\text { and the other a girl }=20 \times 15+15 \times 15=300+225
$$

$$
=525
$$

Probability of one being boy and the other a girl $=\frac{525}{1050}=\frac{1}{2}$

4 Total number ways of taking a pair of mangoes

$$
\text { from each basket }=70 \times 50=3500 \text { ways }
$$

(a) Number of ripe mangoes in first basket $=70-40=30$

Number of ripe mangoes in second basket $=50-20=30$

Total pairs of ripe mangoes from each basket $=30 \times 30=900$

Probability of getting both being ripe $=\frac{\text { Total pairs of ripe mangoes }}{\text { Total pairs of mangoes }}$

$$
=\frac{900}{3500}=\frac{9}{35}
$$

(b) Number of unripe mangoes from first basket $=40$

Number of unripe mangoes from second basket $=20$
Total pairs of unripe mangoes from each basket $=40 \times 20=800$
Probability of getting both being unripe $=\frac{\text { Total pairs of unripe mangoes }}{\text { Total pairs of mangoes }}$

$$
=\frac{800}{3500}=\frac{8}{35}
$$

(c) At least one ripe means (i) first one ripe and other unripe (ii) both ripe (iii) first one unripe and other ripe.
\therefore Total pairs of
at least one ripe mango $=(30 \times 20)+(30 \times 30)+(40 \times 30)$

$$
=600+900+1200=2700
$$

Probability of getting at least one ripe mango

$$
\begin{aligned}
& =\frac{\text { Total pairs of at least one ripe mango }}{\text { Total pairs of mangoes }} \\
& =\frac{2700}{3500}=\frac{27}{35}
\end{aligned}
$$

