

Dears...
Here the angles at the points on the circle are not 90° Isn't it? the chord
is not a
diameter"

Any chord which is not a diameter splits the circle into unequal parts. The angle got by joining any point on the larger part to the ends of the chord is half the angle got by joining the centre of the circle to these ends. The angle got by joining any point on the smaller part to the ends of the chord is half the angle at the centre subtracted from 180°.

The angle made by any arc of a circle on the alternate are is half the angle made at the centre.

Dears
You know....here
At the centre,
$x^{0}+y^{\circ}=360^{\circ}$

$1 \quad 1$
 $\overline{2} x+\frac{1}{2} y=180^{\circ}$

All angles made by an arc on the alternate arc are equal; and a pair of angles on an arc and its alternate are supplementary

Here, Opposite angles of these quadrilaterals are always supplimentary

Devapriya V Prabhu, TDHS, Mattancherry

TWO CHORDS

$$
\angle A=\angle D \text { and } \angle C=\angle B
$$

So $\triangle P A C$ and $\triangle P B D$ are similar.

Then $\frac{P A}{P D}=\frac{P C}{P B}$
And $P A X P B=P C X P D$

If two chords of a circle intersect within the circle, then the products of the parts of the two chords are equal.

CONSTRUCTION

Idea: $P A X P B=P C X P D$

3. Draw a rectangle of width 6 cm and height 2 cm . Draw another rectangle of the same area with width 7 cm .

*Draw the rectangle with the width 6 cm and height 2 cm .

* Extend 6 cm to 2 cm more to get $\mathbf{8 c m}$ as base. $(\mathrm{AB}=8 \mathrm{~cm})$
* Extend the height of the rectangle to 5 cm more to get total 7 cm as the new required length.
* Join AC and BC to get $\triangle \mathrm{ABC}$
* Draw the perpendicular bisectors of any two sides of $\triangle \mathrm{ABC}$ to get the Circum centre.
* Draw circumcircle of $\triangle \mathrm{ABC}$.
* Now $\mathrm{PC}=7 \mathrm{~cm}$ is the length of the new rectangle and $P D$ is its breadth.
* Take these lengths on compass to Complete the new rectangle PEFC.
* Then areas of both rectangles are Equal since $P A X P B=P C X P D$

If two chords of a circle intersect within a circle, then the rectangles formed by the parts of the same chord have equal area.

TWO CHORDS

The perpendicular from the centre to a chord bisects the chord.

$$
\begin{gathered}
\therefore P C=P D \\
P A X P B=P C X P D \\
\therefore P A X P B=P C^{2}
\end{gathered}
$$

The area of the rectangle formed of parts into which a diameter of a circle is cut by a perpendicular chord is equal to the area of the square formed by half the chord.

CONSTRUCTION

Idea: $P A X P B=P C^{2}$
4. Draw a rectangle of width 5 centimetres and height 3 centimetres. Draw a square of the same area.

* Draw the rectangle with length 5 cm and breadth 3 cm .
* Extend AP to 3 cm more to get $\mathrm{AB}=8 \mathrm{~cm}$.
* Draw a semicircle with AB as the Diameter.
* Extend the breadth to meet the Semicircle at C.
* PC is the side of the required Square.
* Complete the square with PC as one Side.
* PDEC is the required square with Area 15 sq.cm using the idea $P A X P B=P C^{2}$

CONSTRUCTION

Idea: $P A X P B=P C^{2}$

5. Draw a square of area 6 square centimetres (Without drawing the rectangle).

* Draw a line $A B=5 \mathrm{~cm}$ and mark a Point $P, 3 \mathrm{~cm}$ away from A.
* Draw a semicircle with AB as Diameter.
* Draw a perpendicular to AB at P.
* Let it meet the semicircle at C
* $P C=\sqrt{ } 6$ is the side of the new Square and area 6 sq.cm.
* The quadrilateral PCDE is the Required Square.

TWO CHORDS

In the picture, chords AB and CD of the circle are extended to meet at P. Then $P A \times P B=P C \times P D$.


```
* Consider \(\triangle\) PBD and \(\triangle P A C\)
* \(\angle \mathrm{PAC}=\angle \mathrm{PDB}\) and
    \(\angle \mathrm{PCA}=\angle \mathrm{PBD}\)
    (any outer angle of a cyclic
    quadrilateral is equal to the
    Inner angle at the opposite
    vertex)
* \(\angle \mathrm{P}\) is common to both triangles
* So \(\triangle\) PBD and \(\triangle P A C\) are similar.
*
    \(\frac{P B}{P D}=\frac{P C}{P A}\)
* \(\mathbb{P A X} \mathbb{P B}=P C \mathbf{X P D}\)
```

