

If two chords of a circle intersect within a circle, then the rectangles formed by the parts of the same chord have equal area.

TWO CHORDS

The perpendicular from the centre to a chord bisects the chord.

∴ PC = PD PA X PB = PC X PD ∴ PA X PB = PC²

The area of the rectangle formed of parts into which a diameter of a circle is cut by a perpendicular chord is equal to the area of the square formed by half the chord.

CONSTRUCTION

Idea: $PA X PB = PC^2$

4. Draw a rectangle of width 5 centimetres and height 3 centimetres. Draw a square of the same area.

- * Draw the rectangle with length 5cm and breadth 3cm.
- * Extend AP to 3cm more to get AB = 8cm.
- * Draw a semicircle with AB as the Diameter.
- * Extend the breadth to meet the Semicircle at C.
- * PC is the side of the required Square.
- * Complete the square with PC as one Side.
- * PDEC is the required square with Area 15 sq.cm using the idea

 $\mathbf{PA} \mathbf{X} \mathbf{PB} = \mathbf{PC}^2$

Devapriya V Prabhu, TDHS, Mattancherry

CONSTRUCTION

Idea: **PA X PB = PC**²

5. Draw a square of area 6 square centimetres (Without drawing the rectangle).

- * Draw a line AB=5 cm and mark a Point P, 3cm away from A.
- * Draw a semicircle with AB as **Diameter.**
- * Draw a perpendicular to AB at P.
- * Let it meet the semicircle at C
- * PC= $\sqrt{6}$ is the side of the new Square and area 6 sq.cm.
- * The quadrilateral PCDE is the **Required Square.**

TWO CHORDS

In the picture, chords AB and CD of the circle are extended to meet at P. Then $\mathbf{PA} \times \mathbf{PB} = \mathbf{PC} \times \mathbf{PD}$.

- * Consider ΔPBD and ΔPAC * $\angle PAC = \angle PDB$ and ∠PCA=∠PBD (any outer angle of a cyclic quadrilateral is equal to the
 - Inner angle at the opposite vertex)
- * $\angle P$ is common to both triangles
- So $\triangle PBD$ and $\triangle PAC$ are similar.

$$\frac{PB}{PD} = \frac{PC}{PA}$$

Devapriya V Prabhu, TDHS, Mattancherry