ONLINE MATHS CLASS - X - 37 (29 / 09 /2020)

WORKSHEET

1. One is asked to say a letter in the English alphabet .
a) How many letters are there in English alphabet?
b) What is the probability of telling a vowel ?
c) What is the probability of telling a consonant ?
d) What is the sum of the probabilities of telling a vowel and not telling a vowel ?
2. One is asked to say a two digit number .
a) How many two digit numbers are there ?
b) What is the probability of getting a number in which one of the digits is 1 ?
c) What is the probability of getting a number in which the product of the digits is a prime number ?
3. There are 10 red and 7 blue balls in a basket. A ball is taken from it
a) What is the probability of getting a red ball ?
b) What is the probability of getting a blue ball ?
c) What is the sum of the probabilities of getting a red ball and not getting a red ball ?
d) If three more blue balls are added to the basket and one ball is taken, what is the probability of getting a red ball ?
4. One is asked to say a three digit number .
a) How many three digit numbers are there ?
b) What is the probability of getting a number whose digits are same ?
c) What is the probability of getting a number in which all digits are different ?

ONLINE MATHS CLASS - X - 38 ($01 / 10 / 2020$)

WORRK SHEET

1. There are two semicircles in the figure.O is the centre of the larger semicircle . Put a dot in this figure without looking .
a) If the radius of the smaller semi circle is r, What is the
 radius of the larger semicircle?
b) What is the probability that the dot would be within the smaller semicircle
c) What is the probability that the dot would be outside the smaller semicircle ?
2. In the figure, an equilateral triangle is drawn inside a circle . Put a dot in this figure without looking .
a) If the radius of the circle is r, What is the length of the side of the triangle ?

b) What is the probability that the dot would be within the triangle?
c) What is the probability that the dot would be outside the triangle?
3. Two rectangles are joined in the figure. If we put a dot in the figure without looking, the probability of it would be within the rectangle AMND is $\frac{4}{9}$

a) What is the probability that the dot would be within the rectangle MBCN ?
b) If $A M=8 \mathrm{~cm}$ and $M N=5 \mathrm{~cm}$, what is the area of the rectangle $A B C D$?
c) If the area of the rectangle $A M N D$ is y and the probability of the dot would be within this rectangle is $\frac{y}{x}$, what is the area of the rectangle MBCN ?
4. In the figure, an equilateral triangle is drawn inside a regular hexagon . Put a dot in this figure without looking .
a) What is the maximum number of triangles of the given size can be cut from the hexagon ?
b) What is the probability that the dot would be within the triangle ?

c) What is the probability that the dot would be outside the triangle ?
5. In the figure, small equal squares are drawn inside a square . Put a dot in this figure without looking .
a) What is the maximum number of small squares of the given size can be cut from the larger square ?
b)What is the probability that the dot would be within the shaded portion ?
c) What is the probability that the dot would be outside the shaded portion ?

ONLINE MATHS CLASS - X - 38 ($01 / 10 / 2020$)

What did we learn in the last class ?
The probability is mathematically analysed by converting it into number by calculating how many of the favourable outcomes out of total outcomes .

$$
\text { Probability }=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}
$$

Let's solve some problems related to this idea.

(1) A box contains 6 black and 4 white balls. If a ball is taken from it, what is the probability of it being black? And the probability of it being white?

Answer.
Total number of outcomes $=10$
Probability of it being black $=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}=\frac{6}{10}=\frac{3}{5}$
Probability of it being white $=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}=\frac{4}{10}=\frac{2}{5}$
(2) A bag contains 3 red beads and 7 green beads. Another contains one red and one green more. The probability of getting a red from which bag is more?

Answer.
First bag
Total number of outcomes $=10$
Probability of getting red $=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}=\frac{3}{10}$

Second bag
Total number of outcomes $=12$

Probability of getting red $=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}=\frac{4}{12}=\frac{1}{3}$
$\frac{1}{3}$ is larger than $\frac{3}{10}$

The probability of getting a red from the second bag is more .

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3} \\
& 3 \times 3 \quad 1 \times 10
\end{aligned}
$$

$$
9<10=\Rightarrow \frac{3}{10}<\frac{1}{3}
$$

((3). Numbers 1 to 50 are written on slips of paper and put in a box. A slip is drawn from it, but before doing so , one must make a guess about the number, either prime number or a multiple of 5 . Which is a better guess ? Why?

Answer.
Total number of outcomes $=50$
Prime numbers $=2,3,5,7,11,13,17,19,23,29,31,37,41,43,47$
Number of favourable outcomes = 15
Probability of getting a prime number $=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}=\frac{15}{50}=\frac{3}{10}$
Multiples of five $\equiv 5,10,15,20,25,30,35,40,45,50$
Number of favourable outcomes $=10$
Probability of getting a multiple of five $=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}=\frac{10}{50}=\frac{1}{5}$ $\frac{3}{10}$ is larger than $\frac{1}{5}$

The guess of prime number is better .

Geometrical probability

In the figure first circle is divided into two equal parts, second circle is divided into four equal parts and the third circle divided into eight equal parts .

In the first figure Half of the portion is black. That is $\frac{1}{2}$ th part of the total area is black and
$\frac{1}{2}$ th part is white .
$\frac{3}{4}$ th part of total area is black and $\frac{1}{4}$ th part of the area is white in the second figure.
$\frac{5}{8}$ th part of total area is black and $\frac{3}{8}$ th part of the area is white in the second figure

Activity 1.

|A circular disc is divided into eight equal parts and are coloured (spinning wheel). It spins on a board .

What is the probability of getting yellow against the arrow when it stops?

Here three out of eight parts are yellow .

Probability of getting yellow $=\frac{3}{8}$
Here probability is calculated in terms of the areas of the geometrical figures .
Here probability is how much part is the desired area out of the total area. It is known as the geometrical probability
(1) If you shut your eyes and put a dot in this rectangle.

What is the probability that it would be within the green triangle ?

Answer
Area of the rectangle $=l \times b$
Area of the triangle $=\frac{1}{2} l \times b$

l
Half the area of the rectangle is that of the triangle
probability that the dot would be within the green triangle $=\frac{1}{2}$
$N B:$
probability that it would be within the green triangle $=\frac{\text { Area of the triangle }}{\text { Area of the rectangle }}$

$$
=\frac{\frac{1}{2} l \times b}{l \times b}=\frac{1}{2}
$$

(2) In the figure a square got by joining the mid points of a larger square If we put a dot in the larger square without looking, what is the probability of it being within the green square ?

Answer
(If we join the midpoints of the bigger rectangle (diagonals of the smaller rectangle), we get eight right angled triangles. They are equal triangles , so their areas are equal .)

14 out of 8 equal triangles are green.

Probability of the dot being within the green square $=\frac{4}{8}=\frac{1}{2}$
(3) A square with all vertices on a circle is given .What is the probability of a dot put without looking to be within the square ?

Answer
Take, radius of the circle $=r$
Diagonal of the square $=$ Diameter of the circle

$$
\begin{aligned}
a \sqrt{2} & =2 r \\
a & =\frac{2 r}{\sqrt{2}}=\sqrt{2} r
\end{aligned}
$$

Probability of the dot being within the green square $\equiv \frac{\text { Area of the square }}{\text { Area of the circle }}$
Area of the square $=a^{2}=(\sqrt{2} r)^{2}=2 r^{2}$
Area of the circle $=\pi r^{2}$
Probability of the dot being within the green square $=\frac{\text { Area of the square }}{\text { Area of the circle }}=\frac{2 r^{2}}{\pi r^{2}}=\frac{2}{\pi}$
(3) A triangle got by joining alternate vertices of a regular hexagon.
If put a dot without looking in this hexagon , what is the probability of it being within the green triangle ?

Answer
(I If we join the ends of the triangle to the centre of the circumcircle of the hexagon, we get three green triangles and three yellow triangles . They are equal triangles .So their areas are same .)

3 out of 6 triangles are green .

Probability of the dot being within the green square $=\frac{3}{6}=\frac{1}{2}$

More activities

(1). Consider a circle exactly fitting inside the square. If we put a dot without looking in this square , what is the probability of it being within the circle ? .

(2). A regular hexagon formed by two overlapping equilateral triangles. If we put a dot without looking in this figure, what is the probability of it being within the hexagon ?

ONLINE MATHS CLASS - X - 39 ($05 / 10 / 2020$)

What did we learn in the last class ?

Probability can be calculated in terms of the areas of the geometrical figures .
Here probability is how much part is the desired area out of the total area. It is known as the geometrical probability

Let's solve some problems related to this idea.

(1). Consider a circle exactly fitting inside the square. If we put a dot without looking in this square , what is the probability of it being within the circle?.

Answer.

Probability of the dot being within the circle $=-\frac{\text { Areaof the circle }}{\text { Area of the square }}$
Diameter of the circle $=$ Side of the square
Take, radius of the circle $=r$
Side of the square $=2 r$
Area of the circle $=\pi r^{2}$

Area of the square $=$ side x side $=2 r \times 2 r=4 r^{2}$

Probability of the dot being within the circle $=\frac{\text { Areaof the circle }}{\text { Area of the square }}=\frac{\pi r^{2}}{4 r^{2}}=\frac{\pi}{4}$
(2). A regular hexagon formed by two overlapping equilateral triangles.
If we put a dot without looking in this figure, what is the probability of it being within the hexagon ?

Answer.

We can cut the regular hexagon in the figure into 6 equilateral
triangles as shown. Then there are 12 triangles and they are equal triangles
Probability of the dot being within the hexagon $=\frac{6}{12}=\frac{1}{2}$

NB:

PAIRS

(1) Looking for a clean dress, Johny found a pair of blue pants and three shirts, red, green and blue. In how many ways he can wear the dress ?

He can wear the dress in three different ways as shown above.

We can write these as pairs .
(Blue pants , Red shirt) , (Blue pants , Green shirt) , (Blue pants , Blue shirt)
(2) If Johny got two pants, blue and green in colour and three shirts red, green and blue in colour , in how many ways he could have worn the dress ? What was the probability of wearing shirt and pants of the same colour ?

He could have worn the dress in six different ways as shown above .

We can write these as pairs .
(Blue pants , Red shirt) , (Blue pants, Green shirt), (Blue pants , Blue shirt)
(Green pants, Red shirt) , (Green pants , Green shirt) , (Green pants , Blue shirt)

Total number of results $=6$
IFavourable results = (Blue pants, Blue shirt), (Green pants, Green shirt)
Number of favourable results $=2$
Probability of wearing shirt and pants of the same colour \equiv Number of favouarable results Total number of results

$$
=\frac{2}{6}=\frac{1}{3}
$$

(3) A box contains four slips numbered 1,2,3,4 and another box contains two slips 1, 2 One slip is taken from each
a) What are the possible pairs ?
b) What is the probability of both the numbers being odd ?
c) What is the probability of both the numbers being even ?
d) What is the probability of one odd and the other even ?
e) What is the probability of both the numbers being same ?

Answer .
'a) (1,1), (1,2)
$(2,1),(2,2)$
$(3,1),(3,2)$
$(4,1),(4,2)$
Total number of results $=8$
b) Favourable results $=(1,1),(3,1)$

Number of favourable results $=2$
Probability of both the numbers being odd $=\quad$ Number of favouarable results Total number of results

$$
=\frac{2}{8}=\frac{1}{4}
$$

c) Favourable results $=(2,2),(4,2)$

Number of favourable results $=2$
probability of both the numbers being even $=$ $\frac{\text { Number of favouarable results }}{\text { Total number of results }}$

$$
=\frac{2}{8}=\frac{1}{4}
$$

d) Favourable results $=(1,2),(2,1),(3,2),(4,1)$

Number of favourable results $\equiv 4$
Probability of one odd and the other even = Number of favouarable results Total number of results

$$
=\frac{4}{8}=\frac{1}{2}
$$

e) Favourable results $=(1,1),(2,2)$

Number of favourable results $=2$
Probability of both the numbers being same $=\frac{\text { Number of favouarable results }}{\text { Total number of results }}=\frac{2}{8}=\frac{1}{4}$
(4) From all two digit numbers with either digits 1,2 or 3 one number is chosen
a) What is the probability of both the digits being same ?
b) What is the probability of the sum of the digits being 4 ?

Answer

Total results $=11,12,13,21,22,23,31,32,33$
Total number of results $=9$
a) Favourable results $=11,22,33$

Number of favourable results $=3$
Probability of both the numbers being same $=\frac{\text { Number of favouarable results }}{\text { Total number of results }}=\frac{3}{9}=\frac{1}{3}$
b) Favourable results $=13,22,31$

Number of favourable results $=3$
Probability of the sum of the digits being $4=\frac{\text { Number of favouarable results }}{\text { Total number of results }}=\frac{3}{9}=\frac{1}{3}$
(4) A box contains ten slips numbered 1 to 10 and another box contains five slips from 1 to 5 . One slip is taken from each .What is the probability of both the numbers being odd ?

Answer.
Total number of results $=10 \times 5=50$
Number of odd numbers in the first box $=5$
Number of odd numbers in the second box $=3$
Number of favourable results $=5 \times 3=15$
Probability of both the numbers being odd $=\frac{\text { Number of favouarable results }}{\text { Total number of results }}=\frac{15}{50}=\frac{3}{10}$

INB :

Total number of results $=10 \times 5=50$

5 Numbers | $(1,1),(1,3),(1,5)$ |
| :--- |
| $(3,1),(3,3),(3,5)$ |
| $(5,1),(5,3),(5,5)$ |
| $(7,1),(7,3),(7,5)$ |
| $(9,1),(9,3),(9,5)$ |
| Numbers |

Number of pairs in which two numbers are odd $=5 \times 3=15$

ONLINE MATHS CLASS - X - 39 (05 / $10 / 2020$)

WORK SHEET

(1) There are two boxes contain some slips numbered from 1 .One slip is taken from each .

The numbers on the slips in each box is given in the table below .Complete the table.

Box 1	Box 2	Possible pairs	_Number of pairs	Product of the number of slips in each box
1,2	1	$(1,1),(1,2)$	2	$2 \times 1=2$
1,2	1,2	$\begin{aligned} & (1,1),(1,2) \\ & (2,1),(2,2) \end{aligned}$	4	$2 \times 2=4$
1,2,3	1,2	$\begin{aligned} & (1,1),(1,2) \\ & (2,1),(2,2) \\ & (3,1),(3,2) \end{aligned}$	6	$3 \times 2=6$
1,2,3	1,2,3	----------	-----------	------------
1,2,3,4	1,2	--	---------	----------
1,2,3,4,5	1,2,3	--	---------	------------
1,2,3,4,5,6	1, 2, 3, 4	-	--------	-----------

|(3) A box contains five slips numbered 1,2,3,4,5 and another box contains three slips
$1,2,3$ One slip is taken from each
a) What are the possible pairs ?
b) What is the probability of both the numbers being odd ?
c) What is the probability of both the numbers being even ?
d) What is the probability of the sum of the digits being even ?

