THIRUVANANTHAPURAM EDUCATIONAL DISTRICT

WS 3.1

MATHEMATICS STANDARD:10

MATHEMATICS OF CHANCE (ANSWERS)

1. A box contains 10 black and 5 white balls. If a ball is taken from it what is the probability of it being black? And what is the probability of it being white?

Total number of balls in the box = $\underline{15}$
Total number of black balls in the box $=\underline{10}$
Probability of getting a black ball $=\frac{\text { number of black balls }}{\text { total number of balls }}$

$$
=\frac{10}{15}=\frac{2}{3}
$$

Total number of white balls in the box $=\underline{5}$

$$
\begin{aligned}
\text { Probability of getting a white ball } & =\frac{\text { number of white balls }}{\text { total number of balls }} \\
& =\frac{5}{15}=\frac{1}{3}
\end{aligned}
$$

2. Numbers from 1 to $\mathbf{3 0}$ are written in paper slips and put in a box. With out looking one slip is taken from it.
a) What is the probability that it is an even number?
b) What is the probability that it is a prime number?
a) Total number of paper slips $=\underline{30}$

Even numbers from 1 to 30 are 2, 4, 6,... 30
Total Number of even numbers from 1 to $30=\underline{15}$

$$
\begin{aligned}
\text { Probability of getting an even number }= & \frac{\text { Total Number of even numbers }}{\text { Total Number of paper slips }} \\
& =\frac{15}{30}=\frac{1}{2}
\end{aligned}
$$

b) The prime numbers between 1 to 30 are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29.

Total Number of prime numbers $=\underline{10}$

Probability of getting a prime number $=\frac{\text { Total Number of prime numbers }}{\text { Total Number of paper slips }}$

$$
=\frac{10}{30}=\frac{1}{3}
$$

3. There are 18 beads in a box. Some of them are white and the remaining are black. The probability of drawing a black bead from it is $\frac{1}{3}$ Then (a) How many black beads are there in the box?
(b) How many white beads are there in the box?
(a) Total number of beads $=18$

Probability of getting black bead $=\frac{1}{3}$
Probability of getting black bead $=\frac{\text { Number of black beads }}{\text { Total number of beads }}$

$$
\frac{1}{3}=\frac{\text { Number of black beads }}{18}
$$

$3 \times$ Number of black beads $=18$

$$
\text { Number of black beads }=\frac{18}{3}=\underline{6}
$$

(b) Number of white beads $=18-\underline{6}=\underline{12}$
4. In the figure below the length and breadth of the rectangle is $10 \mathbf{~ c m}$ and 8 cm respectively. If we put a dot inside the rectangle without looking into it, what is the probability that it will be inside the circle?

Length of rectangle $=\underline{10}$
Breadth of rectangle $=\underline{8}$
Area of rectangle $=\underline{10} \times \underline{8}=\underline{80}$
Radius of the circle $=\frac{8}{2}=\underline{4}$
Area of the circle $=\pi r^{2}=\pi \times 4^{2}=16 \pi$
Probability $=\frac{\text { area of circle }}{\text { area of rectangle }}=\frac{16 \pi}{80}=\frac{\pi}{5}$
5. In the figure, what is the probability of a dot we put without looking to be with in the square?

Length of one side of square $=2$

$$
\begin{aligned}
& \text { Area of the square }=4 \\
& A B=B C=2
\end{aligned}
$$

$\mathrm{AC}=\sqrt{A B^{2}+B C^{2}}=\sqrt{2^{2}+2^{2}}=\sqrt{4+4}=\sqrt{8}$
Radius of circle $=\frac{A C}{2}=\frac{\sqrt{8}}{2}=\frac{2 \sqrt{2}}{2}=\sqrt{2}$
Area of circle $=\pi r^{2}=\pi(\sqrt{2})^{2}=2 \pi$
Probability of dot with in the square $=\frac{\text { area of square }}{\text { area of circle }}=\frac{4}{2 \pi}=\frac{2}{\pi}$

