THIRUVANANTHAPURAM EDUCATIONAL DISTRICT

MATHEMATICS

STANDARD:10

MATHEMATICS OF CHANCE (ANSWERS)

1. A box contains 10 black and 5 white balls. If a ball is taken from it what is the probability of it being black? And what is the probability of it being white?

Total number of balls in the box = 15

Total number of **black** balls in the box = 10

Probability of getting a **black** ball = $\frac{number\ of\ black\ balls}{total\ number\ of\ balls}$

$$\frac{10}{15} = \frac{2}{3}$$

Total number of **white** balls in the box = $\frac{5}{2}$

Probability of getting a white ball

$$= \frac{number\ of\ white\ balls}{total\ number\ of\ balls}$$

$$=\frac{5}{15}=\frac{1}{3}$$

- 2. Numbers from 1 to 30 are written in paper slips and put in a box. With out looking one slip is taken from it.
- a) What is the probability that it is an even number?
- b) What is the probability that it is a prime number?

a) Total number of paper slips

= 30

Even numbers from 1 to 30 are 2, 4, 6,...30

Total Number of even numbers from 1 to 30 = 15

Probability of getting an even number= $\frac{Total\ Number\ of\ even\ numbers}{Total\ Number\ of\ paper\ slips}$

$$=\frac{15}{30}=\frac{1}{2}$$

b) The prime numbers between 1 to 30 are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29.

Total Number of prime numbers = 10

Probability of getting a prime number = $\frac{Total\ Number\ of\ prime\ numbers}{Total\ Number\ of\ paper\ slips}$ $= \frac{10}{30} = \frac{1}{3}$

- 3. There are 18 beads in a box. Some of them are white and the remaining are black. The probability of drawing a black bead from it is $\frac{1}{3}$ Then (a) How many black beads are there in the box ?
 - (b) How many white beads are there in the box?
 - (a) Total number of beads = 18

Probability of getting black bead = $\frac{1}{3}$

Probability of getting black bead = $\frac{Number\ of\ black\ beads}{Total\ number\ of\ beads}$

$$\frac{1}{3}$$
 = $\frac{Number\ of\ black\ beads}{18}$

 $3 \times Number of black beads = 18$

Number of black beads = $\frac{18}{3}$ = 6

- **(b)** Number of white beads = $18 \frac{6}{12} = \frac{12}{12}$
- 4. In the figure below the length and breadth of the rectangle is 10 cm and 8 cm respectively. If we put a dot inside the rectangle without looking into it, what is the probability that it will be inside the circle?

Length of rectangle = 10

Breadth of rectangle = 8

Area of rectangle = $10 \times 8 = 80$

Radius of the circle = $\frac{8}{2}$ = $\frac{4}{2}$

Area of the circle = $\pi r^2 = \pi \times 4^2 = 16 \pi$

Probability =
$$\frac{area\ of\ circle}{area\ of\ rectangle} = \frac{16\ \pi}{80} = \frac{\pi}{5}$$

5. In the figure, what is the probability of a dot we put without looking to be with in the square?

Length of one side of square = 2

Area of the square
$$= 4$$

AB = BC = 2

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{2^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8}$$

Radius of circle =
$$\frac{AC}{2}$$
 = $\frac{\sqrt{8}}{2}$ = $\frac{2\sqrt{2}}{2}$ = $\sqrt{2}$

Area of circle = $\pi r^2 = \pi (\sqrt{2})^2 = 2\pi$

Probability of dot with in the square = $\frac{area\ of\ square}{area\ of\ circle}$ = $\frac{4}{2\pi}$ = $\frac{2}{\pi}$