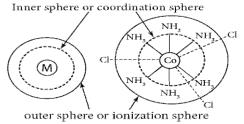
PUBLIC EXAMINATION -SEPTEMBER - 2020 XII- CHEMISTRY - ANSWER KEY

AII- CIEMISTRI – ARSWER REI				
	1	PART-I		
1	d	In the metallurgy of gold ,the metal is leached with dilute sodium chloride solution.		
2	С	Al		
3	d	$Na_{2}B_{4}O_{7}.10H_{2}O$		
4	d	Phosphine		
5	d	Group number 3 and period number 6		
6	С	$[Co(NH_3)_3Cl_3]$		
7	b	68%		
8	а	First order		
9	С	OH- and F- respectively		
10	a	Adsorption is exothermic		
11	b	SN2 Mechanism		
12	а	$(CH_3)_2C(OH)C_6H_5$		
13	a	Thorpe nitrile condensation		
14	d	Vitamin B ₂		
15	a	(1)-(iii) (2)-(iv) (3)-(i) (4) - (ii)		
1.0	1	PART-II		
16		Explain the following terms with suitable example.		
		 i) Gangue: The non metallic impurities, rocky materials and siliceous matter present in the ores are called gangue. Eg: SiO₂ is the gangue present in the iron ore Fe₂O₃. ii) Slag: Slag is a fusible chemical substance formed by the reaction of gangue with a flux. CaO_(s) + SiO_{2(s)} → CaSiO_{3(s)} Flux gangue slag 		
17		Give the uses of Helium.		
~	• Helium and oxygen mixture is used by divers in place of air oxygen mixture. This prevents the painful dangerous condition called bends.			
		 Helium is used to provide inert atmosphere in electric arc welding of metals 		
		 Helium has lowest boiling point hence used in cryogenics (low temperature science). 		
		• It is much less denser than air and hence used for filling air balloons		

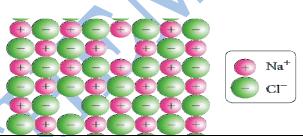

18	What are interstitial compound?		
	 An interstitial compound or alloy is a compound that is formed when small atoms like hydrogen, boron, carbon or nitrogen are trapped in the interstitial holes in a metal lattice. They are usually non-stoichiometric compounds. Example: TiC, ZrH, Mn₄ N 		
19	Distinguish between Isotropy and Anisotropy		
	 Isotropy Isotropy means uniformity in all directions. In solid state isotropy means having identical values of physical properties such as refractive index, electrical conductance etc., in all directions. 		
	Anisotropy		
	 Anisotropy is the property which depends on the direction of measurement. Crystalline solids are anisotropic and they show different values of physical properties when measured along different directions. 		
20	The rate of the reaction is $x + 2y \rightarrow product$ is $4 \times 10^{-3} \text{mol L}^{-1} \text{s}^{-1}$, if $[x] = [y] = 0.2M$ and rate constant at 400K is $2 \times 10^{-2} \text{ s}^{-1}$, What is the overall order of the reaction.		
	Rate = $k [x]^n [y]^m$ $4 \times 10^3 \text{ mol } L^1 s^{-1} = 2 \times 10^2 s^{-1} (0.2 \text{mol } L^1)^n (0.2 \text{mol } L^1)^m$		
	$\frac{4 \times 10^{-3} \text{mol L}^{-1} \text{s}^{-1}}{2 \times 10^{-2} \text{s}^{-1}} = (0.2)^{n+m} \left(\text{mol L}^{-1}\right)^{n+m}$ $0.2 \left(\text{mol L}^{-1}\right) = (0.2)^{n+m} \left(\text{mol L}^{-1}\right)^{n+m}$		
	Comparing the powers on both sides		
	The overall order of the reaction $n + m = 1$		
21	Calculate the pH of 0.1M CH ₃ COONa Solution. $pH = 7 + \frac{pK_a}{2} + \frac{\log C}{2}$ $= 7 + \frac{4.74}{2} + \frac{\log 0.1}{2} = 7 + 2.37 - 0.5$ $= 8.87$		
22	Convert glycerol to acrolein		
	$\begin{array}{c c} \operatorname{CH}_2 - \operatorname{OH} & \operatorname{CH}_2 \\ \hline \\ \operatorname{CH} - \operatorname{OH} & \\ \hline \\ \operatorname{CH}_2 - \operatorname{OH} & \\ \hline \\ \operatorname{CHO} \\ \end{array}$		

 	Write a note on denaturation of protein.		
	The process of a losing its higher order structure without losing the		
• When a protein denatures, its biological function is also l	When a protein denatures, its biological function is also lost.		
• Example: coagulation of egg white by action of heat.			
	How is aryl halide prepared by using Cu ₂ Cl ₂ /HCl or Cu ₂ Br ₂ /HBr		
$Cu_2Cl_2 / HCl \longrightarrow C_6H_5 - Cl + N_2$	Cu_2Cl_2 / HCl $C_6H_5 - Cl + N_2$		
+ -			
C ₆ H ₅ - N ₂ Cl			
Benzene Cu_2Br_2/HBr $C_6H_5 - Br + N_2$			
Chloride Bromobenzene			
PART-III			
What are the factors responsible for the anomalous behavior	viour of		
elements of the p-block?	, , , , , , , , , , , , , , , , , , , ,		
❖ Small size of the first member			
High ionisation enthalpy and high electronegativity			
❖ Absence of d orbitals in their valance shell.			
Which metal in 3d series exhibits +1 oxidation state mo	st		
frenquently and why?			
❖ Copper exhibits +1 oxidation state in the 3d series.			
Reason:			
 ❖ Electronic configuration of Cu = [Ar]3d¹⁰4s¹ ❖ It can easily loss 4s1 electron to give stable 2d¹⁰ configuration. 	notion		
 It can easily lose 4s1 electron to give stable 3d¹⁰ configuent Hence, it exhibits +1 oxidation state. 	ration.		
27 Mention the metal complexes and its metal ions are use	ed in		
biological system			
COORDINATION CENTRAL USES			
COMPLEX METAL ION			
RBC COMPOSED OF Fe^{2+} Carrying oxygen from	m lungs to		
HEME GROUP tissue, CO_2 from tiss			
HEME GROUP tissue, CO_2 from tissue, CO_2	sis		
HEME GROUPtissue, CO_2 from tissue, CO_2 from tissue, CO_2 from tissue, CO_2 from tissue, CO_3 from tissue, C	esis consist of		
HEME GROUP tissue, CO_2 from tissue, CO_2 from tissue, CO_2 from tissue, CO_2 from tissue, CO_3 from tissue, CO_3 from tissue, CO_4 Photosynthe VITAMIN B12 CO_4 The only vitamin of (cyanocobalamine) metal ion.	esis consist of		
HEME GROUPtissue, CO_2 from tissCHLOROPHYLL Mg^{2+} PhotosyntheVITAMIN B12 Co^+ The only vitamin of metal ion.(cyanocobalamine)metal ion.CARBOXYPEPTIDASEZinc ionhydrolytic enzyme in	consist of nportant in		
HEME GROUP tissue, CO_2 from tissue, CO_2 from tissue, CO_2 from tissue, CO_2 from tissue, CO_3 from tissue, CO_3 from tissue, CO_4 Photosynthe VITAMIN B12 CO_4 The only vitamin of (cyanocobalamine) metal ion.	consist of nportant in		
HEME GROUPtissue, CO_2 from tissCHLOROPHYLL Mg^{2+} PhotosyntheVITAMIN B12 Co^+ The only vitamin of metal ion.(cyanocobalamine)metal ion.CARBOXYPEPTIDASE protease enzymeZinc ion protease enzymehydrolytic enzyme in digestion,	consist of nportant in		
HEME GROUP CHLOROPHYLL Mg ²⁺ Photosynthe VITAMIN B12 (cyanocobalamine) CARBOXYPEPTIDASE protease enzyme Tissue, CO ₂ from tissue, CO ₂ from tissue, CO ₃ The only vitamin of the order of t	consist of nportant in		
HEME GROUPtissue, CO_2 from tissCHLOROPHYLL Mg^{2+} PhotosyntheVITAMIN B12 Co^+ The only vitamin of the control of t	consist of nportant in		
HEME GROUP tissue, CO_2 from tissue, CO_2	consist of nportant in		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	esis consist of nportant in mperature.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	esis consist of nportant in mperature.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	esis consist of nportant in mperature.		

29	What is inversion of phase? Give an example		
	Inversion of Phase:		
	The change of W/O emulsion into O/W emulsion is called		
	inversion of phases.		
	For example:		
	An oil in water emulsion containing potassium soap as		
	emulsifying agent can be converted into water in oil emulsion by		
	adding CaCl ₂ or AlCl ₃ .		
30	Explain Benedict's solution test		
	Benedict's solution Test:		
	• Benedicts solution is a mixture of CuSO ₄ + sodium citrate + NaOH.		
	• Cu ²⁺ is reduced by aldehyde to give red precipitate of cuprous oxide.		
	$CH_3 CHO + 2Cu^{2+} + 5OH^- \rightarrow CH_3COO^- + Cu_2O + 3H_2O$		
31	Write any biological importance of lipids		
	* Lipids are the integral component of cell membrane. They are		
	necessary of structural integrity of the cell.		
	* The main function of triglycerides in animals is as an energy		
	reserve. They yield more energy than carbohydrates and proteins.		
	* They act as protective coating in aquatic organisms.		
	* Lipids of connective tissue give protection to internal organs.		
	* Lipids help in the absorption and transport of fat soluble vitamins.		
	* They are essential for activation of enzymes such as lipases.		
	* Lipids act as emulsifier in fat metabolism.		
32	How is neoprene prepared?		
	❖ The free radical polymeristion of the monomer, 2-chloro buta-1,3-		
	diene(chloroprene) gives neoprene.		
	free [
	$nCH_2 = C - CH = CH_2 \xrightarrow{\text{radical}} - CH_2 - C = CH - CH_2$		
	Polymerisation		
	C1 C1		
00	n n		
33	A solution of silver nitrate is electrolysed for 20 minutes with a		
	current of 2 amperes. Calculate the mass of silver deposited at the cathode.		
	Electrochemical reaction at cathode is $\mathbf{Ag}^+ + \mathbf{e}^- \to \mathbf{Ag}$ (reduction)		
	$\mathbf{m} = \mathbf{ZIt}$		
~	m = ZIt $molarmass of Ag$ 108		
*	$Z = \frac{\text{molarmass of Ag}}{(96500)} = \frac{108}{1 \times 96500}$ $I = 2A$		
	$Z = \frac{\text{molarmass of Ag}}{(96500)} = \frac{108}{1 \times 96500}$ $I = 2A$ $t = 20 \times 60S = 1200 \text{ S}$		
	$Z = \frac{\text{molarmass of Ag}}{(96500)} = \frac{108}{1 \times 96500}$ $I = 2A$ $t = 20 \times 60S = 1200 \text{ S}$ $It = 2A \times 1200S = 2400C$		
«	$Z = \frac{\text{molarmass of Ag}}{(96500)} = \frac{108}{1 \times 96500}$ $I = 2A$ $t = 20 \times 60S = 1200 \text{ S}$ $It = 2A \times 1200S = 2400C$		
	$Z = \frac{\text{molarmass of Ag}}{(96500)} = \frac{108}{1 \times 96500}$ $I = 2A$ $t = 20 \times 60S = 1200 \text{ S}$ $It = 2A \times 1200S = 2400C$ $m = \frac{108 \text{ gmol}^{-1}}{96500 \text{ C mol}^{-1}} \times 2400C$		
	$Z = \frac{\text{molarmass of Ag}}{(96500)} = \frac{108}{1 \times 96500}$ $I = 2A$ $t = 20 \times 60S = 1200 \text{ S}$ $It = 2A \times 1200S = 2400C$		

	PART-IV			
34				
a	i	What are the differences between minerals and ores?		
		Mineral	Ore	
		A naturally occurring substance		
		obtained by mining which		
		contains the metal in free state	▲	
		(or) in the form of compounds.	conveniently and economically.	
		All minerals are nor ores	All ores are minerals	
		e.g: Bauxite and china clay are minerals of aluminium	e.g: Bauxite is an ore of aluminium	
	••			
	ii	Give the balanced equation for the reaction between chlorine with cold NaOH and hot NaOH.		
		• Chlorine reacts with cold NaOH t	o give sodium chloride and sodium	
		hypochlorite.		
		$Cl_2 + 2 NaOH \rightarrow NaOH$		
		• Chlorine reacts with hot NaOH to	h hypochlorite	
		chlorate.	give sodium cinoride and sodium	
		$3Cl2 + 6NaOH \rightarrow NaClO3 + 5NaCl + 3H2O$		
		Sodium chlorate		
_		OR		
b	i	What is cetanation		
		* Catenation is an ability of an element to form chain of atoms. The		
	ii	following conditions are necessary for catenation. Write a short note on Holmes signal		
		In a ship, a pierced container with a mixture of calcium carbide and		
		calcium phosphide, liberates phosphine and acetylene when thrown into		
		sea. The liberated phosphine catches fire and ignites acetylene. These		
		burning gases serves as a signal to the approaching ships. This is known		
25		as Holmes signal.		
35 a	i	Write the postulates of Werner's theory		
		Most of the elements exhibit, two types of valence.Primary valence		
		• Secondary valence		
		Primary valence is referred as the oxidation state of the metal atom		
		and the Secondary valence as the coordination number.		
		❖ The primary valence of a metal ion is positive in most of the cases		
		and zero in certain cases. They as	re always satisfied by negative	
		ions.		
		❖ The secondary valence is satisfied		
		molecules, positive ions or the co		
		❖ According to Werner, there are two spheres of attraction around a		
		metal atom/ion in a complex.		
		The inner sphere is known as coordination sphere.		

- The outer sphere is called ionisation sphere.
- ❖ The primary valences non-directional
- the secondary valences directional.
- ❖ The geometry of the complex is determined by the spacial arrangement of the groups which satisfy the secondary valence.

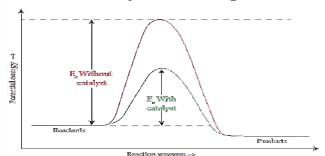


- ❖ Six octahedral geometry.
- Four -either tetrahedral or square planar geometry.

OR

b i Explain Schottky defect.

- Schottky defect arises due to the missing of equal number of cations and anions from the crystal lattice.
- This effect does not change the stoichiometry of the crystal.
- Ionic solids in which the cation and anion are of almost of similar size show schottky defect.
- Example: NaCl.



ii Identity the auto catalyst in following reaction.

	Reactions	Auto catalysis
	$CH_3COOC_2H_5 + H_2O \rightarrow CH_3COOH + C_2H_5OH$	Acetic acid
	$2AsH_3 \rightarrow 2As + 3H_2$	Arsenic

Explain the effect of catalyst on reaction rate with an example

In the presence of a catalyst, the energy of activation is lowered and hence, greater number of molecules can cross the energy barrier and change over to products, thereby increasing the rate of the reaction.

ii Classify the following into Lewis acid and Lewis bases.

Lewis acid: BF₃, CO₂
Lewis bases: MgO, CH₃

		Or .		
b	i	Or Derive an expression for Normat equation		
U	•	Derive an expression for Nernst equation.		
		• Nernst equation is the one which relates the cell potential and the		
		concentration of the species involved in an electrochemical reaction.		
		Let us consider an electrochemical cell for which the overall redox		
		reaction is,		
		$xA + yB \rightleftharpoons lC + mD$		
		The reaction quotient Q for the above reaction is given below		
		$Q = \frac{[C]^l \ [D]^m}{[A]^x \ [B]^y}$		
		$Q = \frac{[A]^x [B]^y}{[A]^x [B]^y}$		
		We have already learnt that,		
		$\Delta G = \Delta G^{\circ} + RT \ln Q$		
		$\Delta G = - nFE_{cell}$; $\Delta G^{\circ} = - nFE_{cell}^{\circ}$		
		Substitute these values and Q from		
		$\Rightarrow -nFE_{cell}^{o} = -nFE_{cell}^{o} + RT \ln \frac{[C]^{l}[D]^{m}}{[A]^{x}[B]^{y}}$		
		Divide the whole equation by (-nF)		
		$\Rightarrow E_{cell} = E_{cell}^{\circ} - \frac{RT}{nF} ln \frac{[C]^{l} [D]^{m}}{[A]^{x} [B]^{y}}$		
		$2.303RT$ $[C]^{l}[D]^{m}$		
		(or) $E_{cell} = E_{cell}^{\circ} - \frac{2.303RT}{nF} \log \frac{[C]^{l}[D]^{m}}{[A]^{x} [B]^{y}}$		
		The above equation is called the Nernst equation		
		$E = E^{\circ}$ 2.303×8.314×298 $E = E^{\circ}$ [C] ^I [D] ^m		
		$E_{cell} = E_{cell}^{o} - \frac{2.303 \times 8.314 \times 298}{n(96500)} log \frac{[C]^{l} [D]^{m}}{[A]^{x} [B]^{y}}$		
		$OO501 [C]^{l}[D]^{m}$		
		$E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{n} \log \frac{[C]^{l}[D]^{m}}{[A]^{x} [B]^{y}}$		
		II [A] [D]		
37				
a	i	Name the factors affecting adsorption		
		Nature of adsorbent		
		❖ Nature of adsorbate		
		Pressure		
		Concentration at a given temperature.		
	ii	Explain auto oxidation of ether.		
		❖ When ethers are stored in the presence of atmospheric oxygen,		
		they slowly oxidise to form hydroperoxides and dialkylperoxides.		
		These are explosive in nature. Such a spontaneous oxidation by		
		atmospheric oxygen is called autooxidation.		
		О-О-Н		
		CH_3 - CH_2 - O - CH_2 - CH_3 $\xrightarrow{excessO_2}$ CH_3 - CH_2 - O - CH - CH_3 + CH_3 - CH_2 - O - CH_2 - CH_3		
		1 ethoxyethyl		
		ethoxyethane 1-ethoxyethy1 diethylperoxide hydroperoxide		
		OR		

b i What is baeyer's reagent? How its useful to convert ethen to ethane 1,2 diol.

Cold alkaline solution of potassium permanganate called Baeyer's reagent

$$CH_2 = CH_2 + H_2O \xrightarrow{KMnO_4} CH_2 - CH_2 - CH_2$$
ethene
$$CH_2 = CH_2 + H_2O \xrightarrow{I} I$$

$$OH OH$$
ethane-1,2-diol

ii How do antiseptics differ from disinfectants

Antiseptics	Disinfectants
Stop or slow down the growth of	Stop or slow down the growth of
micro organisms.	micro organisms.
Applied to living tissue	Generally used on inanimated
	objects.
Example	Example
Hydrogen peroxide	 Chlorine compounds
Povidine – Iodine	❖ Alcohol
(iii) Benzalkonium chloride	❖ (iii) Hydrogen peroxide

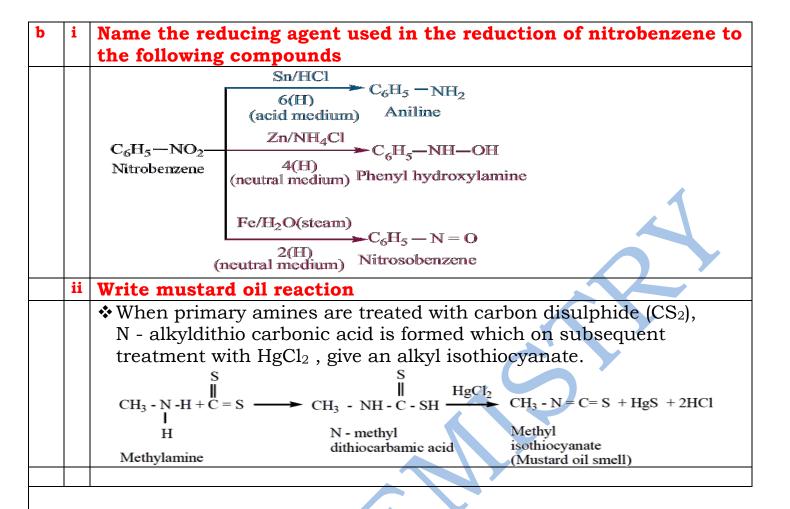
i Write the mechanism of aldol condensation reaction.

Step 1: The carbanion is formed as the α - hydrogen atom is removed as a proton by the base.

$$HO \xrightarrow{\bullet} H \xrightarrow{\bullet} CH_2 - CHO \xrightarrow{\bullet} CH_2 - CHO + H_2O$$

Step 2: The carbanion attacks the carbonyl carbon of another unionized aldehyde to form an alkoxide ion.

$$CH_3 - CH_2 - CHO \longrightarrow CH_3 - CH - CH_2 - CHO$$


$$O \bigcirc O$$

Step 3: The alkoxide ion formed is protonated by water to form aldol.

$$CH_3$$
 - CH - CH_2 - CHO + OH - OH OH

The aldol rapidly undergoes dehydration on heating with acid to form α - β unsaturated aldehyde.

OR

***Mark allotment may be as per GOVT answerkey

N.GOPALAKRISHNAN.M.Sc.,B.Ed. PGT-CHEMISTRY BHARATHIDASAN MATRIC HIGHER SECONDARY SCHOOL THIRUVALLUR