KITE VICTERS ONLINE CLASS - CHEMISTRY

Chemistry-X-Unit -2. Gas laws

Let us have a look at the arrangement of molecules in solids liquids and gases

Solid

Liquid

Gas

Statements regarding gas molecules are given below

- Energy is very high.

■ Distance between the gas molecules are very high.
■ The movement of gas molecules are very high.
■ The force of attraction between the molecules are very low. Properties of gases -Volume, Pressure ,and Temperature
\square
Volume of a gas is the volume of the container which it occupies.

Ferce exerted per unitarea is ealled pressure.

Some gas laws

Boyle's Law

At a constant temperature, volume of a definite mass of gas is inversely proportional to its pressure. This law is known as Boyle's law

P ∞ 1/V [T Constant]
$P=A$ constant x 1/V
$\mathbf{P V}=\mathbf{A}$ constant

Ex: The size of the air bubbles rising from the bottom of an aquarium increases. This is because of Boyle's law. When they rises up, the pressure decreases. So it's volume increases.

Charles' law.

At constant pressure, the volume of a definite mass of a gas is directly proportional to the temperature in Kelvin Scale. This law is known as Charles' law.

```
V m T [ P Constant ]
V = A constant x T
V/T = A constant
```


Exp: If an inflated balloon is kept in sunlight for some time , it bursts. This is due to Charle's law.

KITE VICTERS ONLINE CLASS－CHEMISTRY

Avagadro＇s Law

T

At constant temperature and pressure，the volume of a gas is directly proportional to the number of molecules．
$\mathbf{V} \infty \mathbf{n} \quad[\mathbf{P}, \mathbf{T}$ Constant ］

n

Questions

1．When an inflated balloon is immersed in water，its size decreases．Why ？Explain the law associated with it ？
2．Before opening a bottle with liquid ammonia ，it is refrigerated．Why ？
3．Certain data regarding various gases kept under the same conditions of temperature and pressure are given below．

Gas	Volume（L）	Number of Molecules
Nitrogen	10 L	X
Oxygen	5 L	$\ldots . .$.
Ammonia	10 L	$\ldots . .$.
Carbon dioxide	$\ldots . .$.	2 x

a）Complete the table．
b）Which gas law is applicable here？

