ATTINGAL EDUCATIONAL DISTRICT

STANDARD 10 SUBJECT : CHEMISTRY UNIT 1 : PERIODIC TABLE AND ELECTRONIC CONFIGURATION

Worksheet :1

Answer Key

Activity 1

Wrong		Correct
c) $1s^2 2s^2 2p^7$	>	$1 s^2 2 s^2 2 p^6 3 s^1$
d) $1s^2 2s^2 2p^5 3s^1$	>	$1{ m s}^22{ m s}^22{ m p}^6$
f) $1s^2 2s^1 2p^2$	>	$1\mathrm{s}^2 2\mathrm{s}^2 \ 2\mathrm{p}^1$

Activity 2

a) 1s² 2s² 2p⁶ 3s² 3p⁵
b) 17
c) [Ne]3s² 3p⁵

Activity 3

- a) 29
- b) 29
- c) Wrong
- d) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$

Completely filled configuration (d^{10}) or half filled configuration (d^5) of this subshell is more stable than others.

<u>Activity 4</u>

a)

Subshell electronic configuration	$1s^22s^22p^63s^23p^63d^54s^2$		$1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$		
Atomic number	25		24		
Subshell electronic configuration in [Ar]3d ⁵ 4s ² short form		OR	$[Ar]3d^54s^1$		
Element	^{nt} Manganese		Chromium		
Symbol	Mn		Cr		

b) Mn^{2+} , $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 OR Cr^{2+}$, $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$

Activity 5 A = +3 B = Fe³⁺ C =1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ D = Mn²⁺ E = +4 F = Mn⁴⁺ G =1s² 2s² 2p⁶ 3s² 3p⁶ 3d³ H = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d³ H = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁴ J = Mn³⁺ K = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁴ Activity 6

d) **Incorrect statement:** Transition elements are known as representative elements **Activity 7**

Element	Subshell Electronic Configuration	Subshell in which last electron enters	Does it receive or donate electron?	Valency	Compound formation
11 A	$1 { m s}^2 \ 2 { m s}^2 \ 2 { m p}^6 \ 3 { m s}^1$	S	donates	1	Formula - A ₂ X
12 B	$1 { m s}^2 2 { m s}^2 2 { m p}^6 \; 3 { m s}^2$	S	donates	2	Compound formed between B & Y Valency of B – 2 Valency of Y– 1 B^2Y^1 > B_1Y_2 (after interchanging valency) Formula - BY ₂
16 X	$1 { m s}^2 2 { m s}^2 2 { m p}^6 \; 3 { m s}^2 3 { m p}^4$	р	receives	2	Compound formed between X & B Valency of B– 2 Valency of X – 2 B^2X^2 > B_2X_2 (after interchanging valency) Formula - BX
17 Y	$1{ m s}^22{ m s}^22{ m p}^63{ m s}^23{ m p}^5$	р	receives	1	Compound formed between Y & A Valency of A – 1 Valency of Y – 1 A^1Y^1 > A_1Y_1 (after interchanging valency) Formula - AY