ATTINGAL EDUCATIONAL DISTRICT

STANDARD 10 SUBJECT : CHEMISTRY UNIT 1 : PERIODIC TABLE AND ELECTRONIC CONFIGURATION

Worksheet :1

Activity 1

Pick out the wrong electronic configuration and correct them.

a) $1s^2 2s^2 2p^1$ b) $1s^2 2s^2 2p^6 3s^1$ c) $1s^2 2s^2 2p^7$ d) $1s^2 2s^2 2p^5 3s^1$ e) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2$ f) $1s^2 2s^1 2p^2$

Activity 2

The outermost subshell electronic configuration of an element is $3s^2 3p^5$

- a) Write the complete subshell electronic configuration
- b) Find the atomic number of the element
- c) Write the subshell electronic configuration using the symbol of nearest noble gas

Activity 3

The subshell electronic configuration of an element 'X' is given below. (Symbol is not real)

 $X \text{ - } 1s^2 2s^2 \, 2p^6 \, 3s^2 \, 3p^6 \, 3d^9 \, 4s^2$

- a) Find the total number of electrons in the atom
- b) Write the atomic number
- c) Check whether the above configuration is right or wrong
- d) If wrong, correct it and justify your answer

<u>Activity 4</u>

*My last electron fills in d subshell *I have 5 electrons in d subshell *I have 7 subshells totally *I belong to d block

a) Complete the given table and find whom am I

Subshell electronic configuration	
Atomic number	
Subshell electronic configuration in short form	
Element	
Symbol	

 b) If this element undergoes chemical reaction to form an ion with oxidation number +2, then write the symbol of ion and subshell electronic configuration of the ion

Activity 5

The sum of the oxidation numbers of the elements of a compund is Zero

Oxidation state	Oxidation state	Atomic Number
└ Cl = -1 /	O= -2	Fe=26, Mn=25

Complete the table using the hints given above

Compound	Oxidation State (Fe/Mn)	Symbol of Ion	Subshell Electronic Configuration
${ m FeCl}_2$	+2	Fe ²⁺	$1{ m s}^22{ m s}^22{ m p}^63{ m s}^23{ m p}^63{ m d}^6$
${ m FeCl}_3$	(A)	(B)	(C)
$MnCl_2$	+2	(D)	$1{ m s}^22{ m s}^22{ m p}^63{ m s}^23{ m p}^63{ m d}^5$
MnO_2	(E)	(F)	(G)
Mn ₂ O ₇	+7	Mn ⁷⁺	(H)
Mn ₂ O ₃	(I)	(J)	(K)

Activity 6

Find the odd one

- a) Transition element are d block elements
- b) In transition elements last electrons are filled up in penultimate shell
- c) Transition elements shows variable oxidation state
- d) Transition elements are known as representative elements
- e) Transition elements form coloured compounds

Activity 7

Complete the following table. (Symbols are not real)

Element	Subshell Electronic Configuration	Subshell in which last electron enters	Does it receive or donate electron?	Valency	Compound formation
11 A	$1 { m s}^2 2 { m s}^2 2 { m p}^6 \; 3 { m s}^1$	S	donate	1	$\begin{array}{c} Compound \ formed \\ between \ A \ \& \ X \\ Valency \ of \ A - 1 \\ Valency \ of \ X - 2 \\ A^1 X^2 -> \ A_2 X_1 \\ \mbox{(after interchanging valency)} \\ Formula \ - \ A_2 X \end{array}$
₁₂ B					Compound formed between B & Y
16 X			receive		Compound formed between X & B
17 Y					Compound formed between Y & A