1. ARITHEMATIC SEQUANCE

Prepared by: Mr.Anwer shanib k p 9656056836

> Sequence: A set of numbers written as the first, second, third and so on.

E.g.: Set of prime numbers

- ➤ Arithmetic sequence: A sequence got by starting with any number and adding fixed number repeatedly.
- > Common difference (d): same number on subtracting from any term immediately preceding it
- > For any arithmetic sequence there will be common difference

E.g.: 4, 7, 10, 13, 16,19, Here common difference is 3

 \triangleright x₁, x₂, x₃, x₄, x₅, x₆,....... Are the terms of an arithmetic sequence and suffix denote position

E.g.: 4, 7, 10, 13, 16,19,

4thterm= 13; 2ndterm=7

Position of 13=4; Position of 19=6

 \triangleright The mth term of an arithmetic sequence is x_m and nth term is x_n then

Common difference (d) = $\frac{Xn-Xm}{n-m}$

- The $X_{(p+q)}$ th term of an arithmetic sequence is (X_p+qxd)
- ➤ No of the term in an arithmetic sequence is

 $\frac{last term - first term}{common difference} + 1$

 \succ To check inclusion of any term X_p in an arithmetic sequence

Difference of X_p and any term in arithmetic sequence should be a multiple of common difference.

 $\,\blacktriangleright\,\,$ The sum of three consecutive terms of an arithmetic sequence is three time of middle term

 $x_1 + x_2 + x_3 = 3x_2$

- > The sum of consecutive terms of an arithmetic sequence is the product of number of terms and middle term
- X,Y,Z are three consecutive terms of an arithmetic sequence where middle term is

$$Y = \frac{x+z}{2}$$

The first term of an arithmetic sequence is 'f' and common difference is 'd'

 n^{th} term is Xn = f + (n-1)d

➤ Algebra of an arithmetic sequence is Xn = dn + (f-d)

Sum of first n natural numbers

$$1+2+3+....+n = \frac{n(n+1)}{2}$$

➤ Sum of first *n* even numbers

$$2+4+6+...+2n = n(n+1)$$

 \triangleright Sum of first *n* odd numbers

$$1+3+5+....+2n-1=n^2$$

Sum of the first n terms of an arithmetic sequence

$$x_1 + x_2 + x_3 + \dots + x_n = S_n = \frac{n}{2} (2f + (n-1)d)$$

 $x_1 + x_2 + x_3 + \dots + x_n = S_n = \frac{n}{2} (x_n + x_1)$

For the arithmetic sequence $x_n = an + b$ where 'a = d' and 'b = f-d'. the sum first n term is

$$x_1 + x_2 + x_3 + \dots + x_n = S_n = \frac{1}{2} an(n+1) + nb$$

> The sum of the first n terms of any arithmetic sequence in algebra is

$$S_n = \frac{1}{2} an^2 + (\frac{1}{2}a + b)n$$
; 'a = d'; 'b = f-d'
 $S_n = Kn^2 + Ln$ first term=K+L common difference=2k

Sum of squares

$$1^2+2^2+3^2+\dots+ n^2=\frac{1}{6}n(n+1)(2n+1)$$

> X_1 Position of K^{th} line last number = $\frac{k(k+1)}{2}$

 X_2 X_3 number of terms in K^{th} line = K

 $X_4 \ X_5 \ X_6$ last term of K^{th} line = $d\left(\frac{k(k+1)}{2}\right) + \left(X_1 - d\right)$

firs term of K^{th} line = last term of K^{th} line – (k-1) d

.....

 $\begin{array}{lll} \nearrow & X_1 & position of K^{th} line last number = k^2 \\ X_2 & X_3 & X_4 & number of terms in K^{th} line = 2k-1 \\ X_5 & X_6 & X_7 & X_8 & X_9 & last term of K^{th} line = d k^2 + (x_1 - d) \end{array}$

.....

3. MATHEMATICS OF CHANCE

> Probability of a number.

Probability of favorable condition = $\frac{No.of.favorable\ outcomes}{Total\ No.of\ outcomes}$

- > Total probability always 1
- ➤ Geometrical Probability.

Step1: identify the shapes of shaded part and total figure

Step2: identify the measures that are equal in these two shapes and denote it Using single letter.

Step3: find the area of shaded region and area of total shape using that measure.

Step4:

Probability of shaded region = $\frac{Area \ Of \ shaded \ Region}{Area \ of \ Total \ shape}$

Another method

Step1: make the full figure into triangles with same area

Step 2: find the no. of triangles in the figure and shaded part

Step3: Probability of shaded region = $\frac{No.of\ triangle\ in\ shaded\ part}{Total\ No.of\ triangle}$

> Probability Of Pairs

Total No. of pairs = No. of elements from A x No. of elements from B

Probability of favorable pair = $\frac{No.of.favorable\ pairs}{Total\ No.of\ pairs}$

4. SECOND DEGREE EQUATIONS

- Take X as the value to be finding.
- \rightarrow Make an equation in the form of $x^2 = a$
- > Square completion:

Make the equation as like $(a + b)^2 = a^2 + 2ab + b^2$ or $(a - b)^2 = a^2 - 2ab + b^2$ $(x^2 + ax = b)$

$$(x^2 + ax + (\frac{a}{2})^2 = b + (\frac{a}{2})^2)$$

$$(x + \frac{a}{2})^2 = b + (\frac{a}{2})^2$$

In a second degree polynomial $p(x) = ax^2 + bx + c$ the number to take as x to get p(x) = 0

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Here

If $b^2 - 4ac > 0$ then it has two solutions.

If $b^2 - 4ac < 0$ then no solution.

If $b^2 - 4ac = 0$ then it has one solution.

5. TRIGNOMETRY

- The sides of any triangle of angles $45^{\circ},45^{\circ},90^{\circ}$ are in the ratio $1:1:\sqrt{2}$

The sides of any triangle of angles 30°,60°,90° are in the ratio 1: $\sqrt{3}$: 2 (Length side we have to find = $\frac{ratio\ of\ side}{ratio\ of\ given\ side}$ X length of given side)

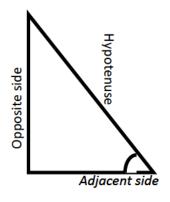
	30°	45°	60°
Sin	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
Cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
Tan	$\frac{1}{\sqrt{3}}$	1	√3

$$Sin x^{o} = \frac{Opposite \ side}{Hypotenuse}$$

$$\cos x^{o} = \frac{Adjacent \ side}{Hypotenuse}$$

$$\tan x^{o} = \frac{Opposite \ side}{Adjacent \ side}$$

$$Tan x^{o} = \frac{Opposite \ side}{Adjacent \ side}$$

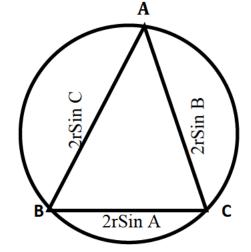


- In a circle of radius r, the length of a chord of central angle c^o is $2rSin(\frac{a}{2})$
- \Rightarrow Sin x = cos (90-x) sin 50 = cos 40
- In the picture \mathbf{r} is the circumradius of triangle ABC

Length of
$$BC = 2rSinA$$

Circum Diameter of triangle ABC

$$d = \frac{Length \ of \ a \ side}{Sin \ (opposite \ angle \ of \ side)}$$



- Angle of elevation: Angle between straight view and rise view.
- Angle of depression: Angle between straight view and lower view.
- \triangleright To find the height and distance use only Tan ratio.

6. COORDINATES

- > Two perpendicular real lines.
- Horizontal real line is named as x-axis and vertical real line is named as y-axis.
- \triangleright Coordinates of a point in the form of (x, y).

X coordinates

 (x_1,y_1) and (x_2,y_2) are the coordinates of two points A and B respectively. The distance between AB is

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$

 \triangleright Distance between a point (x, y) and origin (0, 0) is

$$\sqrt{x^2 + y^2}$$

➤ If three points A, B and C are on the same line (collinear) then

$$AB + BC = AC$$

> If AB, AC and BC are the three sides of a right triangle then

 $AB^2 + AC^2 = BC^2$ (Pythagoras theorem)

If (x_1, y_1) and (x_2, y_2) are the coordinates of opposite vertices of rectangle then (x_2, y_1) and (x_1, y_2) are the coordinates of other vertices.

10 POLYNOMIALS

- ightharpoonup P(x) is any polynomial and (x a) is a first degree polynomial
 - 1. If P(a) = 0 then (x a) is a factor of P(x)
 - 2. If $P(a) \neq 0$ then (x a) is not a factor of P(x)
 - 3. If P(a) = b then b is reminder
- \triangleright (x a) and (x b) are two first degree polynomials
 - 1. $(x-a)(x-b) = X^2 (a+b)X + ab$ (a 2nddegree polynomial as the product of Two first degree polynomials)
 - 2. The solutions of the equation p(x) = 0 are x=a and x=b
- P(x) = (x-a)q(x) + b

q(x) is quotient

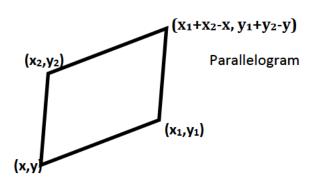
b is reminder

 \rightarrow (x - a) is not a factor of p(x). that is p(a) = b

The polynomial with factor (x - a) is p(x) + (-b)

➤ If $X^2 - a^2$ is factor of p(x) then (x + a) and (x - a) are factors of p(x)

GEOMETRY AND ALGEBRA



The line joining two points (x_1, y_1) and (x_2, y_2) is divide in the ratio m:n at point P the coordinates of P is (X,Y) where

$$X = X_1 + \frac{m}{(m+n)} (X_2 - X_1)$$

 $Y = Y_1 + \frac{m}{(m+n)} (Y_2 - Y_1)$

 \succ The mid-point of line joining (x_1, y_1) and (x_2, y_2) is

$$\left(\frac{1}{2}(x_1+x_2), \frac{1}{2}(y_1+y_2)\right)$$

The slope of the line joining points (x1, y1) and (x2,y2) is

$$\mathsf{Slope} = \frac{\mathsf{Y2} - \mathsf{Y1}}{\mathsf{X2} - \mathsf{X1}}$$

- Line equation
 - (x, y) as a point line joining (a, b) and (p, q)
 Slope of (a, b) (p, q) = slope of (p, q) (x, y)
 - 2. If Equation of a line is in the form px qy + r = 0 then
 - The slope of the line is $\frac{p}{q}$
 - The coordinate of line intersecting point with x-axis is take $(\frac{-r}{p}, 0)$
 - The coordinate of line intersecting point with y-axis is take $(0, \frac{-r}{q})$
- > Circle equation
 - lacktriangle A circle with center (a, b) and radius r. (x, y) point on circle the circle equation is

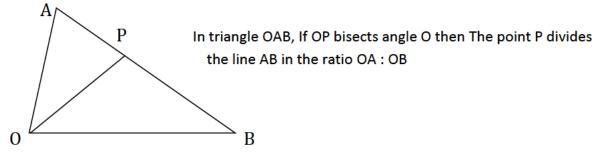
$$(x-a)^2 + (y-b)^2 - r^2 = 0$$

- If $x^2+y^2-px-qy+r=0$ is an equation of a circle, then
 - Coordinate of center is $(\frac{p}{2}, \frac{q}{2})$
 - Radius of circle is = $\sqrt{-r + (\frac{p}{2})^2 + (\frac{q}{2})^2}$

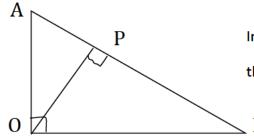
$$\left(\frac{1}{3}\left(x_1+x_2+x_3\right),\frac{1}{3}\left(y_1+y_2+y_3\right)\right)$$

 \triangleright If (x_1, y_1) , (x_2, y_2) , (x_3, y_3) are three points on a line then x-coordinates and y-coordinates are in arithmetic sequence.

Þ



D

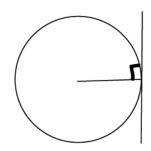


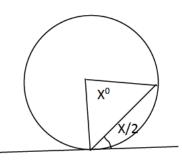
In triangle OAB, The point P divides

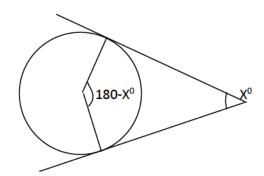
the line AB in the ratio OA2: OB2

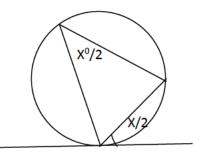
 \mathbf{R}

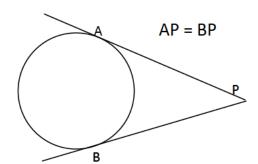
TANGENTS

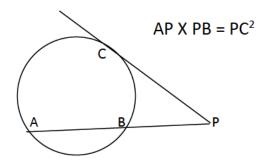


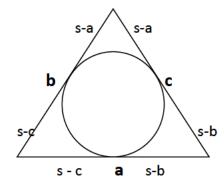












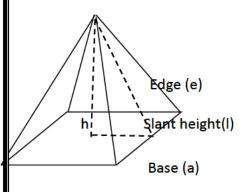
Half the perimeter of triangle= **S**

Radius of the incircle of a triangle = $\frac{A}{S}$

Area of triangle = \mathbf{A}

- > Draw tangents from outside point of a circle.
- > Draw a circle with given radius. Draw triangle with given angles and sides are tangent to the circle
- Draw a triangle with given side and draw incircle to the triangle.

SOLIDS

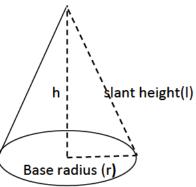


$$h = \sqrt{l^2 - (\frac{a}{2})^2}$$
 ; Base area = a^2

lateral surface area =2al

Slant height(I) Total surface area = $a^2 + 2al$

Volume of pyramid = $\frac{1}{3} a^2 h$



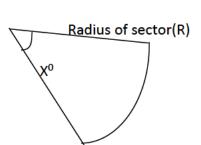
$$h = \sqrt{l^2 - r^2}$$
; base area $= \pi r^2$

curved surface area = πrl

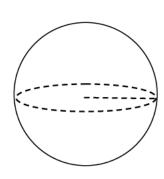
Total surface area = $\pi r (r + l)$

volume of cone = $\frac{1}{3}\pi r^2 h$

Radius of sector = slant height



$$\frac{r}{R} = \frac{X^0}{360}$$



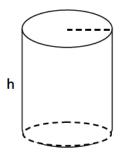
Radius of sphere = r $surface area of sphere = <math>4\pi r^2$

Volume of sphere $=\frac{4}{3}\pi r^3$

Curved surface area of hemisphere = $2\pi r^2$

Total surface area of hemisphere = $3\pi r^2$

Volume of hemisphere = $\frac{2}{3}\pi r^3$



Base area of a cylinder = $2\pi r^2$

curved surface area of a cylinder = $2\pi r h$

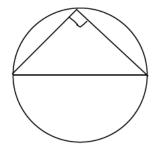
Total surface area of a cylinder = $2\pi r h + 2\pi r^2$

Volume of cylinder = $\pi r^2 h$

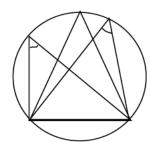
ANWER SHANIB KP 9656056836

CRESCENT HIGHER SECONDARY SCHOOL OZHUKUR

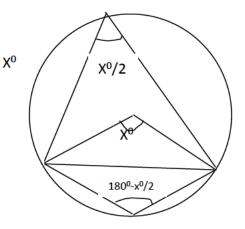
CIRCLES



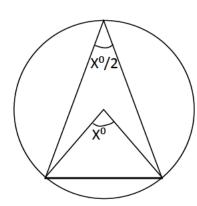
Angle on semicircle is 900



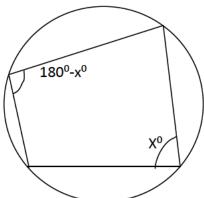
All angles on same side are equal.



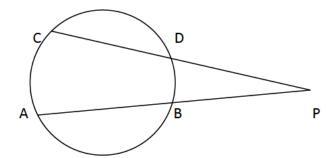
Angle on small circle part of chord is half the central angle of the chord subtracted from 180⁰.



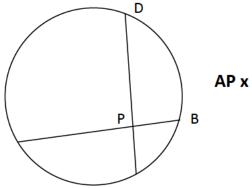
Angle on the large circle part is half the central angle of the chord.



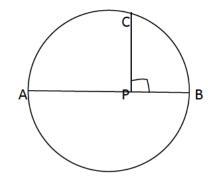
- A circle passes through the four vertices of a quadrilateral is called cyclic quadrilateral.
- Opposite angles of a cyclic quadrilateral are supplementary



 $AP \times PB = PC \times PD$



 $AP \times PB = PC \times PD$



 $AP X PB = PC^2$

- > Draw a circle of given radius. draw a triangle with given angles and all its vertices on the circle
- > Draw a rectangle of the same area that of a rectangle
- > Draw a square of the same area of a rectangle.
- > Draw a square of given side.