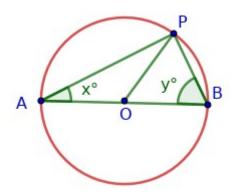
THIRUVANANTHAPURAM EDUCATIONAL DISTRICT


WS 2.1

MATHEMATICS

STANDARD:10

CIRCLES

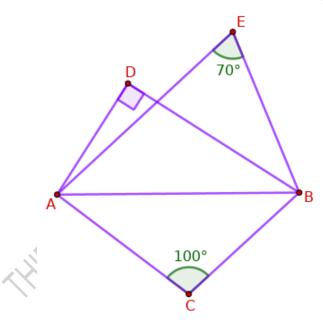
1.A) In the figure AB is the diameter of the circle with centre O. P is a point on the circle. The end points of the diameter are joined to the point P.

In \triangle OAP,

$$OA = \underline{\hspace{1cm}} (Reason \underline{\hspace{1cm}})$$

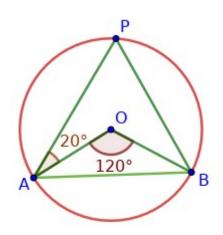
$$If < OAP = x^{\circ} Then < OPA = \underline{\hspace{1cm}} (Reason \underline{\hspace{1cm}})$$

In △BOP


In \triangle APB, < A = _____ < B = _____ < P = < APO + < BPO = _____ + ____ < A + < B + < P = 180° _____ + ____ + x° + y° = 180°

$$2(\underline{} + \underline{}) = 180^{\circ}$$

 $x^{\circ} + y^{\circ} = \frac{180}{2} = \underline{}$


B) In the table below fill in the blanks using the above figure

< AOP	<bop -="" 180°="" <="" =="" aop<="" th=""><th>$\overline{2}$</th><th>$y^{\circ} = {2}$</th><th>$<$P = x^{o} + y^{o}</th></bop>	$\overline{2}$	$y^{\circ} = {2}$	$<$ P = x^{o} + y^{o}
70	110	$\frac{180 - 70}{2}$ = 55°	$\frac{180 - 110}{2} = 35^{\circ}$	$55 + 35 = 90^{\circ}$
	80			
		30		
			45	
50			A DI	

2. A circle is drawn with AB as diameter. Find the position of the points C, D, E related to the circle (inside, outside or on the circle)

3. In the figure O is the centre of the circle and A, B, P are points on the circle < AOB = 120°, < OAP = 20°. Find all angles of \triangle ABP

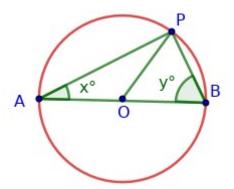
4. O is the centre of $\$ the circle and $\$ A, $\$ B, $\$ C, $\$ D are points on it. Find the measures of the angles below.

Circle	< ACB	< ADB	< AOB	< OAB = < OBA
C D D B	60°	60°	2×60° = 120°	$\frac{180 - 120}{2} = 30^{\circ}$
C D D B	70			

C O D B		100	
C D A55 B	45		SRIS

Prepared by Team Maths , Thiruvanathapuram Educational District

THIRUVANANTHAPURAM EDUCATIONAL DISTRICT


WS 2.1

MATHEMATICS

STANDARD:10

CIRCLES (ANSWERS)

1.A) In the figure AB is the diameter of the circle with centre O. P is a point on the circle. The end points of the diameter are joined to the point P.

In \triangle OAP,

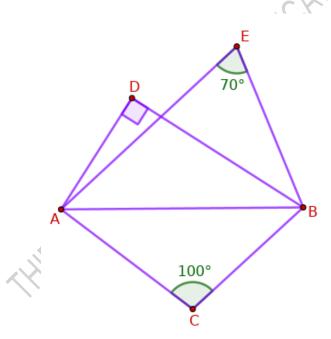
OA =
$$OP(Radius)$$

If $OAP = x^o$ Then $OPA = x^o$ (Isosceles triangle)

In △BOP

OB =
$$OP (Radius)$$

If $OBP = y^o$ Then $OPB = y^o$ (Isosceles triangle)

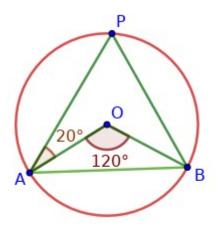

In
$$\triangle$$
 APB,
 $< A = \underline{x}^{\circ}$
 $< B = \underline{y}^{\circ}$
 $< P = < APO + < BPO = \underline{x}^{\circ} + \underline{y}^{\circ}$
 $< A + < B + < P = 180^{\circ}$
 $\underline{x}^{\circ} + \underline{y}^{\circ}$ $+ x^{\circ} + y^{\circ} = 180^{\circ}$

$$2(\underline{x^{o}} + \underline{y^{o}})$$
 = 180°
 $x^{o} + y^{o}$ = $\frac{180}{2}$ = 90°

B) In the table below fill in the blanks using the above figure

< AOP	< BOP = 180° - < AOP	$\mathbf{x}^{\circ} = \frac{180 - \langle AOP \rangle}{2}$	$\mathbf{y}^{\circ} = \frac{180 - < BOP}{2}$	$<$ P = x° + y°
70°	110°	$\frac{180 - 70}{2}$ = 55°	$\frac{180 - 110}{2} = 35^{\circ}$	$55^{\circ} + 35^{\circ} = 90^{\circ}$
100°	80°	$\frac{180 - 100}{2} = 40^{\circ}$	$\frac{180 - 80}{2} = 50^{\circ}$	$40^{\circ} + 50^{\circ} = 90^{\circ}$
120°	60°	30°	60°	$30^{\circ} + 60^{\circ} = 90^{\circ}$
90°	90°	45°	45°	$45^{\circ} + 45^{\circ} = 90^{\circ}$
50°	130°	65°	25°	$65^{\circ} + 25^{\circ} = 90^{\circ}$

2. A circle is drawn with AB as diameter. Find the position of the points C, D, E related to the circle (inside, outside or on the circle)



 $< D = 90^{\circ}$, The point D is on the circle.

<E =70° < 90° , The point E is outside the circle.

<C= $100^{\circ} > 90$, The point C is inside the circle.

3. In the figure O is the centre of the circle and A, B, P are points on the circle < AOB = 120°, < OAP = 20°. Find all angles of \triangle ABP.

Given
$$< AOB = 120^{\circ}$$

Therefore
$$<$$
 P= $\frac{120}{2}$ = $\frac{60^{\circ}}{}$
Join OP . Consider \triangle AOP

$$OA = OB (Radius)$$

△ AOP is <u>isosceles triangle</u>

Given
$$< OAP = 20^{\circ}$$

Therefore $< OPA = 20^{\circ}$

$$< AOP = 180^{\circ} - (20^{\circ} + 20^{\circ}) = 180^{\circ} - 40^{\circ} = 140^{\circ}$$

Therefore
$$<$$
 B = $\frac{140}{2}$ = $\frac{70^{\circ}}{2}$ Consider \triangle BOP

$$< BOP = 360^{\circ} - (120^{\circ} + 140^{\circ}) = 360^{\circ} - 260^{\circ}$$

= 100°

Therefore
$$<$$
 A $=$ $\frac{100}{2}$ $=$ $\frac{50^{\circ}}{}$

4. O is the centre of $\,$ the circle and A, B , C, D are points on it. Find the measures of the angles below.

Circle	< ACB	< ADB	< AOB	< OAB = < OBA
C D D	60°	60°	2×60° = 120°	$\frac{180 - 120}{2} = 30^{\circ}$
C D D B	70	70°	2×70° = 140°	$\frac{180 - 140}{2} = 20^{\circ}$
C O D D D D D D D D D D D D D D D D D D	50°	50°	100	$\frac{180 - 100}{2} = 40^{\circ}$
C O 45 B	45°	45	2×45° = 90°	$\frac{180 - 90}{2} = 45^{\circ}$

Prepared by Team Maths , Thiruvanathapuram Educational District