THIRUVANANTHAPURAM EDUCATIONAL DISTRICT
 CHAPTER 2 （MODULE 2）

CHEMISTRY
 STANDARD X

MODULE 2 －RELATIVE ATOMIC MASS AND GRAM ATOMIC MASS

KITE VICTERS STD 10 Chemistry Class 8 （First Bell－ヘロベலைண）
Please click to see related First Bell online class
1．Fill in the blanks
1 Dozen $=12$ No．s
1mole＝ \qquad No．s

KITE VICTERS STD 10 Chemistry Class 09 （First Bell－กロ๙゙ ๑ைண）

2．Relative atomic mass
The atomic mass of elements are expressed by considering $1 / 12$ mass of an atom of carbon－12 as one unit．
Gram Atomic Mass
The mass of an element in grams equal to its atomic mass is called 1 Gram Atomic Mass（1 GAM）of the element．This may also be shortened as 1 Gram Atom．

Element	Relative atomic mass	GAM（Relative atomic mass in gram）	No．s of atoms in 1 GAM
Hydrogen	1	1 g	6.022×10^{23}
Helium	4	4 g	6.022×10^{23}
Nitrogen	14	14 g	6.022×10^{23}
Oxygen	16	16 g	6.022×10^{23}

Complete the table

Element	Relative atomic mass	GAM (Relative atomic mass in gram)	No.s of atoms in 1GAM
Carbon	12	12 g	6.022×10^{23}
Neon	20	20 g	$\ldots \ldots$. (a).....
Calcium	..(b)...	40 g	6.022×10^{23}
Sulphur	..(c)...	32 g	6.022×10^{23}

KITE VICTERS STD 10 Chemistry Class 10 (First Bell-กم๙ั ๑ைண)

3. Avagadro number $\left(\mathrm{N}_{\mathrm{A}}\right)$

One gram atomic mass of any element contains 6.022×10^{23} atoms.
This number is known as Avagadro number. This is indicated as \mathbf{N}_{A}
Find out the pairs having equal no.s of atoms
> 10 g Hydrogen
$>140 \mathrm{~g}$ Nitrogen
> 16 g Oxygen
$>60 \mathrm{~g}$ Carbon
> 230 g Sodium
4. One mole of any atom contains 6.022×10^{23} no.s of atoms and it mass is equal to relative atomic mass expressed in gram ie GAM
Complete the diagram

5.
> Number of Gram Atomic Mass = Given Mass in grams / GAM of element
$>$ Number of GAM = Given Mass in grams / GAM of element
$>$ Number of Atoms $=$ Number of GAM $\times 6.022 \times 10^{23}$
Find out no. of atoms present in following samples
(a) 240 g of carbon
(b) 460 g Sodium

