ARITHMETIC SEQUENCES

Note:- Numbers in an arithmetic sequence are called terms.

The terms can be denoted as

 $X_1, X_2, X_3, X_4, X_5, X_6, X_7, \dots, X_n$

$X_1, X_2, X_3, X_4, X_5, X_6, X_7$
3,5,7,9,11,13,15,In this arithmetic sequence,
1^{st} term $\mathbf{x}_1 = 3$
2^{nd} term $x_2 = 5$
3^{rd} term $x_3 = 7$
$4^{th} term x_4 = 9$
common difference $d = x_2 - x_1 = 5 - 3 = 2$
common difference $d = x_3 - x_2 = 7 - 5 = 2$
common difference $d = x_4 - x_3 = 9 - 7 = 2$
common difference $d = x_5 - x_4 = 11 - 9 = 2$
common difference $d = x_6 - x_5 = 13 - 11 = 2$ Adding the common difference d to the 1 st term gives the 2 nd term

Adding the common difference d to the 2nd term gives the 3rd term

Adding the common difference d to the 3rd term gives the 4th term

Adding the common difference d to the 4th term gives the 5th term

 1st term
 $x_1 = 3$ common difference d = 2

 2nd term
 $x_2 = x_1 + d = 3 + 2 = 5$

To get the 7th tem x₇ to the 1st term x₁ how many times add the common difference d ? <u>6 times</u>

That is
$$x_7 = x_1 + 6 d$$

15 = 3 + 6 (2)

Adding the common difference d to the 1st term gives the 2nd term

That is
$$X_2 = X_1 + 1d$$

Subtracting 1 time common difference from the 2nd term gives the 1st term

That is
$$X_1 = X_2 - 1 d$$

Adding 2 times common difference d to the 3rd term gives the 5th term

$$x_{5} = x_{3} + 2 d$$

Subtracting 2 times common difference from the 5th term gives the 3rd term

 $x_3 = x_5 - 2 d$

Adding 4 times common difference d to the 5th term gives the 9th term

$$x_{0} = x_{5} + 4 d$$

Subtracting 4 times common difference from the 9th term gives the 5th term

$$x_{5} = x_{9} - 4d$$

Subtracting 2 times common difference from the 5th term gives the 3rd term

$$x_{3} = x_{5} - 2 d$$

Adding 5 times common difference d to the 5th term gives the 10th term

$$x_{10} = x_5 + 5 d$$

Subtracting 8 times common difference d from the 9th term gives the 1st term

$$x_{1} = x_{9} - 8d$$

You will understand the following

X ₂	=	$\mathbf{x}_1 + \mathbf{1d}$
X 3	=	$\mathbf{x}_1 + 2\mathbf{d}$
X 4	=	$\mathbf{x}_1 + \mathbf{3d}$
X 6	=	x ₁ + 5 d
X 7	=	x ₁ + 6d
X 20	=	x ₁ + 19d
X 31	=	x ₁ + 30d

X 2	=	X 3	- 1	d
X 3	=	X 5	- 2	d
X 4	=	X 14	- 10	d
X 5	=	X 20	- 15	d
X 6	=	X ₂₆	- 20	d
X 7	=	X 17	- 10	d
X 8	=	X 10	- 2	2 d
		/		

X ₇ –	X ₅	= 2 d
X ₁₇ –	X ₇	= 10d
X ₁₀ –	X ₅	= 5 d
X ₆ –	X ₂	= 4 d
X ₇ –	X ₂	= 5 d
X ₁₅ –	X ₅	= 10d

ARITHMETIC SEQUENCES

To get the nth term of an Arithmetic sequence : -Add (n-1)times the common difference to the First term If First term f and common difference d, Then nth term(algebraic expression) of an arithmetic sequence is $x_n = f + (n-1) d$ $x_n = f + dn - d$

 $x_n = dn + f - d$ (Write like this.)

<u>Note:-</u> First term f, common difference d,

nth term (algebraic expression) of an arithmetic sequence

 $\mathbf{x}_n = \mathbf{dn} + \mathbf{f} - \mathbf{d}$

<u>Note:</u> Algebraic form is always $x_n = an + b$ (a first degree polynomial) Here common difference d = The number number multiplied by n (that is a) first term f = the sum of the coefficients (a + b)

Question : - Consider the nth term of an Arithmetic $X_n = 2n+1$.Then sequence i) Find common difference ii) Find the first term iii) Write the sequence iv) Find the 10th term Answer: - $X_n = 2n + 1$ i)Common difference d = The number multiplied by n = 2 ii)First term (X_1) or f = sum of the coefficients= 2 + 1= 3 iii) Sequence 🔿 3,5,7,9,... iv) n^{th} term $X_n = 2n + 1$ 10th term $X_{10} = 2(10) + 1$ 20 + 1 =21

Arithmetic Sequence

Algebraic expression for the arithmetic sequence 2n + 1 [That is n^{th} term x_n] 2n means multiples of 2. That is 2, 4, 6, 8, 10,..... 2n + 1 means adding 1 to the multiples of 2. That is 3.5.7.9.11 First term f = 3common difference d = 2If algebraic expression is given, there is a trick to see the common difference and the first term without writing the sequence eq1:-algebraic expression $x_n = 2n + 1$ common difference d = The number multiplied by n = 2First term f = 2 + 1 = 3(Erase n and write numbers only) Then the sequence is obtained by adding the common difference 2 to the first term 3 That is 3,5,7,9,11,..... eg 2:- algebraic expression $x_n = 3n - 1$ common difference d = നന്ഗെണിച്ച സംഖ്യ = 3 ആദ്യപദം f = 3 - 1 = 2 (Erase n and write numbers only)

Then Sequence = 2, 5, 8, 11,

<u>3 Questions from the same Concept(From nth term)</u>

1) You can see the position of terms in an arithmetic sequence using the algebraic form. Question-1

Which term is 99 in the arithmetic sequence 1.3.5.7.9.11....? common difference d = 3 - 1 = 2Multiples of d = 2 = 2, 4, 6, 8, 10, ..., 2n<u>Subtracting</u> = 1,3,5,7,9......2n-1 $n^{th} term x_n = 99$ Let 2n - 1 = 992n = 99 + 12n = 100= 100/2 = 50n That is 50th term is 99

2) You can see how many terms in an arithmetic sequence using the algebraic form. Question-2

How many terms are there in the arithmetic sequence

common difference d = 8 - 5 = 3

Multiples of $d = 3 = 3, 6, 9, 12, 15, \dots, 3n$ Adding <u>2</u> = 5, 8, 11, 14, 17, \dots, <u>3n+2</u>

Let n^{th} term $x_n = 92$ 3n + 2 = 92 3n = 92 - 2 3n = 90 n = 90/3 = 30 30^{th} term is 92

That is , there are 30 terms

3) You can check any number is a term in an arithmetic sequence using the algebraic form. <u>*Question-3*</u>

<u>Is 61 a term</u> in the sequence 4, 7, 10, 13,?

common difference d = 7 - 4 = 3d = multiples of 3 = 3, 6, 9, 12, 15,.....3<u>n</u> Adding 1 = 4,7, 10, 13, 16......3n+1Let $n^{th} x_n = 61$ 3n + 1 = 61= 61 - 13n 3n = 60 = 60/3 = 20n n is a natural number So 61 is a term of the sequence

If we know any 2 terms in an arithmetic sequence, we can find the common difference

If we divide the term difference by the position difference , we get the common difference														
<u>Consider t</u>							:3	, 5	٦,	,9	, 11 ,	13	,15	, 17,
	_		F		E		E		ε		ε		F	
	1 st term		2 nd term		3 rd term		4 th term		5 th term		6 th term		7 th term	••••••
Terms	3	,	5		7		9	,	11	,	13	,	15,	•••••
Positions	1 st place		2 nd place		3 rd place		4 th place		5 th place		6 th place		7 th place	
Not	te th	e po		ns	and	the	terr	ກຣ						
$7^{ ext{th}}$	posi	itio	n's t	err	n =	15								
$2^{ m nd}$	2 nd position's term = 5													
Term difference = 15 - 5 = 10														
Position difference = 7 - 2 = 5														
<u>Term difference</u> common difference d = Position difference														
d = <u>10</u> = 2 5														
(3,5,7,9,11,13 Here common difference is 2) That is, the difference between any two terms in the arithmetic														
sequence divided by their position difference gives the common														

difference

<u>Note:-</u> If you know the first term (x_1) and the last term (x_n) of an arithmetic sequence, Another way to find the number of terms **n**. To find the number of terms in an arithmetic sequence, Lastterm – Firstterm commondifference **Question:-**How many terms are in the sequence 3,5,7,9,.....103? Answer Number of terms n = (Last term – First term) + 1 common difference Number of terms n = (103 - 3) + 12 = 100 + 1 2 +1 = 51= 50 There are 51 terms in the sequence That is , 51st term is 103

ARITHNETIC SEQUENCES

<u> 1 മുതൽ തുടർച്ചയായ നിശ്ചിത എണ്ണൽ സംഖ്യകളുടെ തുക</u>

(The sum of fixed number of consecutive natural natural numbers starting with 1)

പ്പുതൽ 🗋 വരെയുള്ള തുടർച്ചയായ എണ്ണൽ സംഖ്യകളുടെ <mark>തുക</mark> 🛛 =

eg:-

) മുതൽ <mark>10</mark> വരെയുള്ള എണ്ണൽ സംഖ്യകളുടെ തുക

$$= \frac{10 \times (10 + 1)}{2}$$
$$= \frac{10 \times 11}{2}$$
$$= \frac{110}{2} = 55$$

<u>Note - 7</u>

n(n+1)

1 മുതൽ 100 വരെയുള്ള എണ്ണൽ സംഖ്യകളുടെ തുക

$$= \frac{100 \times (100 + 1)}{2}$$
$$= \frac{100 \times 101}{2}$$
$$= \frac{10100}{2} = 5050$$

Sequence: 1,3,5,7,9,11,13,15..... In the arithmetic sequences, the sum of the positions is equal to the sum of the pairs of terms \mathbf{X}_2 X_3 X **X**4 X₅ X X X_8 5, 15..... 13. 3,)), No. of terms = 8 . That is 4 pairs. Pair as shown above $x_1 + x_2 = sum of the positions = 1 + 8$ $x_2 + x_7 = sum of the positions = 2 + 7 = 9$ $x_3 + x_6 \Rightarrow$ sum of the positions = 3 + 6 = 9 $x_4 + x_5 \Rightarrow$ sum of the positions = 4 + 5 = 9 $x_1 + x_8$ (sum of the pairs of terms) = 1 + 15 = 16

 $x_1 + x_8$ (sum of the pairs of terms) = 1 + 15 = 16 $x_2 + x_7$ (sum of the pairs of terms) = 3 + 13 = 16 $x_3 + x_6$ (sum of the pairs of terms) = 5 + 11 = 16 $x_4 + x_5$ (sum of the pairs of terms) = 7 + 9 = 16

Note:- the sum of the positions is equal to the sum of the pairs of terms.

ARITHMETIC SEQUENCES

<u>Question: - 5,10,15,20,.... In this arithmetic</u> sequences, find the sum of the first 4 terms.

Number of terms = 4 , That is <u>2 pairs</u>

Sum of the 1st pair = $x_1 + x_4 = 5 + 20 = 25$

Sum of the 2^{nd} pair = $x_2 + x_3 = 10 + 15 = 25$

If the number of terms in an arithmetic sequence is an even number .

Sum = Number of pairs X Sum of one pair

<u>Question: - 1,3,5,7,9,11,13,15..... In this arithmetic</u> sequences, find the sum of the first 8 terms.

Number of terms = 8 , That is 4 pairs

Sum of the 1^{st} pair = $x_1 + x_8 = 1 + 15$	= 16
Sum of the 2^{nd} pair = $x_2 + x_7 = 3 + 13$	= 16
Sum of the 3^{rd} pair = $x_3 + x_6 = 5 + 11$	= 16
Sum of the 4 th pair = $x_4 + x_5 = 7 + 9$	= 16

Sum of one pair = 16°

If the number of terms in an arithmetic sequence is an even number .

Sum = Number of pairs X Sum of one pair

<u>Another Feature</u>

sum of the pairs of terms	sum of the positions
$X_1 + X_8 = 1 + 15 = 16$	1 + 8 = 9
$X_2 + X_7 = 3 + 13 = 16$	2 + 7 = 9
$X_3 + X_6 = 5 + 11 = 16$	3 + 6 = 9
$x_4 + x_5 = 7 + 9 = 16$	4 + 5 = 9

x ₁ + x ₈ ⇒ sum of the positions				
$x_2 + x_7 = sum of the positions$	= 2 +	7	=	9
x₃ + x₅⇒sum of the positions	=3 +	6	=	9
x₄+ x₅ ⇒sum of the positions	=4 +	5	=	9
4 5 •				

 $x_1 + x_8$ (sum of the pairs of terms) = 1 + 15 = 16 $x_2 + x_7$ (sum of the pairs of terms) = 3 + 13 = 16 $x_3 + x_6$ (sum of the pairs of terms) = 5 + 11 = 16 $x_4 + x_5$ (sum of the pairs of terms) = 7 + 9 = 16

Note:- the sum of the positions is equal to the sum of the pairs of terms.

 1^{st} and 8^{th} (1 + 8 = 9) 2^{nd} and 7^{th} (2 + 7 = 9) 3^{rd} and 6^{th} (3 + 6 = 9) 4^{th} and 5^{th} (4 + 5 = 9) Make pairs the terms and add

X 1	+	$x_8 = 5 + 40 = 45$
X 2	+	$x_7 = 10 + 35 = 45$
X 3	+	$\mathbf{x}_6 = 15 + 30 = 45$
\mathbf{X}_4	+	$x_5 = 20 + 25 = 45$

Note : -

In an arithmetic sequence , the sum of the positions is equal to the sum of the pairs of terms.

T<u>he sum of the positions is equal to</u> <u>the sum of the pairs of terms.</u>

eg : -

2 4,6,8,10,12,... is an arithmeticsequence. Find the sum of the first 6 terms. Sum of 1st term + 6th term = 2 + 12 = 14 Sum of 2nd term + 5th term = 4 + 10 = 14 Sum of 3rd term + 4th term = 6 + 18 = 14

Here write the terms as pairs. 6 terms = 3 pairs of terms Sum of each pair = 14

: Sum of 6 terms = $3 \times 14 = 42$

Add the positions in those pairs of terms. Then we get 7

 1^{st} place + 6^{th} place = 1 + 6 = 7 2^{nd} place + 5^{th} place = 2 + 5 = 7 3^{rd} place + 4^{th} place = 3 + 4 = 7 That is

In an arithmetic sequence, The sum of the positions is equal to the

<u>sum of the pairs of terms.</u>

THMETIC SEQUENCE

Odd Numbers

1, 3, 5, 7, 9, 11, 13.....

How many tigers are there in the picture? 7 What is the place of the tiger in the middle?

Tiger in the 4th place

(Hint:- 7 odd number, Adding 1 = 8, Half 4)

How many horses are there in the picture? 5 What is the place of the horse in the middle?

Horse in the 3rd place (Hint:-5 odd number, Adding) = 6, Half 3

How many squirrels are there in the picture? 9 What is the place of the squirrel in the middle?

Squirrel in the 5th place (Hint:-9 odd number, Adding 1 = 10, Half 5 *Note:-* If the total number is odd , what is the <u>place</u> in the middle?

Add 1 to the number . Find half of it .

Question: Find the sum of the first 5 terms of the arithmetic sequence 3,5,7,9,11,13,15,...

No. of terms = $5 (\frac{\text{Odd no.}}{\text{Middle term}})$

<u>If the number of trems in an arithmetic</u> <u>sequence is an <mark>odd number</mark>_</u>

<u>Note:-</u> If you know the first term (x_1) and the last term (x_n) of an arithmetic sequence ,The formula for finding the sum (S_n) of the terms

$$S_{n} = \underline{n}_{2} (First term + Last term)$$

$$S_{n} = \underline{n}_{2} (X_{1} + X_{n})$$
Question:-
3,5,7,9,.....ln ths arithmetic sequence,
Find the sum of the first 20 terms.
Answer: Number of terms n = 20

common difference d = 2

First term $X_1 = 3$

Last term
$$x_{20} = x_1 + 19d$$

= 3 +19(2)
= 3 +38 = 41

Sum of n terms $S_n = n(\text{first term + last term})$ = $\frac{20}{2}(3 + 41)$ = 10(44) = 440

Question :- 3,5,7,9,21 in this arithmetic sequence
i) How many terms?
ii) Find the sum of all terms
ഉത്തരം
i) Number of terms n = (Last term – First term) + 1
common difference
Number of terms $n = (21 - 3) + 1$ 2
10 1
$= \frac{18}{2} + 1$
= 9 + 1
= 10
There are 10 words in the range,i.e. 10 th term 2
1 ii) Number of terms $n = 10$ First term $x_1 = 3$
Last term x ₁₀ = 21
Sum of S_n = n (First term + Last term)
$\frac{1}{2} = 10(3+21)$
2
= 5 (24) = 120

<u>Note:-</u> The algebraic expression of the sum of an arithmetic sequence is always $S_n = an^2 + bn$. <u>Note:-</u> If the sum of the first n terms is of the form $S_n = an^2 + bn$, common difference =twice the coefficient of $n^2 = 2a$ First term = The sum of the coefficients = a+b **Question :-** . If the algebraic expression of the sum of an arithmetic sequence is $3n^2 + 2n$ i)What is the common difference ? ii) What is first term ? Answer The number multiplied by $n^2 = 3$ common difference =twice the coefficient of n²=2(3)=6 First term = The sum of the coefficients = 3 + 2 = 5

Question :- . The Algebraic expression of the sum of an arithmetic sequence is $5n^2 - 3n$ i) Find the sum of the first 10 terms ii)Find the sum of the first 5 terms <u>Answer</u> i)The sum of the first n terms $S_n = 5n^2 - 3n$ The sum of the first 10 terms $S_{10} = 5(10)^2 - 3(10)$ = 5(100) - 30= 500 - 30=470 ii) The sum of the first n terms $S_n = 5n^2 - 3n$ The sum of the first 5 terms $S_5 = 5(5)^2 - 3(5)$ = 5(25) - 15= 125 - 15=110

The sum of the first **n** even numbers = n(n+1)

The sum of the first 3 even numbers= 3(3+1) = 3(4) = 12

(The sum of the first 3 even numbers= $2 + 4 + 6 = 12 = 3 \times 4$)

The sum of the first **n** odd numbers = N^2

The sum of the first <mark>3 odd numbers</mark> = 3² = 9

(The sum of the first $3 \text{ odd numbers} = 1 + 3 + 5 = 9 = 3^2$)

In an arithmetic sequence,

Algebraic expression of sum $S_n = \frac{d}{2} n^2 + (f - \frac{d}{2}) n$

Can be find using this formula

Question:- 5,8,11,14,.....

Write the algebraic expression of this arithmetic sequence Answer:-

 1^{st} term f = 5 common difference d = 8 - 5 = 3തുകയുടെ ബീജഗണിത രൂപം $S_n = \frac{d}{2}n^2 + (f - \frac{d}{2})n$ $S_n = \frac{3}{2}n^2 + (5 - \frac{3}{2})n^2$ $S_n = \frac{3}{2}n^2 + (10 - \frac{3}{2})n$ $S_n = \frac{3}{2}n^2 + (\frac{10-3}{2})n$ $S_n = 3 n^2 + 7 n$

A set of numbers written as the first, second, third and so on, according to a particular rule is called a sequence.

eg:-1,2,3,4,... (next 5) 1,4,9,16,...(next 25) 10,100,1000,10000,...(next 100000) 2,4,8,16,... (next 32)

Algebra Of Sequences

The generally used mathematical principle in such a sequences of numbers can be written in algebraic expressions.

eg : -

- 1, 2, 3, 4, ... (algebraic expression **n**)
- 1, 4, 9, 16, \ldots (algebraic expression n^2)
- 10, 100, 1000, 10000, ... (algebraic expression 10^{n})
- 2, 4, 8, 16, \ldots (algebraic expression 2^n)

Note-2

3.

Arithmetic Sequences

When writing the numbers consecutively, if a particular number is added or subtracted to get the next number such sequences are called Arithmetic Sequences.

eg:-

- 1,2,3,4,.... (Add 1 to get the next one)
- 10,20,30,40,.....(Add 10 to get the next one)
- 6,12,18,24,.... (Add 6 to get the next one)
- 100,90,80,... (Subtract 10 to get the next one)
- 56,52,48,.... (Subtract 4 to get the next one)

4. Terms Numbers in arithmetic sequence are called terms eg:- 10,20,30,40,.... in this arithmetic sequence, First term $x_1 = 10$ Second term $x_2 = 20$ Third term $x_3 = 30$

 n^{th} term can be written as x_n (algebraic expression)

ARITHMETIC SEQUENCES

6. Using some terms of an arithmetic Sequence, we can find another terms.

eg : -

The 4th term of an arithmetic sequence is 22 and the 10th term is 46. Wht is the 20th term?

Answer

Between 4^{th} term and 10^{th} term Term difference = 46 - 22 = 24Position difference = 10 - 4 = 6 \therefore Common difference = 24 / 6 = 4

Adding 10 times the common difference to the 10th term , we get the 20th term.

X ₂₀	=	X ₁₀	+	10 d
	=	46	+	10(4)
	=	46	+	40
	=	86		

7. <u>To check the term of an arithmetic</u> <u>sequence</u>

eg:-

Check 37 is a term of the sequence 5,19,13,..., and 1s 42 a term ?

Sequence = 5,19,13,... Common difference d = 9 - 5 = 4 When First term (5) is divided by common difference 4, remainder = 1

When 42 is divided by common difference 4, remainder = 2 Here remainders are different . So 42 is not a term of the sequence.

> All the terms of the arithmetic sequence have the same remainder On division by the common difference.