ARITHMETIC SEQUENCES
 ARITHMETIC SEQUENCES
 T

Note：－Numbers in an arithmetic sequence are called terms．
The terms can be denoted as

$$
\begin{align*}
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, \ldots x_{n} \ldots \ldots . \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \\
& 3,5,7,9,11,13,15, \ldots \text { In this arithmetic sequence, } \\
& 1^{\text {st }} \text { term } x_{1}=3 \\
& 2^{\text {nd }} \text { term } x_{2}=5 \\
& 3^{\text {rd }} \text { term } x_{3}=7 \\
& 4^{\text {th }} \text { term } x_{4}=9 \\
& \text { common difference } d=\mathbf{x}_{2}-\mathbf{x}_{1}=5-3=2 \\
& \text { common difference } \mathbf{d}=\mathbf{x}_{3}-\mathbf{x}_{2}=7-5=2 \\
& \text { common difference } \mathbf{d}=\mathbf{x}_{4}-\mathbf{x}_{3}=9-7=2 \\
& \text { common difference } \mathbf{d}=\mathbf{x}_{5}-\mathbf{x}_{4}=\mathbf{1 1}-\mathbf{9}=2 \\
& \text { common difference } \mathbf{d}=\mathbf{x}_{6}-\mathbf{x}_{5}=\mathbf{1 3}-\mathbf{1 1}=2 \\
& \text { Adding the common difference } \mathbf{d} \text { to the } \mathbf{1}^{\text {st }} \text { term gives the } 2^{\text {nd }} \text { term }
\end{align*}
$$

Adding the common difference d to the $3^{\text {rd }}$ term gives the $4^{\text {th }}$ term

Adding the common difference d to the $4^{\text {th }}$ term gives the $5^{\text {th }}$ term
$1^{\text {st }}$ term $\mathrm{x}_{1}=3 \quad$ common difference $\mathrm{d}=2$
$2^{\text {nd }}$ term $\quad x_{2}=x_{1}+d=3+2=5$

\square $-$ ，
\square called

term $\quad x_{1}=3$ \square
\square I號
 an

$$
1
$$

\square號號

Adding the common difference d to the $2^{\text {nd }}$ term gives the $3^{\text {rd }}$ term
dem mon difference d

$$
\|
$$

|
\square
Adding the common difference d to the $4^{\text {th }}$

 Adding the common difference \(d\) to the \(4^{\text {th }}\) term gives the \(5^{\text {th }}\)
 -
-
-

.
\square
I

$$
\square
$$ ．

[
ـ

$$
\square
$$

ـ
-

$$
\Omega
$$

-

$$
-
$$

-

$$
\square
$$

\square
\square $1^{\text {st }}$ tel
$2^{\text {nd }}$ te
$3^{\text {rd }} \mathbf{t e}$
$4^{\text {th }} \mathbf{t e}$
\mathbf{C}
\mathbf{C}
\mathbf{C}
\mathbf{C}
\mathbf{C}
A
A
A號
\square

3
$1^{\text {st }}$
$2^{\text {nd }}$
$3^{\text {rd }}$
$4^{\text {th }}$

 difference d ， \(7,9,11,13,15\),
 rm $x_{1}=3$
rm $x_{2}=5$
amon difference d
amon difference d
amon difference d
amon difference d
dding the common difference
dding the common difference

$$
\square
$$

$3^{\text {rd }}$ term $\quad \mathbf{x}_{3}=\mathbf{x}_{2}+\mathbf{d}=5+2=7$
$4^{\text {th }}$ term $x_{4}=x_{3}+d=7+2=9$
$5^{\text {th }}$ term $\quad x_{5}=x_{4}+d=9+2=11$
$\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}, \mathbf{X}_{4}, \mathbf{X}_{5}, \mathbf{X}_{6}, \mathbf{X}_{7}$
$3,5,7, \quad 9,11,13$,
$+2+2+2+2+2$
To get the $7^{\text {th }}$ dem x_{7} to the $1^{\text {st }}$ term x_{1} how many times add the common difference d ?

6 times
That is $\mathbf{x}_{7}=\mathbf{x}_{1}+\mathbf{6 d}$

$$
15=3+6(2)
$$

Adding the common difference d to the $1^{s t}$ term gives the $2^{\text {nd }}$ term

$$
\text { That is } x_{2}=x_{1}+1 d
$$

Subtracting 1 time common difference from the $2^{\text {nd }}$ term gives the $1^{\text {st }}$ term

That is $X_{1}=x_{2}-1 d$
Adding 2 times common difference d to the $3^{\text {rd }}$ term gives the $5^{\text {th }}$ term

$$
x_{5}=x_{3}+2 d
$$

Subtracting 2 times common difference from the $5^{\text {th }}$ term gives the $3^{\text {rd }}$ term

$$
x_{3}=x_{5}-2 d
$$

Adding 4 times common difference d to the $5^{\text {th }}$ term gives the $9^{\text {th }}$ term

$$
x_{9}=x_{5}+4 d
$$

Subtracting 4 times common difference from the $9^{\text {th }}$ term gives the $5^{\text {th }}$ term

$$
x_{5}=x_{9}-4 d
$$

Subtracting 2 times common difference from the $5^{\text {th }}$ term gives the $3^{\text {rd }}$ term

$$
x_{3}=x_{5}-2 d
$$

Adding 5 times common difference d to the $5^{\text {th }}$ term gives the $10^{\text {th }}$ term

$$
x_{10}=x_{5}+5 d
$$

Subtracting 8 times common difference d from the $9^{\text {th }}$ term gives the $1^{\text {st }}$ term

$$
x_{1}=x_{9}-8 d
$$

You will understand the following

$$
\begin{aligned}
& \mathbf{x}_{2}=\mathbf{x}_{1}+\mathbf{1 d} \\
& \mathbf{x}_{3}=\mathbf{x}_{1}+2 \mathbf{d} \\
& \mathbf{x}_{4}=\mathbf{x}_{1}+3 \mathbf{d} \\
& \mathbf{x}_{6}=\mathbf{x}_{1}+5 \mathbf{d} \\
& \mathbf{x}_{7}=\mathbf{x}_{1}+6 \mathbf{d} \\
& \mathbf{x}_{20}=\mathbf{x}_{1}+19 \mathbf{d} \\
& \mathbf{x}_{31}=\mathbf{x}_{1}+30 \mathbf{d}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{2}=\mathbf{x}_{3}-\mathbf{1 d} \\
& \mathbf{x}_{3}=\mathbf{x}_{5}-\mathbf{2 d} \\
& \mathbf{x}_{4}=\mathbf{x}_{14}-\mathbf{1 0 d} \\
& \mathbf{x}_{5}=\mathbf{x}_{20}-\mathbf{1 5 d} \\
& \mathbf{x}_{6}=\mathbf{x}_{26}-\mathbf{2 0 d} \\
& \mathbf{x}_{7}=\mathbf{x}_{17}-\mathbf{1 0 d} \\
& \mathbf{x}_{8} \quad=\mathbf{x}_{10}-2 \mathbf{d} \\
& \mathbf{x}_{7}-\mathbf{x}_{5}=\mathbf{2 d} \\
& \mathbf{x}_{17}-\mathbf{x}_{7}=10 \mathrm{~d} \\
& \mathbf{x}_{10}-\mathbf{x}_{5}=5 \mathbf{d} \\
& \mathbf{x}_{6}-\mathbf{x}_{2}=4 \mathbf{d} \\
& \mathbf{x}_{7}-\mathbf{x}_{2}=5 \mathbf{d} \\
& \mathbf{x}_{15}-\mathbf{x}_{5}=10 \mathrm{~d}
\end{aligned}
$$

ARITHMETIC SEQUENCES

To get the $n^{\text {th }}$ term of an Arithmetic sequence :-
Add ($\mathrm{n}-1$)times the common difference to the First term
If First term f and common difference d, Then $n^{\text {th }}$ term(algebraic expression) of an arithmetic sequence is

$$
\begin{aligned}
& x_{n}=f+(n-1) d \\
& x_{n}=f+d n-d \\
& x_{n}=d n+f-d \quad \text { (Write like this.) }
\end{aligned}
$$

Note:- First term f, common difference d, $n^{\text {th }}$ term (algebraic expression) of an arithmetic sequence

$$
x_{n}=d n+f-d
$$

Note:- Algebraic form is always $\mathrm{x}_{\mathrm{n}}=\mathrm{an}+\mathrm{b}$ (a first degree polynomial)
Here common difference $\mathrm{d}=$ The number number multiplied by n (that is a)
first term $\mathbf{f}=$ the sum of the coefficients $(\mathbf{a}+\mathrm{b})$

Question:- Consider the nth term of an Arithmetic
sequence $\quad X_{n}=2 n+1$.Then
i) Find common difference
ii) Find the first term
iii) Write the sequence
iv) Find the $10^{\text {th }}$ term

Answer:-

$$
x_{n}=2 n+1
$$

i) Common difference $d=$ The number multiplied by $n=2$

$$
\text { ii) First term } \begin{aligned}
\left(X_{1}\right) \text { or } f & =\text { sum of the coefficients } \\
& =2+1 \\
& =3
\end{aligned}
$$

iii) Sequence $\Rightarrow 3,5,7,9, \ldots$
iv) $n^{\text {th }}$ term $\quad X_{n}=2 n+1$

$$
10^{\text {th }} \text { term } \quad X_{10}=2(10)+1
$$

$$
=20+1=21
$$

Arithmetic Sequence

Algebraic expression for the arithmetic sequence $2 n+1$ [That is $n^{\text {th }}$ term $\left.x_{n}\right]$ $2 n$ means multiples of 2 . That is $2,4,6,8,10$,........ $2 n+1$ means adding 1 to the multiples of 2 . That is $3,5,7,9,11, \ldots$.
First term $f=3$
common difference $d=2$

If algebraic expression is given, there is a trick to see the common difference and the first term without writing the sequence
eg 1:- algebraic expression $\quad x_{n}=2 n+1$ common difference $\mathbf{d}=$ The number multiplied by $n=2$ First term $f=2+1=3$
(Erase n and write numbers only)
Then the sequence is obtained by adding the common difference 2 to the first term 3
That is $3,5,7,9,11, \ldots . .$.
eg 2:- algebraic expression $\quad x_{n}=3 n-1$
common difference $d=n$ amgentar moul $=3$

$$
\text { カேß』ß○ } f=3-1=2
$$

(Erase n and write numbers only)

Then Sequence $=2,5,8,11, \ldots .$.

From the algebraic form of an Arithmetic Sequence, we can

 find any terms of the sequence.1) Consider the algebraic form of an Arithmetic sequence

$$
X_{n}=2 n+1 . \text { Then find its } 10^{\text {th }} \text { term? }
$$

In algebra, just write 10 instead of n

$$
\begin{aligned}
& X_{n}=2 n+1 \\
& X_{10}=2(10)+1 \\
&=20+1 \\
&=21
\end{aligned}
$$

2) Consider the algebraic form of an Arithmetic sequence $X_{n}=3 n-2$. Then find its $5^{\text {th }}$ term?

In algebra, just write 5 instead of n

$$
\begin{aligned}
X_{n}=3 n & -2 \\
X_{10} & =3(5)-2 \\
& =15 \quad-2 \\
& =13
\end{aligned}
$$

3 Questions from the same Concept(From $n^{\text {th }}$ term)

1) You can see the position of terms in an arithmetic sequence using the algebraic form. Question-1

Which term is 99 in the arithmetic sequence
$1,3,5,7,9,11, \ldots$?
common difference $d=3-1=2$
Multiples of $\mathbf{d}=2=2,4,6,8,10, \ldots \ldots . . .2 n$

Subtracting

$$
=1,3,5,7,9 \ldots \ldots . . . \ldots n-1
$$

Let

$$
\begin{aligned}
\mathbf{n}^{\text {th }} \text { term } x_{n} & =99 \\
2 n-1 & =99 \\
2 n & =99+1 \\
2 n & =100 \\
n & =100 / 2=50
\end{aligned}
$$

That is $50^{\text {th }}$ term is 99
2) You can see how many terms in an arithmetic sequence using the algebraic form.

Question-2

How many terms are there in the arithmetic sequence
$5,8,11,14,17, \ldots92 \quad ?$
common difference $d=8-5=3$
Multiples of $\mathbf{d}=3=3,6,9,12,15, \ldots \ldots . . .3 n$

Adding $\underline{2}$

$$
=5,8,11,14,17, \ldots3 n+2
$$

Let $\mathbf{n}^{\text {th }}$ term $\mathrm{x}_{\mathrm{n}}=92$

$$
\begin{aligned}
3 n+2 & =92 \\
3 n & =92-2 \\
3 n & =90 \\
n & =90 / 3=30 \\
30^{\text {th }} \text { term is } & 92
\end{aligned}
$$

That is, there are 30 terms
3) You can check any number is a term in an arithmetic sequence using the algebraic form. Question-3

Is 61 a term in the sequence $4,7,10,13, \ldots$. ?
common difference $d=7-4=3$

$$
\begin{aligned}
\mathbf{d}=\mathrm{multiples} \text { of } 3 & =3,6,9,12,15, \ldots \ldots .3 \underline{n} \\
\text { Adding } 1 & =4,7,10,13,16 \ldots \ldots .3 \underline{n+1} \\
\text { Let } \quad \mathrm{n}^{\text {th }} \mathrm{x}_{\mathrm{n}} & =61
\end{aligned}
$$

$$
\begin{array}{cc}
& 3 n+1 \quad=61 \\
3 n & \\
3 n & =61-1 \\
3 n & \\
n & \\
n & 60 \\
& 60 / 3=20
\end{array}
$$

n is a natural number
So 61 is a term of the sequence

If we know any 2 terms in an arithmetic sequence, we can find the common difference

If we divide the term difference by the position difference, we get the common difference Consider the arithmetic sequence : $3,5,7,9,11,13,15,17, \ldots .$.

	-	$\begin{aligned} & \text { E. } \\ & \stackrel{\text { E}}{\sim} \end{aligned}$	-	¢	-	(\%	
Terms	3	5	7	9	11	13	15,
Positions	$\begin{aligned} & \ddot{\circ} \\ & \stackrel{\circ}{2} \end{aligned}$		$\begin{aligned} & \ddot{\ddot{0}} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	¢ \% ¢	\% \% ¢ 10	\%	

Note the positions and the terms
$7^{\text {th }}$ position's term $=15$
$2^{\text {nd }}$ position's term $=5$
Term difference $=15-5=10$
Position difference $=7-2=5$
common difference $d=\frac{\text { Term difference }}{\text { Position difference }}$

$$
d=\frac{10}{5}=2
$$

($3,5,7,9,11,13$..... Here common difference is 2)
That is, the difference between any two terms in the arithmetic
sequence divided by their position difference gives the common difference

Note:- If you know the first term $\left(\mathbf{x}_{1}\right)$ and the last term (x_{n}) of an arithmetic sequence, Another way to find the number of terms n.

To find the number of terms

 in an arithmetic sequence,$$
\frac{\text { Lastterm }- \text { Firstterm }}{\text { commondif ference }} \not \uparrow \mathbf{1}
$$

Question:-

How many terms are in the sequence
3,5,7,9,................... 103 ?
Answer
Number of terms $\mathrm{n}=($ Last term - First term) +1 common difference

Number of terms $n=(103-3)+1$

$$
\begin{aligned}
& =\frac{100}{2} \quad+1 \\
& =50 \quad+1=51
\end{aligned}
$$

There are 51 terms in the sequence That is, $51^{\text {st }}$ term is 103
(The sum of fixed number of consecutive natural natural numbers starting with 1)

1 quan n coomese geswarm

$\mathrm{n}(\mathrm{n}+1)$ 2

eg-
1 gam 10 abocise

$$
\begin{aligned}
& =\frac{10 \times(10+1)}{2} \\
& =\frac{10 \times 11}{2} \\
& =\frac{110}{2}=55
\end{aligned}
$$

 ampad moyyceios w.

$$
\begin{aligned}
& =\frac{100 \times(100+1)}{2} \\
& =\frac{100 \times 101}{2} \\
& =\frac{10100}{2}=5050
\end{aligned}
$$

Sequence: 1,3,5,7,9,11,13,15.....
In the arithmetic sequences, the sum of the positions is equal to the sum of the pairs of terms

No. of terms $=8$, That is 4 pairs.
Pair as shown above
$x_{1}+x_{8}=$ sum of the positions $=1+8=9$
$x_{2}+x_{7}=$ sum of the positions $=2+7=9$
$x_{3}+x_{6}=$ sum of the positions $=3+6=9$ $x_{4}+x_{5}=$ sum of the positions $=4+5=9$
$x_{1}+x_{8}$ (sum of the pairs of terms) $=1+15=16$ $\mathrm{x}_{2}+\mathrm{x}_{7}$ (sum of the pairs of terms) $=3+13=16$
$x_{3}+x_{6}$ (sum of the pairs of terms) $=5+11=16$
$\mathrm{x}_{4}+\mathrm{x}_{5}$ (sum of the pairs of terms) $=7+9=16$

Note:- the sum of the positions is equal to the sum of the pairs of terms.

Question: - $5,10,15,20$,..... In this arithmetic sequences, find the sum of the first 4 terms.

Term positions

Number of terms $=4$, That is 2 pairs
Sum of the ${ }^{\text {st }}$ pair $=x_{1}+x_{4}=5+20=25$
Sum of the $2^{\text {nd }}$ pair $=x_{2}+x_{3}=10+15=25$

If the number of terms in an arithmetic sequence is an even number

Sum = Number of pairs \times Sum of one pair

Question: $-1,3,5,7,9,11,13,15$..... In this arithmetic sequences, find the sum of the first 8 terms.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
1,	3,	5,	7	9,	11,	13,	$15 \ldots .$.
1	4	4	4	1		4	4

Number of terms $=8$, That is 4 pairs
Sum of the $\left.\right|^{\text {st }}$ pair $=x_{1}+x_{8}=1+15=16$
Sum of the $2^{\text {nd }}$ pair $=x_{2}+x_{7}=3+13=16$
Sum of the $3^{\text {rd }}$ pair $=x_{3}+x_{6}=5+11=16$
Sum of the $4^{\text {th }}$ pair $=x_{4}+x_{5}=7+9=16$

If the number of terms in an arithmetic sequence is an even number.

Sum = Number of pairs X Sum of one pair

Another Feature

sum of the pairs of terms
sum of the positions

$$
x_{1}+x_{8}=1+15=16
$$

$$
x_{2}+x_{7}=3+13=16
$$

$x_{3}+x_{6}=5+11=16$
$x_{4}+x_{5}=7+9=16$

$$
\begin{aligned}
& 1+8=9 \\
& 2+7=9 \\
& 3+6=9 \\
& 4+5=9
\end{aligned}
$$

$x_{1}+x_{8}=$ sum of the positions $=1+8=9$ $x_{2}+x_{7}$ sum of the positions $=2+7=9$
$x_{3}+x_{6}$ sum of the positions $=3+6=9$ $x_{4}+x_{5}$ sum of the positions $=4+5=9$
$x_{1}+x_{8}$ (sum of the pairs of terms) $=1+15=16$ $x_{2}+x_{7}$ (sum of the pairs of terms) $=3+13=16$
$x_{3}+x_{6}$ (sum of the pairs of terms) $=5+11=16$ $x_{4}+x_{5}$ (sum of the pairs of terms) $=7+9=16$

Note:- the sum of the positions is equal to the sum of the pairs of terms.
$\begin{array}{llllllllll}\mathbf{X}_{1} & \mathbf{x}_{2} & \mathbf{X}_{3} & \mathbf{x}_{4} & \mathbf{x}_{5} & \mathbf{x}_{6} & \mathbf{x}_{7} & \mathbf{x}_{8} & \ldots\end{array}$ $5,10,15,20,25,30,35,40$, .. Here
$1^{\text {st }}$ and $8^{\text {th }}(1+8=9)$ $2^{\text {nd }}$ and $7^{\text {th }}(2+7=9)$
$3^{\text {rd }}$ and $6^{\text {th }}(3+6=9)$
$4^{\text {th }}$ and $5^{\text {th }}(4+5=9)$
Make pairs the terms and add
$x_{1}+x_{8}=5+40=45$
$\mathrm{x}_{2}+\mathrm{x}_{7}=10+35=45$
$\mathrm{x}_{3}+\mathrm{x}_{6}=15+30=45$
$x_{4}+x_{5}=20+25=45$

In an arithmetic sequence, the sum of the positions is equal to the sum of the pairs of terms.

The sum of the positions is equal to

the sum of the pairs of terms.

eg : -

$$
24,6,8,10,12, \ldots \text { is an }
$$

arithmeticsequence.
Find the sum of the first 6 terms.
Sum of $1^{\text {st }}$ term $+6^{\text {th }}$ term $=2+12=14$
Sum of $2^{\text {nd }}$ term $+5^{\text {th }}$ term $=4+10=14$
Sum of $3^{\text {rd }}$ term $+4^{\text {th }}$ term $=6+18=14$
Here write the terms as pairs.
6 terms $=3$ pairs of terms
Sum of each pair $=14$
\therefore Sum of 6 terms $=3 \times 14=42$
Add the positions in those pairs of terms. Then we get 7
$1^{\text {st }}$ place $+6^{\text {th }}$ place $=1+6=7$
$2^{\text {nd }}$ place $+5^{\text {th }}$ place $=2+5=7$
$3^{\text {rd }}$ place $+4^{\text {th }}$ place $=3+4=7$
That is
In an arithmetic sequence,
The sum of the positions is equal to the
sum of the pairs of terms.

ARITHMETIC SEOUENCE

Odd Numbers $1,3,5,7,9,11,13$.

How many tigers are there in the picture? ? What is the place of the tiger in the middle?

Tiger in the $4^{\text {th }}$ place
(Hint:- 7 odd number, Adding $1=8$, Half 4)

3π

How many horses are there in the picture? 5 What is the place of the horse in the middle?

Horse in the $3^{\text {rd }}$ place
(Hint:- 5 odd number, Adding $1=6$, Half 3)

How many squirrels are there in the picture? 9 What is the place of the squirrel in the middle?

Squirrel in the $5^{\text {th }}$ place (Hint:- 9 odd number, Adding $1=10$, Half 5)
Note:- If the total number is odd, what is the place in the middle?

Add 1 to the number . Find half of it .

ARITHMETIC SEOUENCE
Even Numbers $2,4,6,8,10,12,14 \ldots$.
\qquad

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6
\end{aligned}
$$

How many trees are there in the picture? 6 What is the place of the tree in the middle?
$3^{\text {rd }}$ and $4^{\text {th }}$ (Hint:- 6 even number, Half 3 ,Adding $1=4$)

How many circles are there in the picture? 8 What is the place of the circle in the middle?
$4^{\text {th }}$ and $5^{\text {th }}$ (Hint:- 8 even number, Half 4, Adding $1=5$)

How many Minni mouses are there in the picture? 10 What is the place of the Minni mouse in the middle? $5^{\text {th }}$ and $6^{\text {th }}$ (Hint:- 10 even number, Half 5, Adding $1=6$)
\qquad
Note:- If the total number is even, what is the place in the middle?
Find half of the number. Add 1 to it .These two are in the middle.

muesmros(vom

9egegesege

What is the place of the child between 1 and 5 in the middle?
Adding 1 and 5 ,sum $=6$. Half 3 . So $3^{\text {rd }}$ child

What is the place of the child between 5 and 9 in the middle? Adding 5 and 9 ,sum $=14$. Half 7 . So $7^{\text {th }}$ child

What is the place of the hen between I and 7 in the middle? Adding 1 and 7 , sum $=8$. Half 4 . So $4^{\text {th }}$ hen.

What is the place of the first 7 hens, in the middle? Adding 1 and 7, sum $=8$. Half 4 . So $4^{\text {th }}$ hen.

What is the place of the hen between 5 and 15 in the middle? Adding 5 and 15 , sum = 20 . Half 10 . So $10^{\text {th }}$ hen.

What is the place of the hen between 2 and 4 in the middle? Adding 2 and $4, \quad$ sum $=6$. Half 3 . So $3^{\text {rd }}$ hen.

What is the place of the first 3 hens, in the middle? Adding 1 and $3, \quad$ sum $=4 . \quad$ Half $2 . \quad$ So $2^{\text {nd }}$ hen.

Question: Find the sum of the first 5 terms of the arithmetic sequence $3,5,7,9,11,13,15$,...

middle term

No. of terms = 5 (Odd no.)
Middle term $\quad x_{3}=7$

If the number of trems in an arithmetic sequence is an odd number.

Sum of terms = Middle term X No.of terms

$$
=7 \quad x \quad 5
$$

$$
=35
$$

Note:- If you know the first term $\left(\mathbf{x}_{1}\right)$ and the last term (x_{n}) of an arithmetic sequence, The formula for finding the sum (S_{n}) of the terms
$S_{\mathbf{n}}=\frac{\mathbf{n}}{2}($ First term + Last term $)$

$$
S_{n}=\frac{n}{2}\left(x_{1}+x_{n}\right)
$$

Question:- 3,5,7,9,.........In ths arithmetic sequence , Find the sum of the first 20 terms.

Answer: Number of terms $\mathrm{n}=20$
common difference $d=2$
First term $\mathrm{X}_{1}=3$

Sum of n terms $S_{n}=\frac{n(f i r s t ~ t e r m ~+l a s t ~ t e r m) ~}{2}$)

$$
=\frac{20}{2}(3+41)
$$

$$
=10(44)=440
$$

$$
\begin{aligned}
& \text { Last term } \mathrm{x}_{20}=\mathrm{x}_{1}+19 \mathrm{~d} \\
& =3+19(2) \\
& =3+38=41
\end{aligned}
$$

Question :- 3,5,7,9,........... 21 in this arithmetic sequence
i) How many terms?
ii) Find the sum of all terms

உாைை
i) Number of terms $n=\frac{(\text { Last term }- \text { First term })}{\text { common difference }}+1$ Number of terms $n=\frac{(21-3)}{2}+1$

$$
\begin{array}{ll}
=\frac{18}{2} & +1 \\
=9 & +1 \\
=10 &
\end{array}
$$

There are 10 words in the range, i.e. $10^{\text {th }}$ term 2
li) Number of terms $n=10$ First term $x_{1}=3$

Last term $x_{10}=21$
Sum of $\mathrm{S}_{n}=\mathbf{n}$ (First term + Last term)

$$
\begin{aligned}
2 & =\frac{10}{2}(3+21) \\
& =5(24)=120
\end{aligned}
$$

$\mathcal{N o t e : - ~ T h e ~ a l g e b r a i c ~ e x p r e s s i o n ~ o f ~ t h e ~ s u m ~ o f ~ a n ~}$ arithmetic sequence is always $\quad S_{n}=a n^{2}+b n$.

Note:- If the sum of the first n terms is of the form $S_{n}=a n^{2}+b n$,
common difference =twice the coefficient of $n^{2}=2 a$
First term $=$ The sum of the coefficients $=a+b$

Question:- . If the algebraic expression of the sum
of an arithmetic sequence is $3 n^{2}+2 n$
i)What is the common difference ?
ii) What is first term ?

Answer
The number multiplied by $\mathrm{n}^{2}=3$
common difference =twice the coefficient of $n^{2}=2(3)=6$
First term = The sum of the coefficients=3+2=5

Question :- . The Algebraic expression of the sum

 of an arithmetic sequence is $5 \mathbf{n}^{\mathbf{2}} \mathbf{- 3 n}$i) Find the sum of the first 10 terms
ii)Find the sum of the first 5 terms

Answer

i) The sum of the first n terms $S_{n}=5 n^{2}-\mathbf{3 n}$

The sum of the first 10 terms $\mathrm{S}_{10}=5(10)^{2}-\mathbf{3 (1 0)}$

$$
\begin{aligned}
& =5(100)-30 \\
& =500-30
\end{aligned}
$$

$$
=470
$$

ii) The sum of the first n terms $S_{n}=\mathbf{5 n}^{\mathbf{2}} \mathbf{- 3 n}$ The sum of the first 5 terms $S_{5}=5(5)^{2}-3(5)$

$$
\begin{aligned}
& =5(25)-15 \\
& =125-15 \\
& =110
\end{aligned}
$$

ARITHMETIC SEOUENCES

Natural Numbers : 1, 2, 3, 4, 5,6,7,8, 9,10....
Even Numbers $\quad: 2,4,6,8,10,12, \ldots$.
Odd Numbers $\quad: 1,3,5,7,9,11, \ldots \ldots$.

The sum of the first n natural numbers $=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$\begin{aligned} \text { The sum of the first } 3 \text { natural numbers } & =\frac{3(3+1)}{2} \\ & =\frac{3(4)}{2}=\frac{12}{2}=6\end{aligned}$
(The sum of the first 3 natural numbers $=1+2+3=6$)

The sum of the first n even numbers= $n(n+1)$
The sum of the first 3 even numbers $=3(3+1)=3(4)=12$
(The sum of the first 3 even numbers $2+4+6=12=3 \times 4$)

The sum of the first n odd numbers $=n^{2}$
The sum of the first 3 odd numbers $=3^{2}=9$
(The sum of the first 3 odd numbers $=1+3+5=9=3^{2}$)

If the terms are large numbers, fractions or negative integers of an arithmetic sequence

Algebraic expression ($n^{\text {th }}$ term $) X_{n}=d n+f-d$ It will be convenient to find $\mathrm{n}^{\text {th }}$ term using this formula.

Question:- $101,108,115,122, . . .$.
Write the algebraic expression of this arithmetic sequence
Answer:-

$$
\begin{aligned}
& 1^{\text {st }} \text { term } \mathrm{f}=101 \\
& \text { common difference } \mathrm{d}=108-101=7
\end{aligned}
$$

Algebraic expression ($n^{\text {th }}$ term $) X_{n}=d n+f-d$

$$
\begin{aligned}
& x_{n}=7 n+101-7 \\
& x_{n}=7 n+94
\end{aligned}
$$

Note:-
Algebraic expression $\quad x_{n}=7 n+94$, Then
$1^{\text {st }}$ term $\mathrm{f}=$ sum of the coefficients $=7+94=101$ common difference $d=$ coefficient of $n=7$

In an arithmetic sequence,
Algebraic expression of sumS $S_{n}=\frac{d}{2} n^{2}+\left(f-\frac{d}{2}\right) n$
Can be find using this formula

Question:- 5,8,11,14,.....
Write the algebraic expression of this arithmetic sequence
Answer:- $\quad 1^{\text {st }}$ term $\mathrm{f}=5$
common difference $\mathrm{d}=8-5=3$

$$
\begin{aligned}
& S_{n}=\frac{3}{2} n^{2}+\left(5-\frac{3}{2}\right) n \\
& S_{n}=\frac{3}{2} n^{2}+\left(\frac{(10}{2}-\frac{3}{2}\right) n
\end{aligned}
$$

$$
S_{n}=\frac{3}{2} n^{2}+\frac{(10-3)}{2} n
$$

$$
S_{n}=\frac{3}{2} n^{2}+\frac{7}{2} n
$$

A set of numbers written as the first, second, third and so on, according to a particular rule is called a sequence.
eg : -
■1,2,3,4, .. (next 5)

- $1,4,9,16, \ldots(n e x t 25)$
- $10,100,1000,10000, \ldots(n e x t 100000)$
- $2,4,8,16, \ldots$ (next 32)

2. Algebra Of Sequences

The generally used mathematical principle in such a sequences of numbers can be written in algebraic expressions.
eg : -

- $1,2,3,4, \ldots$ (algebraic expression n)
- $1,4,9,16, \ldots\left(\right.$ algebraic expression n^{2})
- $10,100,1000,10000, \ldots\left(\right.$ algebraic expression 10^{n})
$\bullet 2,4,8,16, \ldots$ (algebraic expression 2^{n})

Note-2

3. Arithmetic Sequences

When writing the numbers consecutively, if a particular number is added or subtracted to get the next number such sequences are called Arithmetic Sequences.

eg:-

- $1,2,3,4, \ldots .$. (Add 1 to get the next one)
- 10,20,30,40,....(Add 10 to get the next one)
- $6,12,18,24, \ldots .$. (Add 6 to get the next one)
- 100,90,80,... (Subtract 10 to get the next one)
- 56,52,48,.... (Subtract 4 to get the next one)

4. Terms

Numbers in arithmetic sequence are called terms

eg:-

$10,20,30,40, \ldots .$. in this arithmetic sequence ,
First term $\quad x_{1}=10$
Second term $\quad x_{2}=20$
Third term $\quad x_{3}=30$.............
$n^{\text {th }}$ term can be written as x_{n} (algebraic expression)

The difference between 2 consecutive terms Of an Arithmetic

 sequence is called the Common difference.
It is denoted by the letter d

eg : -
Consider the sequence $6,10,14,18, \ldots$
Common difference $=2^{\text {nd }}$ term $-1^{\text {st }} \operatorname{term}\left(\mathrm{X}_{2}-\mathrm{X}_{1}\right)$ $=3$ rd term $-2^{\text {nd }}$ term $\left(X_{3}-\mathbf{X}_{2}\right) \ldots$

NOTE : - In an arithmetic sequence, term difference is proportional to position difference ; and the constant of proportionality is the common difference.

In the arithmetic sequence $6,10,14,18, \ldots$,
Position $\begin{array}{llllll} & 2 & 3 & 4 & \end{array}$

Terms $\quad=6$
10
14
18
n

Dividing term difference of any 2 terms by the position difference, will get Common difference of an arithmetic sequence.
eg : -

ARITHMETIC SEQUENCES

6. Using some terms of an arithmetic Sequence, we can find another terms.

eg : -

The $4^{\text {th }}$ term of an arithmetic sequence is and the $10^{\text {th }}$ term is 46 . Whet is the $20^{\text {th }}$ term?

Answer

Between $4^{\text {th }}$ term and $10^{\text {th }}$ term
Term difference $=46=24$ Position difference $=10-4=6$
\therefore Common difference $=24 / 6=4$

Adding 10 times the common difference to the $10^{\text {th }}$ term , we get the $20^{\text {th }}$ term.

$$
x_{20}=x_{10}+10 d
$$

$=46+10(4)$
$=46+40$

$$
=86
$$

7. To check the term of an arithmetic sequence

eg :-

Check 37 is a term of the sequence $5,19,13, \ldots$, and is 42 a term ?

Sequence $=5,19,13, \ldots$
: common difference $\mathrm{d}=9-5=4$ When First term (5) is divided by common difference 4, remainder $=1$

When 37 is divided by common difference 4 , remainder = 1
Here remainders are same .
$: 37$ is a term of the sequence.
When 42 is divided by common difference 4 , remainder $=2$
Here remainders are different .
So 42 is not a term of the sequence.

All the terms of the arithmetic sequence have the same remainder
On division by the common difference.

