MOLE CONCEPT (VIDEO)

Relative mass:It is the method of expressing mass of one atom in terms of mass of a standard atom. $1 / 12^{\text {th }}$ mass of carbon- 12 isotope is taken as the standard for stating mass of atoms. $1 / 12^{\text {th }}$ mass of carbon -12 atom is called unified mass 'u'.
It is equivalent to $1.6606 \times 10^{-27} \mathrm{~kg}$.
For example relative atomic mass of nitrogen is 14 . It means that mass of a nitrogen atom is 14 times heavier than $1 / 12^{\text {th }}$ mass of a carbon -12 atom.
A few elements and their atomic masses are given.

Element	Atomic mass (in u)
Hydrogen H	1
Helium He	4
Carbon C	12
Nitrogen N	14
Oxygen O	16
Phosphorous P	31
Chlorine Cl	35.5
Sulphur S	32

Gram atomic mass (GAM)

The mass of an element in gram equal to its atomic mass is called 1 gram atomic mass (one gram atom)
Example: $4 \mathrm{~g} \mathrm{He}=1 \mathrm{GAM}$ Helium, $12 \mathrm{~g} \mathrm{C}=1 \mathrm{GAM}$ Carbon,
$16 \mathrm{~g} \mathrm{O}_{2}=1$ GAM Oxygen.

Gram atomic mass and Avogadro number

One gram atom of any element contains 6.022×10^{23} atoms. This number is known as Avogadro number.
That is, 4 gm of Helium, 12 g of Carbon, 16 g of oxygen and 35.5 g of chlorine contain the same number of atoms and is equal to 6.022×10^{23}

Finding number of atoms in certain amount of element.

Number of atoms = [mass of sample/GAM of the element] x Avogadro number.

Element	GAM of the element.	Mass of the sample	Number of atoms
H	1	20 g	$(20 / 1) \times 6.022 \times 10^{23}=20 \times 6.022 \times 10^{23}$
He	4	40 g	$(40 / 4) \times 6.022 \times 10^{23}=10 \times 6.022 \times 10^{23}$
O	16	48 g	$(48 / 16) \times 6.022 \times 10^{23}=3 \times 6.022 \times 10^{23}$
C	12	120 g	$(120 / 12) \times 6.022 \times 10^{23}=10 \times 6.022 \times 10^{23}$

Mole and One mole atom

The amount of any substance containing 6.022×10^{23} particles is called one mole.
Hence one mole atom means 6.022×10^{23} atoms.
So one mole atoms of carbon $=12 \mathrm{~g}$
1 mole atoms of hydrogen $=1 \mathrm{~g} \quad 1$ mole atom of oxygen $=16 \mathrm{~g}$

Molecular mass: Molecular mass is the total atomic masses of atoms present in one molecule.
Example: Molecular mass of water $\left(\left(\mathrm{H}_{2} \mathrm{O}\right)=2 \mathrm{x} 1+16=18\right.$
Molecular mass of methane $\left(\mathrm{CH}_{4}\right)=1 \mathrm{x} 12+4 \times 1=12+4=16$
Molecular mass of sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=2 \times 1+1 \times 32+4 \times 16=98$

Gram molecular mass (GMM)

The mass in grams equal to the molecular mass of a substance is called gram molecular mass. Example:i) 18 g water $=1 \mathrm{GMM}$ water. ii) 16 g methane $\left(\mathrm{CH}_{4}\right)=1 \mathrm{GMM}$ methane iii) 98 g sulphuric acid $=1 \mathrm{GMM} \mathrm{H}_{2} \mathrm{SO}_{4}$.

Relation between GMM and number of molecules.

One gram molecular mass of any substance contains Avogadro Number of molecules.
That is, 18 g of water, 16 g of methane, 98 g of sulphuric acid contains same number of molecules and is equal to 6.022×10^{23}
Mole concept: The amount of any substance containing 6.022×10^{23} particles is called one mole. The particle may be atom, molecules,ions etc.. So when we express the amount of substance in mole, the type of particles should be specified. For example, one mole water molecule, three moles of carbon atoms.

Finding number of moles from given number of particles or given mass.

Number of moles = number of particles/ $\mathrm{N}_{\mathrm{A}}=$ mass of the substance $/ \mathrm{GAM}$
= mass of the substance /GMM

See the following examples.
? How many moles of atoms are present in 4 g hydrogen?
Number of moles of hydrogen atoms $=$ mass of the sample/ GAM of hydrogen $=4 / 1=4$ mole.
*?How many moles of molecules are there in 4 g hydrogen?
Number of moles of hydrogen molecules = mass of hydrogen/ molecular mass of hydrogen

$$
=4 / 2=2 \text { mole }
$$

?Find out the number of moles in 54 g of water.
Number of moles of molecules in 54 g water = mass of given water/molecular mass of water

$$
=54 / 18=3 \text { mole } .
$$

? Find out the number of molecules in $220 \mathrm{~g} \mathrm{CO}_{2}$. (Atomic mass C-12, O-16)
Molecular mass of $\mathrm{CO}_{2}=12+2 \times 16=44$
Number of moles in $220 \mathrm{~g} \mathrm{CO}_{2}=220 / 44=5$
Therefore, number of molecules in $220 \mathrm{~g} \mathrm{CO}_{2}=5 \times 6.022 \times 10^{23}=30.11 \times 10^{23}$
?Calculate number of moles of atoms, number of atoms, number of moles of molecules and number of molecules in 700 g of nitrogen $\left(\mathrm{N}_{2}\right)$.
Atomic mass of nitrogen $=14 \quad$ Molecular mass of nitrogen= $2 \times 14=28$
Number of moles of atoms= 700/14=50
Number of nitrogen atoms $=50 \times 6.022 \times 10^{23}=301.1 \times 10^{23}$
Number of moles of molecules $=\mathbf{7 0 0} / \mathbf{2 8}=\mathbf{2 5}$
Number of nitrogen molecules $=25 \times 6.022 \times 10^{23}=\mathbf{1 5 0 . 5 5} \times 10^{23}$
? How many atoms are present in 36 g of water?
Molecular mass water $\left(\mathrm{H}_{2} \mathrm{O}\right)=2 \times 1+16=18$
Number of moles of molecules in 36 g water $=36 / 18=2$
Number of molecules 36 g water $=2 \times 6.022 \times 10^{23}$
As there are three atoms in each molecules of water,
total number of atoms $=3 \times 2 \times 6.022 \times 10^{23}=6 \times 6.022 \times 10^{23}$
? Calculate the mass of one sulphuric acid molecule $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
Molecular mass of $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=2 \times 1+1 \times 32+4 \times 16=98$
Therefore mass of 6.022×10^{23} sulphuric acid molecules $=98 \mathrm{~g}$

Adapted from: Layman's Science Magazine. Ph:9544216417

Then, mass of one sulphuric acid molecule $=98 / 6.022 \times 10^{23} \mathrm{~g}$
*?Calculate the number of atoms and molecules present in 90 g glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
Molecular mass of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=6 \times 12+12 \times 1+6 \times 16=72+12+96=180$
Number of molecules in 90 g glucose $=$ mass of the sample/ molecular mass $=90 / 180=1 / 2$
Therefore the number of molecules in 90 g glucose $=1 / 2 \times \mathrm{N}_{\mathrm{A}}=1 / 2 \times 6.022 \times 10^{23}=3.011 \times 10^{23}$
As there are 24 atoms in each molecules, number of atoms in 90 g glucose

$$
=24 \times 3.011 \times 10^{23}=72.264 \times 10^{23}
$$

Relationship between volume of a gas and moles. The volume of one mole of gas at a definite temperature and volume is called molar volume. At same temperature and pressure, molar volume of all gases will be same. At standard temperature and pressure 'STP' (at 1 atm pressure and $0^{\circ} \mathrm{C}$ temperature) molar volume of all gases is 22.4 litre. That is, $\mathbf{6 . 0 2 2 \times 1 0 ^ { 2 3 }}$ molecules are present in 22.4 litre of any gas at STP.

Finding number of moles from volume at STP.

Number of moles = volume at STP/ 22.4
? Carbon dioxide gas $\left(\mathrm{CO}_{2}\right)$ is stored in a cylinder of capacity 67.2 litre at $0^{\circ} \mathrm{C}$ temperature and atmospheric pressure. Calculate number of molecules, number of atoms and mass of the carbon dioxide gas in the cylinder.
Number of moles $=$ Volume of gas at STP/22.4 $=67.2 / 22.4=3$
Number of molecules in 3 moles $=3 x 6.022 \times 10^{23}=\mathbf{1 8 . 0 0 6} \times 10^{23}$
As there are three atoms in each CO_{2} molecule,
Total number of atoms $=3 \times 18.006 \times 10^{23}=54.198 \times 10^{23}$
Mass of one mole of $\mathrm{CO}_{2}=44 \mathrm{~g}$.
Therefore mass of 3 mole of $\mathrm{CO}_{2}=3 \mathrm{x} 44 \mathrm{~g}=132 \mathrm{~g}$.
That is, mass of 67.2 litre carbon dioxide gas at STP will be 132 g .

ABSTRACT
One mole = Avogadro number of atoms = Avgadro number of molecules = $1 \mathrm{GAM}=$ amount of substance equal to atomic mass in gram= $1 \mathrm{GMM}=$ amount of substance equal to molecular mass in gram $=22.4$ litre of any gas at STP.
Number of moles = number of atoms/ $\mathrm{N}_{\mathrm{A}}=$ number of molecules $/ \mathrm{N}_{\mathrm{A}}$ = mass in gram /atomic mass $=$ mass in gram/ molecular mass $=$ volume in litre at STP/22.4
Mass of substance $=$ number of moles \times molecular mass Volume of a gas at STP = number of moles $\times 22.4$ Number of molecules = number of moles $\times \mathrm{N}_{\mathrm{A}}$

Adapted from: Layman's Science Magazine. Ph:9544216417

PRACTICE QUESTIONS AND ANSWERS

1. Amount of a few substance are given. Find the number of GMMs present in each sample? a. 100 g He. b. $200 \mathrm{~g} \mathrm{O}_{2} . \quad$ c. $70 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2}$ d. 1 g Ca.
(Hint: Atomic mass: $\mathrm{He}-4, \mathrm{O}-16, \mathrm{~N}-14, \mathrm{Ca}-40$)
Answer:Helium: $100 / 4=25$, Oxygen: $200 / 2 \times 16=6.25$, Nitrogen: $70 / 2 \times 14=2.5$,
Calcium: $1 / 40=0.025$
2. Find the gram molecular mass of the following substances.
a. Nitric acid $\mathrm{HNO}_{3} \quad$ b. Calcium chloride CaCl_{2}. c. Sodium sulphate $\mathrm{Na}_{2} \mathrm{SO}_{4}$
d. Ammonium nitrate $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
(Hint : Atomic mass: $\mathrm{H}-1, \mathrm{~N}-14, \mathrm{O}-16, \mathrm{Na}-23, \mathrm{~S}-32, \mathrm{Cl}-35.5, \mathrm{Ca}-40$)
Answer: $\mathrm{a} . \mathrm{HNO}_{3}: 1 \mathrm{x} 1+1 \mathrm{x} 14+3 \mathrm{x} 16=1+14+48=63 \mathrm{~g}$
b. $\mathrm{CaCl}_{2}: 1 \times 40+2 \times 35.5=40+71=111 \mathrm{~g}$
c. $\mathrm{Na}_{2} \mathrm{SO}_{4}: 2 \times 23+1 \times 32+4 \times 16=142 \mathrm{~g}$
d. $\mathrm{NH}_{4} \mathrm{NO}_{3}: 1 \mathrm{x} 14+4 \mathrm{x} 1+1 \mathrm{x} 14+3 \times 16=14+4+14+48=80 \mathrm{~g}$
3. Some samples are given below.
i. 400 g of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. ii. 400 g of carbon \quad iii. 400 g of helium (He)
iv. 400 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
a. Find number of moles in each sample. b. Write them in increasing order of mole number.

Answer: a.i. $400 / 18=22.22$ a.ii. $400 / 12=33.33$ a.iii. $400 / 4=40$ a.iv. $400 / 180=2.22$
b. 400 g glucose - 400 g water - 400 g carbon - 400 g helium
4. Find out the following.
a. Number of moles in 1 kg of water. b. Mole numbers in 500 g of CaCO_{3}.
c. Number of molecules and atoms present in 88 g of CO_{2}.
d. Volume of 170 g ammonia $\left(\mathrm{NH}_{3}\right)$ at STP.
e. Mass and number of molecules in $56 \mathrm{~L} \mathrm{CO}_{2}$ at STP.

Answer: a. Molecular mass of water $\left(\mathrm{H}_{2} \mathrm{O}\right)=2 \times 1+16=18$
Number of moles in 1 kg of water $=1000 / 18=55.56$
b. Molecular mass of $\mathrm{CaCO}_{3}=1 \times 40+1 \times 12+3 \times 16=100$

Number of moles in $500 \mathrm{~g} \mathrm{CaCO}_{3}=500 / 100=5$
c. Molecular mass of $\mathrm{CO}_{2}=1 \mathrm{x} 12+2 \times 16=44$

Number of moles in $88 \mathrm{~g} \mathrm{CO}_{2}=88 / 44=2$
Number of molecules in $88 \mathrm{~g} \mathrm{CO}_{2}$ (in 2 mole CO_{2}) $=2 \times 6.022 \times 10^{23}=12.044 \times 10^{23}$
Number of atoms in $88 \mathrm{~g} \mathrm{CO}_{2}=3 \times 12.044 \times 10^{23}=36.132 \times 10^{23}$
d. Molecular mass of ammonia $=1 \times 14+3 \times 1=17$

Number of moles in $170 \mathrm{~g} \mathrm{NH}_{3}=170 / 17=10$
Volume of 170 g of ammonia at STP $=10 \times 22.4=224 \mathrm{~L}$
e. Number of moles in $56 \mathrm{~L} \mathrm{CO}_{2}=56 / 22.4=2.5$

Mass of 2.5 mole $\mathrm{CO}_{2}=2.5 \times 44=110 \mathrm{~g}$.
Number of molecules in 2.5 mole $\mathrm{CO}_{2}=2.5 \times 6.022 \times 10^{23}=15.055 \times 10^{23}$
5. Examine the samples given below.
P. $22.4 \mathrm{~L} \mathrm{NH}_{3}$. (at STP) Q. $22 \mathrm{~g} \mathrm{CO}_{2}$. R. $64 \mathrm{~g} \mathrm{SO}_{2}$.
S. $4 \mathrm{~g} \mathrm{H}_{2}$. T. $6.022 \times 10^{23} \mathrm{C}$ atoms. U. 117 g NaCl . V. 3.011×10^{23} oxygen molecules.
a. Group the samples having same number of moles of molecules.
b. Which are the samples in which number of molecules are same?
c. Group the samples where number of atoms are same.
d. Calculate the mass of the sample P .

Answer:

substance	Number of moles of molecules	Number of molecules	Number of atoms	Volume(L)
P. $22.4 \mathrm{~L} \mathrm{NH}_{3}$	$22.4 / 22.4=1$	6.022×10^{23}	$4 \times 6.022 \times 10^{23}$	
Q. $22 \mathrm{~g} \mathrm{CO}_{2}$	$22 / 44=1 / 2$	$1 / 2 \times 6.022 \times 10^{23}$	$3 \times 1 / 2 \times 6.022 \times 10^{23}$	$1 / 2 \times 22.4=11.2$
R. $64 \mathrm{~g} \mathrm{SO}_{2}$	$64 / 64=1$	6.022×10^{23}	$3 \times 6.022 \times 10^{23}$	22.4
S. $4 \mathrm{~g} \mathrm{H}_{2}$	$4 / 2=2$	$2 \times 6.022 \times 10^{23}$	$2 \times 2 \times 6.022 \times 10^{23}$	$2 \times 22.4=44.8$
T. $6.022 \times 10^{23} \mathrm{C}$	$6.022 \times 10^{23} / 6.022 \times 10^{23}=1$	6.022×10^{23}	6.022×10^{23}	
U. 117 g NaCl	$117 / 58.5=2$	$2 \times 6.022 \times 10^{23}$	$2 \times 2 \times 6.022 \times 10^{23}$	
V. $3.011 \times 10^{23} \mathrm{O}_{2}$	$3.011 \times 10^{23} / 6.022 \times 10^{23}=1 / 2$	$1 / 2 \times 6.022 \times 10^{23}$	$2 \times 1 / 2 \times 6.022 \times 10^{23}$ $=6.022 \times 10^{23}$	$1 / 2 \times 22.4=11.2$

$\begin{array}{lllllll}\text { a. } P, R, T=1 & Q, V=1 / 2 & S, U=2 & \text { b. P,R,T } & \text { Q,V } & \text { S,U } & \text { c. P,S,U }\end{array} \quad$ T,V
d. Mass of a substance $=$ number of moles x molecular mass $=1 \times 17=17 \mathrm{~g}$.
6. Volume of a cylinder, that contains NH_{3} at STP, is 5600 mL .
a. How many moles of ammonia are present in the cylinder?
b. What is the mass of the ammonia gas in it?
c. Find out the number of molecules and atoms in the cylinder?

Answer: a.Number of moles of ammonia $=5.6 \mathrm{~L} / 22.4=5.6 / 22.4=1 / 4$
b. Mass of the ammonia gas $=1 / 4 \times 17=4.25 \mathrm{~g}$
c. Number ammonia molecules $=$ Number of moles x Avgadro number $=1 / 4 \times 6.022 \times 10^{23}$

Total number number of atoms $=4 x^{11} 4 \times 6.022 \times 10^{23}=6.022 \times 10^{23}$
7. The dimension of a room is 2 mx 3 mx 2 m . If the room is filled with oxygen at $0^{\circ} \mathrm{C}$ of temperature and atmospheric pressure,
a. What will be the volume of oxygen? b. How many grams of oxygen are present in the room?
c. Calculate the number of molecules in the room.

Answer: a. Volume of oxygen $=$ volume of the room $=2 \times 3 \times 2=12 \mathrm{~m}^{3}=12000 \mathrm{~L}$.
b. Mass of the oxygen gas $=$ number of moles x molecular mass of oxygen

$$
=(12000 / 22.4) \times 32=535.7 \times 32=17142.4 \mathrm{~g} .
$$

c. Number of oxygen molecules $=$ number of moles x Avogadro number $=535.7 \mathrm{~N}_{\mathrm{A}}$.
8. Find out the odd one from the given sets.
a. $11.2 \mathrm{~L} \mathrm{NH}_{3}$ at STP, $22 \mathrm{~g} \mathrm{CO}_{2}, 6.022 \times 10^{23}$ water molecules, 9 g of water.
b. One mole water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, One mole CO_{2}, One mole ozone $\left(\mathrm{O}_{3}\right)$, one mole hydrogen $\left(\mathrm{H}_{2}\right)$
c. $2 \mathrm{~N}_{\mathrm{A}} \mathrm{H}_{2}$ atoms, $2 \mathrm{x} 22.4 \mathrm{~L} \mathrm{H}_{2}$ at STP, $2 \mathrm{~g} \mathrm{H} \mathrm{H}_{2}$ gas, 6.022×10^{23} hydrogen molecules.

Answer:a. 6.022×10^{23} water molecules. (All others are $1 / 2$ mole substances)
b. one mole hydrogen $\left(\mathrm{H}_{2}\right)$ - Number of atoms are equal in all other samples.
c. $2 \mathrm{x} 22.4 \mathrm{~L} \mathrm{H}_{2}$ at STP - Others are one mole .
9. Complete the second pair according to the first pair.
a. 1 GAM nitrogen : 6.022×10^{23} atoms

1 GMM nitrogen : \qquad molecules.
b. 1GMM carbon: 12 g carbon; 1GAM carbon: \qquad
c. 1 GAM chlorine: 35.5 g ; One GMM chlorine: g.

Answer:a. 6.022×10^{23}. b. 12 g of carbon. c. 71 g .
10. Chemical formula of ammonia is NH_{3}. (Atomic mass: $\mathrm{N}-14, \mathrm{H}-1$)
a. Find molecular mass of ammonia.
b. How many moles of molecules are present in 51 gm of ammonia?
c. Calculate the number of molecules in 51 g of ammonia.
d. What is meant by standard temperature and pressure (STP)?
e. What will be the volume of 51 g of ammonia at STP?

Answer: a. Molecular mass of $\mathrm{NH}_{3}=1 \mathrm{x} 14+3 \mathrm{x} 1=17$
b. Number of moles of molecules in 51 g of ammonia $=51 / 17=3$
c. Number of molecules in 51 g of ammonia $=3 \times 6.022 \times 10^{23}=18.066 \times 10^{23}$
d. It is physical condition of $273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$ temperature and one atm pressure.
e. Volume of 51 g ammonia at STP $=3 \times 22.4=67.2$ litre.
11. Some samples are given.
(I). 80 g of helium(He). (ii) 320 g of methane $\left(\mathrm{CH}_{4}\right)$. (iii) 140 g of nitrogen $\left(\mathrm{N}_{2}\right)$.
(Hint: Atomic mass: $\mathrm{He}-4, \mathrm{C}-12, \mathrm{H}-1, \mathrm{~N}-14$)
a. Calculate the number of atoms in the first sample.
b. How many molecules are there in the third sample?.
c. Find out the samples in which the number of molecules are same.

Answer: a. Number of moles of atoms in 80 g helium $=80 / 4=20$
So the number of helium atoms $=20 \mathrm{~N}_{\mathrm{A}}$.
(Note: As helium is a mono atomic element, the number of atoms and molecules are the same)
b. The number of moles molecules in 140 g of nitrogen $=140 / 28=5$

There fore, the number of molecules in 140 g of nitrogen $=5 \mathrm{xN}_{\mathrm{A}}$.
c. Number of molecules in 320 g of methane $=(320 / 16) \mathrm{xN}_{\mathrm{A}} .=20 \mathrm{~N}_{\mathrm{A}}$.

So the number of molecules in 1 st and $2^{\text {rd }}$ sample are same.
12. Some information about the three gases at STP are given below.
A. $16 \mathrm{~g} \mathrm{CH}_{4}$. B. $11.2 \mathrm{~L} \mathrm{CO}_{2}$. C. $6.022 \times 10^{23} \mathrm{NH}_{3}$ molecules.
a. The number 6.022×10^{23} is called \qquad
b. Find the number of moles of molecules in 16 g of CH_{4}
c. Write down the samples $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ in the increasing order of mass.
(Atomic mass : $\mathrm{H}=1 \mathrm{C}=12 \mathrm{~N}=14, \mathrm{O}=16$)
Answer: a. Avogadro number.
b. Number of moles in 16 g of $\mathrm{CH}_{4}=$ mass of the substance/molecular mass $=16 / 16=1 \mathrm{~mole}$.

Number of molecules in 16 g of $\mathrm{CH}_{4}=1 \mathrm{x} 6.022 \times 10^{23}=6.022 \times 10^{23}$
c. $11.2 \mathrm{~L} \mathrm{CO}_{2}$. $=1 / 2$ mole of $\mathrm{CO}_{2}=1 / 2 \mathrm{x}$ molecular mass of $\mathrm{CO}_{2}=1 / 2 \mathrm{x} 44=22 \mathrm{~g}$
6.022×10^{23} number of NH_{3} molecules $=1 \mathrm{GMM}$ of $\mathrm{NH}_{3}=17 \mathrm{~g}$.
$\mathrm{A}, \mathrm{C}, \mathrm{B}$ is the increasing order of mass.
13.A,B and C are three cylinders of 11.2 L capacity. They are filled with the gases of $\mathrm{H}_{2}, \mathrm{O}_{2}$ and N_{2} respectively at STP.
a. Find the number of moles of molecule of H_{2} in cylinder A .
b. Calculate the number of O_{2} molecules in the cylinder B .
c. If the volume of nitrogen gas in the cylinder C is doubled at STP, what will be the mass then? (Hint: Atomic mass: $\mathrm{H}=1, \mathrm{O}=16, \mathrm{~N}=14$)
Answer:a. Number of moles in 11.2 L of hydrogen at STP

$$
=\text { Volume at STP } / 22.4=11.2 / 22.4=1 / 2 \text { mole. }
$$

b. Number of moles in 11.2 L of O_{2} at $\mathrm{STP}=1 / 2$

Number of oxygen molecules in $1 / 2$ mole $\mathrm{O}_{2}=1 / 2 \times 6.022 \times 10^{23}=3.011 \times 10^{23}$
c. Volume of nitrogen gas when it is doubled $=2 \times 11.2=22.4 \mathrm{~L}=1$ mole.

Mass of 1 mole of nitrogen $=1 \mathrm{x} 28=28 \mathrm{~g}$.
14. Atomic masses : H-1,S-32,O-16
a. Calculate the molecular mass of sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$.
b. Find out the number of moles in 49 gm of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
c. How many molecules are present in 980 gm of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

Answer: a. Molecular mass $=2 \times 1+1 \times 32+4 \times 16=98$
b. Number of moles in 49 g of $\mathrm{H}_{2} \mathrm{SO}_{4}=98 / 49=1 / 2 \mathrm{~mole}$.
c. Number of molecules in 980 g of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ number of molesxAvogadro number $=(980 / 98) \times 6.022 \times 10^{23}==6.022 \mathrm{X}^{24} 0^{24}$
15. Mass, number of molecules and volume at STP in respect of four gases are given. (Atomic mass: $\mathrm{H}-1, \mathrm{~N}-14, \mathrm{O}-16, \mathrm{C}-12$) Find the values of A,B,C and D.

Gas	Mass (in g)	Volume (in L)	Number of molecules
H_{2}	4	44.8	$\ldots \ldots . \mathrm{A} \ldots .$.
CO_{2}	220	112	$\ldots \ldots . . \mathrm{B} . \ldots \ldots$
NH_{3}	$\ldots \ldots . . \mathrm{C} \ldots \ldots .$.	22.4	6.022×10^{23}.
CH_{4}	16	$\ldots \ldots . \mathrm{D} . \ldots$	6.022×10^{23}.

Answer: $A=2 \times 6.022 \times 10^{23} \quad B=5 \times 6.022 \times 10^{23}$
C $=17 \mathrm{~g}$
$\mathrm{D}=22.4$
16.a. Chemical formula for a few compounds are given.
$\mathrm{I}^{2} \mathrm{CaCO}_{3}$ ii. CO_{2}. (Hint: Atomic mass: Ca-40, C -12, O-16)
a. Find the molecular mass of the compounds.
b. (i)One mole of which of the above compound likely to have 22.4 L volume at STP?
(ii) How many moles will be present in 112 L of this compound?

Answer: $\mathrm{a} . \mathrm{CaCO}_{3}-1 \mathrm{x} 40+1 \mathrm{x} 12+3 \mathrm{x} 16=100 . \quad \mathrm{CO}_{2}-1 \mathrm{x} 12+2 \mathrm{x} 16=44$
b. (i). CO_{2} Because it is a gas. (ii) Number of moles in 112 L of $\mathrm{CO}_{2}=112 / 22.4=5$
17. 6.022×10^{23} carbon atoms are present in 12 g of carbon.
a. The number 6.022×10^{23} is known as \qquad
b. Calculate the number carbon atoms in 48 gm of $\mathrm{C}-12$
c. Which weighs more, 6.022×10^{23} molecules of CO_{2} or 6.022×10^{23} molecules of $\mathrm{H}_{2} \mathrm{O}$?

Answer: a. Avogadro number. b. 48 g of $\mathrm{C}-12=48 / 12=4 \mathrm{~mole}=4 \times 6.022 \times 10^{23}$ atoms.
c. One mole of $\mathrm{CO}_{2}=1 \times 12+2 \mathrm{x} 16=44 \mathrm{~g}$ One mole of $\mathrm{H}_{2} \mathrm{O}=2 \mathrm{x} 1+16=18 \mathrm{~g}$

Therefore $6.022 \times 10^{23} \mathrm{CO}_{2}$ molecules will be weighed more.
18.At a definite temperature and pressure, volume of one mole all gases are same. This volume is called .
Answer: Molar volume.
19. At STP molar volume of a gase will be \qquad litre. Answer: 22.4 litre.
20. Match the contents of the columns A \& B. .

A	B
a. $88 \mathrm{~g} \mathrm{CO}_{2}$	Avogadro number
b. 6.022×10^{23}	196 g
c. 2 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$.	$64 \mathrm{~g} \mathrm{O}_{2}$.

A	B
a. $88 \mathrm{~g} \mathrm{CO}_{2}$	$64 \mathrm{~g} \mathrm{O}_{2}$.
b. 6.022×10^{23}	Avogadro number
2 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$.	196 g

