

Online Class Supporting Materials

MALAPPURAM EDUCATIONAL DISTRICT

CLASS: 10 CHEMISTRY - 3

Unit: 2-GAS LAWS AND MOLE CONCEPT

Relative Mass

Method to state the mass of minute particles.

Gram Atomic Mass/Gram Molecular Mass

- * Gram value equivalent to atomic mass
- * Gram value equivalent to molecular mass

Mole Concept

Mole

The amount of substance having avogadro number of particles.

Avogadro Number 6.022 × 10²³

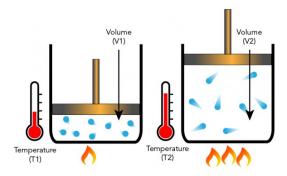
The number of atoms present in one gram atomic mass of Any element.

Molar Volume

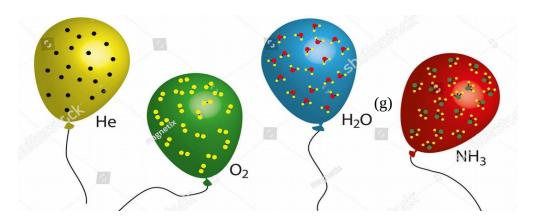
The volume of one mole gas at STP. 22.4L is the volume of one mol gas at STP.

Robert Boyle (1627- 1691)

Jacques Charles (1746 – 1823)

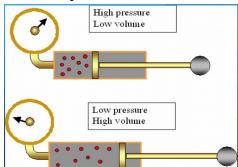


Amedeo Avogadro (1776-1856)


A. Topic: Gas Laws

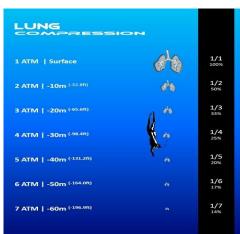
- 1. As air bubble rises from bottom to the top of an aquarium, the size of the bubble increases. What is the reason?
- 2. Which gas law is based for the picture given below? State the law and write it's mathematical operation.

3. Observe the figure given below (Just imagination)



3.a	Is the size (Volume) of different balloons are same in the picture ?	•••••
b	Number of He atoms seen in the balloon.	•••••
С	Number of O_2 molecules seen in the balloon.	
d	Number of $\mathbf{H}_2\mathbf{O}$ molecules seen in the balloon.	••••
e	Number of NH ₃ molecules seen in the balloon.	

3. f. Which Gas law is based here ? Write the mathematical operation of law .


4. Few situations are given here. Explain on the basis of Boyle's law

a. Inflating your Bicycle tyre (Observe the given picture and explain)

b. Working of Lungs of a scuba diver who reaches the bottom of ocean.

(Hint : Observe the given figure, Pressure increases as we move from top to bottom of the Ocean)

B. Topic: Gram Atomic Mass / Gram Molecular Mass

1

	Given substance	Gram Molecular Mass
a	H_2O	
b	H ₂ SO ₄	
С	Na ₂ CO ₃	
d	CaO	

H-1g

O - 16g

S - 32g

Na – 23g

C-12g

Ca - 40g

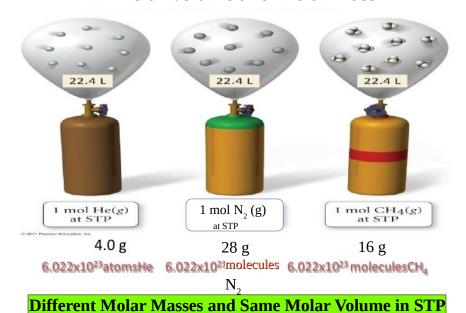
- a. Observe the given chemical formula and find the Gram molecular mass / Gram atomic mass of each reactant.
- b. Observe the given chemical formula and find the Gram molecular mass / Gram atomic mass of each product.
- c. What is the relation between total mass of the reactants and total mass of the products in the given chemical formula ?

C. Topic: Mole Concept, Number of atoms/molecules

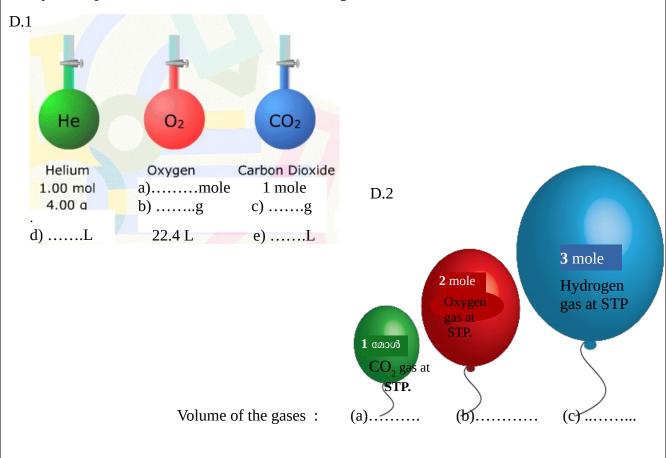
Table C.1

Sl.No	Given Sample	Number of atoms
1	5 mole hydrogen atom	
2	112 L Oxygen atom	
3	12g Carbon atom	
4	2.5 mole helium	
5	10 Mole CO ₂	
6	0.5 g H ₂	
7	32g CH ₄	
8	1 mole glucose (C ₆ H ₁₂ O ₆)	

Table C.2


Sl.No	Given Sample	Number of molecules
1	10 Mole CO ₂	
2	0.5g H₂	
3	32g CH₄	
4	1 Mole glucose (C ₆ H ₁₂ O ₆)	

C.3. Analyse the given examples of compounds and their atomicity. Write more compounds and their atomicity , You can use the compounds mentioned below .


Na ₂ O 3 atomicity	CO2	Co(OH)
H ₂ SO ₄ 7 atomicity	NH ₃	Ca(OH) ₂
KOH 3 atomicity	S_8	K ₂ SO ₄
H ₂ O 3 atomicity	H _o SO ₄	Al ₂ (SO ₄) ₃
CaCl ₂ 3 atomicity	112004	NaCl

D. Molar Volume

Molar volume and Molar mass

Analyse the picture above and fill in the blanks given in D.1 and D.2

