

MALAPPURAM EDUCATIONAL DISTRICT

EM_1.05 MATHEMATICS

Class - X

Chapter-1 ARITHMETIC SEQUENCES

SUMS

Previous Knowledge: - In any arithmetic sequence the sum of each pair of terms equidistant from both ends is equal. Or Sum of any number of terms = Number of pair sum x Pair Sum.

Sum of first 'n' natural numb	Ders	
Sum of first 'n' natural numbers,	S _n = 1+2+3+4+	+(n-1)+n
	$\mathbf{S_{n}=} \frac{n(n+1)}{2}$	(because number of pair sum= n/2, Pair Sum = n+1)
	$\mathbf{S_{n}=} \frac{n(n+1)}{2}$	
Eg: - Sum of first 100 natur	$ral numbers = \frac{100 x}{2}$	101 = 5050
Sum of first 'n' even numbers	S	
Sum of first 'n' even numbers,	$S_n = 2 + 4 + 6 + \dots$	+2n
	$S_n = 2(1+2+3+4+$ $S_n = n(n+1)$	+n) = $2n(n+1)/2$
Eg: - Sum of first 20 even	numbers = 20 x 21 =	420
Sum of first 'n' odd numbers		
Sum of first 'n' odd numbers, $S_n =$	= 1+3+5+7+	+(2n-1)
S _n =	$= \frac{n}{2}(1+2n-1)$	(because number of pair sum= n/2, Pair Sum = 1+2n-1 =2n)
S _n =	$= \frac{n}{2}(2n)$	
S _n =	\mathbf{n}^2	
Eg: - Sum of first 50 odd n	$umbers = 50^2 = 2500$	

Sum of first 'n' terms of an Arithmetic Sequence

Sum of first 'n' terms of an Arithmetic Sequence,

$$S_{n} = X_{1} + X_{2} + X_{3} + X_{4} + \dots + X_{n}$$

$$S_{n} = \frac{n}{2} (X_{1} + X_{n})$$
(because number of pair sum= n/2 and
Pair Sum = X_{1} + X_{n})
$$S = \frac{Number of terms}{2} x (First term + Last term)$$

Eg: - Sum of first 40 of 5, 8, 11, ----- = $\frac{40}{2}(X_1 + X_{40}) = 20(5+122) = 2540$

Another method of finding Sum

General form of an arithmetic sequence is $X_n = an+b$

for
$$x_1 = a+b$$
, $x_2 = 2a+b$, $x_3 = 3a+b$, $x_4 = 4a+b$,, $n = a+b$ then
 $x_1+x_2+x_3+\cdots +x_n = a+b+2a+b+3a+b+4a+b+\cdots +na+b$
 $S_n = (a+2a+3a+\cdots +na)+(b+b+b+b+\cdots +na+b)$
 $S_n = a(1+2+3+4+\cdots +n)+nb$
 $S_n = a(1+2+3+4+b+\cdots +n)+nb$
 $S_n = a(1+2+3+4+b+m)+nb$
 $S_n = a(1+2+3+b+b+m)+nb$
 $S_n = a(1+2+3+b+b+m)+nb$
 $S_n = a(1+2+3+b+m)+nb$
 $S_n = a(1+2+3+b+m)+$

WORKSHEET 1.05

1) In the following table find the sum by suitably filling the columns

Arithmetic Sequence	No of terms (n)	Formula used	Sum (Sn)
1+2+3+4++ 200	200	$\frac{n(n+1)}{2}$	(200 x 201)/2=20100
2+4+6++200		n(n+1)	
1+3+5++199		n ²	
11+21+31+ + 201			

2. Write the algebra of sum of the sequences by completing the table. Also find the sum of given number of terms.

Arithmetic Sequence	Common Difference (d)	First Term (f)	d/2	f-d/2	Algebra of Sum Sn= d/2n ² +(f-d/2)n	Sum of given number of terms (Sn)
7,11,15,19,	4	7	2	3	2n ² +3n	$S_{10}=2x10^2+3x10$ = 230
10,16,22,28,		••••	••••		••••	S ₁₅ =
1/2, 1, 11/2, 2,		••••		••••		S ₂₀ =
100,90,80,70,		••••				S ₃₀ =

3. In the following table, algebra of sum of some terms of Arithmetic Sequences are given. Write the algebra of sequences by completing the table. Also compute the required terms in the last column.

Algebra of Sum (Sn)	Common Differnece (d)	Firts Term (f)	Algebra of Sequence (Xn)	Term required
5n ² +3n	5x2	5+3=8	10n-2	x ₁₅ =10x152=148
3n ² +2n	••••	••••		$x_{25} =$
¹ / ₂ n ² + ¹ / ₂ n	••••	••••		x ₃₀ =
n ² -3n	••••	••••		x ₁₀₀ =

- 4. Find the sum of all terms of the following sequences
 - a) 5,8,11,....,200
 - b) 100,95,90,.....,0
 - c) 1,1¹/₂,2,2¹/₂,..... 100
- 5. Prove that 9 added to the sum of any number of consecutive terms of 7, 9, 11, 13,--- from the beginning is a prefect square.

