

MALAPPURAM EDUCATIONAL DISTRICT X Maths(EM)-1.01 ARITHMETIC SEQUENCES

Sequences and their algebra

• <u>Sequence</u> : A collection of numbers which proceed according to a rule.

Eg :- (1) 1, 2, 3, 4	; (1) 1, 2, 3, 4 Sequence of natural number		
(2) 1, 3, 5, 7	Sequence of odd numbers		
(3) 2, 4, 6, 8	Sequence of even numbers		
(4) 2, 3, 5, 7	Sequence of prime numbers		
(5) 1, 4, 9, 16	Sequence of perfect squares		

Note : The numbers in a sequence are called "Terms" and the terms are represented as x₁, x₂, x₃.....

• <u>Algebra of a sequence :</u> Method of expressing a sequence using a variable. Since the variable is 'n' is used it is known as nth term(x_n)

Eg :-

Sl. No	Sequence	Algebraic Form(x _n)	
1	1, 2, 3, 4	n	
2	2, 4, 6, 8	2n	
3	1, 3, 5, 7	2n-1	
4	1, 4, 9, 16	n ²	
5	5, 10, 15, 20	5n	


Algebraic form of some sequences cannot be written

Eg :- (1) 2, 3, 5, 7..... Sequence of prime numbers (2) 1, 7, 3, 2..... Sequence of digits in the value of $\sqrt{3}$

If n is given values 1, 2, 3..... in algebraic form we get x₁, x₂, x₃.....

WORK SHEET 1

- 1. Square is a quadrilateral with all its four sides equal and four angle equal
 - a. Draw rough figure of squares with sides 1cm, 2cm, 3cm..... as a sequence
 - b. Write the sequence of the areas of above squares
 - c. Express the sequence 'b' in another way (Instead of areas of squares with sides 1cm, 2cm, 3cm...)
 - d. Write the sequence of the lengths of the diagonals of the squares.
 - e. Express the sequences b,d using algebra.
- 2. In the figure a square is divided in to four equal squares. Each small square obtained is divided in to four equal squares and so on. If the process is continued

- a. Write the number of smallest squares in each figure as a sequence.
- b. Write the algebraic form of the sequence 'a'.
- c. Proceeding like this find the position of the figure with 1024 smallest squares.
- d. If the area of the big square is 1 write the sequence of areas of a smallest square in each figure.
- e. What is the algebra of the sequence 'd'.
- 3. In the following table match the columns A, B, C appropriately.

Sequence				Algebraic form	
	А		В		С
a	Sequence of reciprocals of natural numbers.	a	5, 10, 15, 20	a	10 ⁿ -1
b	Sequence of multiples of 5	b	3, 9, 27, 81	b	180n
C	Sequence of numbers 1 less than powers of 10	C	180, 360, 540, 720	C	$\frac{1}{n}$
d	Sequence of sum of interior angles of polygons	d	1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$	d	5n
e	Sequence of powers of 3	e	9, 99, 999, 9999	e	3 ⁿ