
KITE VICTERS ONLINE CLASS 16-07-2020

PHYSICS - X-PART-1 CLASS 09

<u>Magnetic field</u>

* This region around a magnet where the influence is felt is the magnetic field.

* The direction of the magnetic field is from North pole to South pole. (N \longrightarrow S)

<u>Magnetic Line of force</u>

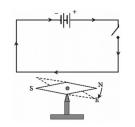
- * Magnetic field represented by Magnetic line of force Magnetic Flux
- * Total number of magnetic line of force around a magnet.

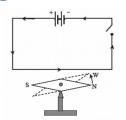
Magnetic Flux Density

* The number of magnetic lines of force passing normal to unit area is the magnetic flux density of that region.

Electric current

* The direction of flow of current from positive to negative.(The direction of flow of electrons from negative to positive)




KITE VICTERS ONLINE CLASS 16-07-2020

A magnetic field around a current carrying conductor

1. Conductor above the magnetic needle

No.	Conductor above the magnetic needle	Direction of motion of North Pole (N) of the magnetic needle clockwise/anticlockwise
1	Direction of current from A to B	Anticlockwise
2	Direction of current from B to A	Clockwise

Table 2.1

2. Conductor below the magnetic needle

No.	Conductor below the magnetic needle	Direction of motion of North Pole (N) of the magnetic needle clockwise/anticlockwise
1	Direction of current from A to B	Clockwise
2	Direction of current from B to A	Anticlockwise

Table 2.2

KITE VICTERS ONLINE CLASS 16-07-2020

- 1. What might be the reason for the deflection of the magnetic needle?
- * A magnetic field is developed around a current carrying conductor. The magnetic needle is deflected as a result of the mutual action of this magnetic field and that around the magnetic needle.
- 2. What are the factors influencing the deflection of the magnetic needle?
 - * The direction of the current.
 - * The position of the conductor.