UNIT 1

Effects of Electric Current

01/07/2020 – Class 7 <u>Activity 1</u> <u>Answer of Assignments</u>

2 Ω and 4 Ω resistors are connected in parallel. 12 V potential difference is applied. Find current in the circuit?

$$R_1 = 2 \Omega, R_2 = 4 \Omega, V = 12 V$$
$$1/R = 1 / R_1 + 1/R_2$$
$$= 1/2 + 1/4 = 6/8 = 3/4$$
$$R = 4/3 \Omega$$

Current in the circuit , I = V/R= 12 X 3 /4 = 9 A

Activity 2

Discussion – What is power?

All electrical appliances use electrical energy to perform work.

- What is the work done by an electric bulb? **Convert electrical energy to light energy and heat energy.**
- What is the work done by an electric heater? **Convert electrical energy to heat energy**

If an electrical device performs W joule work in t second Work done in 1 second = W / t

Inference

Work done in (unit time) 1 second is known as its power.

Power (P) = Work(W) / Time(t)

Unit of power = J/s= W 1J/1s = 1 W

<u>One Watt</u>

If an electrical appliance consume one joule electrical energy in unit time, then its power is one watt.

Activity 3

Power and Voltage are marked on electrical appliances. Observe two electric bulbs. **230 V 40 W**, is marked on the first bulb and **230 V 100 W** is marked on the second bulb. Glowing the above bulbs one by one by connecting to an electric supply.

Observations

- 100 W bulb produce more light.
- 40 W bulb produce less light.

Discussion

- During the working of 40 W bulb, how much electrical energy was converted to light energy and heat energy in one second? **40 J**
- 100 W bulb converts how much electrical energy to light energy and heat energy in one second? **100 J**

Power

Power of an electrical appliance is the amount of electrical energy consumed by the electrical appliance in one second.

Unit of power is **watt(W)**

• What is the work done by a heating device? **Converts electrical energy to heat energy.**

If **H** joule heat energy is generated in **t** second,

then heat energy generated in 1 second = H / t = W/t

Here the heat energy generated **(H)** is the work done by the device **(W)**

According to Joule's law,
$$H = I^2 Rt$$

 $P = \frac{H}{t} = \frac{I^2 Rt}{t} = I^2 R$
From Ohm's law, $I = \frac{V}{R}$, $P = (\frac{V}{R})^2 R$
 $= \frac{V^2}{R^2} \propto R$
 $= \frac{V^2}{R}$

$$R = \frac{V}{I}$$

$$P = I^{2}R, P = I^{2} \times \frac{V}{I}$$

$$P = V I$$

Activity 3

The power of an electrical appliance is 540 W. The voltage applied to this device is 230 V. Find it's amperage?

$$P = 540 \text{ W}, V = 230 \text{ V}$$

Amperage = W / V
= 540 / 230 = **2.34 A = 2.4 A**

Activity 4

Resistance of an electrical appliance is 115 Ω . Current through this device is 2 A. Find its power?

R= 115 Ω , I = 2 A P = I^2R = 2 X 2 X 115 = 460 W

Activity 5

Power of an electrical appliance is 1600 W. The device work at 400 V. If we give 200 V instead of 400 V, what is its power?

When V = 200 V

P = 1600 W, V = 400 V $P = V^2 / \text{ R},$ $R = V^2 / \text{ P}$ R = 400 X 400 / 1600 =**100 \Omega** $P = V^2 / \text{ R} = 200 \text{ X} 200 / 100 =$ **400 W**

Inference

If voltage is decreased to half then power decreased to one fourth

Assignments
1. Complete the table ?

Resistors in series	Resistors in parallel
• Effective resistance increases	•
•	• The current through each resistor is different. It gets divided as per the value of resistors.
• The potential difference across each resistor is different. It gets divided as per the value of resistors.	•
•	• Each resistor can be controlled by using separate switches.

2. If 0.4 A current flows through a bulb which works at 230 V. What is its power?