ALGEBRA OF ARITHMATIC SEQUENCES

SEQUANCE: A set of numbers by a law written as the first, second, third and so on.
> ARITHMETIC SEQUENCE: A sequence got by starting a fixed Number and adding or subtracting a fixed number repeatedly.
> COMMON DIFFERENCE (d): The constant difference got by subtracting from any term the just previous term is called the common difference of an arithmetic Sequence.
$>\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}, \ldots \ldots .$. . Are the terms of an arithmetic sequence and suffix denote position
> common difference $=\frac{\text { Term Difference }}{\text { positional difference }}$
> Consider an arithmetic sequence
$10,13,16,19,22,25,28 \ldots . . .$.
Here

$$
\begin{aligned}
& x_{1}=f=10 \\
& x_{2}=f+d=10+3=13 \\
& x_{3}=f+2 d=10+2 \times 3=16 \\
& x_{4}=f+3 d=10+3 \times 3=19 \\
& x_{20}=f+19 d=10+19 \times 3=67
\end{aligned}
$$

if continue this $\mathrm{n}^{\text {th }}$ term of this arithmetic sequence

$$
\begin{aligned}
x_{n} & =f+(n-1) x d=10+(n-1) \times 3 \\
& =10+3 n-3
\end{aligned}
$$

$X_{n}=3 n+7$
From this we can say that the $\mathrm{n}^{\text {th }}$ term of this arithmetic sequence is

$X_{n}=3 n+7$

This is also known as the algebra of the sequence
From the above sequence we can see that the $\boldsymbol{n}^{\text {th }}$ term or algebra of any arithmetic sequence with first term is f and common difference d is

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{n}}=\mathrm{f}+(\mathrm{n}-1) \mathrm{xd} \\
& \mathrm{x}_{\mathrm{n}}=\mathrm{f}+\mathrm{dn}-\mathrm{d} \\
& \mathrm{x}_{\mathrm{n}}=d n+(f-d)
\end{aligned}
$$

E.g.: find the $\mathrm{n}^{\text {th }}$ term of this arithmetic sequence $1,5,9,13$.

$$
\begin{aligned}
& \mathrm{F}=1 \quad \mathrm{~d}=4 \\
& \mathrm{x}_{\mathrm{n}}=d n+(f-d) \\
& \mathrm{x}_{\mathrm{n}}=4 \mathrm{n}+(1-4) \\
& \\
& =4 \mathrm{n}+(-3) \\
& \mathrm{X}_{\mathrm{n}}=4 \mathrm{n}-3
\end{aligned}
$$

$>$ If the $\mathrm{n}^{\text {th }}$ term of any arithmetic sequence is $\mathbf{X}_{\mathrm{n}}=\mathbf{a n}+\boldsymbol{b}$ then First term $=\mathrm{a}+\mathrm{b}$ common difference $=\mathrm{a}$
E.g.: the $\mathrm{n}^{\text {th }}$ term of an arithmetic sequence is $\mathrm{X}_{\mathrm{n}}=5 \mathrm{n}+3$. what is the sequence First term $=\mathrm{f}=5+3=8 \quad$ common difference $=5$ The arithmetic sequence is $8,13,18,23,28$ \qquad
MORE QUSTIONS TO PRACTICE
1.

The $8^{\text {th }}$ term of an arithmetic sequence is 12 and its $12^{\text {th }}$ term is 8 . What is the algebraic expression for this sequence?

Common difference is \qquad use(common difference $=\frac{\text { Term Difference }}{\text { positional difference }}$)
First term \qquad
Algebra of the sequence is \qquad Use ($x_{n}=d n+(f-d)$)
2.

Prove that the arithmetic sequence with first term $\frac{1}{3}$ and common difference $\frac{1}{6}$ contains all natural numbers.

Algebra of the sequence is \qquad Use ($\mathrm{x}_{\mathrm{n}}=d n+(f-d)$)

Click here and watch the video class for better understanding

3.

Prove that the arithmetic sequence with first term $\frac{1}{3}$ and common difference $\frac{2}{3}$ contains all odd numbers, but no even number.

Algebra of the sequence is \qquad Use ($\mathrm{x}_{\mathrm{n}}=d n+(f-d)$)
4.

Prove that the squares of all the terms of the arithmetic sequence
$4,7,10, \ldots$ belong to the sequence.
Common difference is \qquad
First term \qquad
Algebra of the sequence is \qquad Use ($\mathrm{x}_{\mathrm{n}}=d n+(f-d)$)
Square the algebraic equation. \qquad
5.

Prove that the arithmetic sequence $5,8,11, \ldots$ contains no perfect squares.

Common difference is \qquad
First term \qquad
Algebra of the sequence is \qquad Use ($\mathrm{x}_{\mathrm{n}}=d n+(f-d)$)
Square the algebraic equation \qquad
6.

Write the whole numbers in the arithmetic sequence $\frac{11}{8}, \frac{14}{8}, \frac{17}{8}, \ldots$.
Do they form an arithmetic sequence?
Common difference is \qquad
First term
Algebra of the sequence is \qquad Use ($\mathrm{x}_{\mathrm{n}}=d n+(f-d)$)

