MATHEMATICS

MODEL KEY ANSWER - ENGLISH MEDIUM

27-Jun-20
T.SHIVAKUMAR

$10^{\text {TH }}$ STANDARD ANNUAL EXAM -2020

Subject: Mathematics
Time : 3 hours
KEY ANSWER

Subject code: 81E
Max.marks: 80

Choose the correct answer given below 1x8=8

1. Equations have unique solution
2. 2
3. 1
4. $\frac{13}{12}$
5. $1: 2$
6. tangent
7. $\frac{\theta}{360} \times \prod r^{2}$
8. $220 \mathrm{~cm}^{2}$

Answer the following questions --------------1x8=8

9. Here, $q=20$, which is in the form $2^{n} \times 5^{n}=2^{2} \times 5^{1}$ So, the rational number $\frac{23}{20}$ is a terminating decimal expansion.
10. 3
11. 1
12. $\left(\frac{x 1+x 2}{2}, \frac{y 1+y 2}{2}\right)$
13. Basic Proportionality Theorem states that "If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio".
14. 50^{0}
15. $x^{2}+x-2=0$
16. $\Pi r l+\Pi r^{2}$

Solve the following questions
17. $2 x+y=11 \& x+y=8$ by elimination method
$2 x+y=11$
$2 x+2 y=16$

$$
Y=5 \quad \& \quad x=3
$$

18. Here $a=5, d=3 \& n=10$ we have to find S_{10}, the formula is $S_{n}=\frac{n}{2}(2 a+(n-1) d)$

$$
\begin{aligned}
\mathrm{S}_{10} & =\frac{10}{2}(2(5)+(10-1) 3) \\
& =5(10+27)
\end{aligned}
$$

$$
\mathrm{S}_{10}=185
$$

19. If the pair of linear equations are inconsistent then $\frac{a 1}{a 2}=\frac{b 1}{b 2} \neq \frac{c 1}{c 2}$ $a_{1}=2, a_{2}=2(k-4), b_{1}=-3 \quad b_{2}=-k$
$2 x(-k)=-3(2 k-8)$
$-2 k=-6 k+24$
$4 \mathrm{k}=24$
$\mathrm{K}=6$
20. The equation is $2 x^{2}-5 x+3=0, a=2, b=-5 \& c=3$

Nature of the roots will be depend on $b^{2}-4 a c$
$b^{2}-4 a c=25-4 \times 2 \times 3$

$$
=1>0
$$

If $b^{2}-4 a c>0$, then it will be two distinct real roots.
21. We know that sum of roots in a quadratic equation is given by $p+q=-b / a$ If p, q are roots
The quadratic equation is $\mathrm{x}^{2}-6 \mathrm{x}+\mathrm{k}$
One root is twice the other. So,
The roots are $\mathrm{p}, 2 \mathrm{p}$
Comparing coefficients,
$\mathrm{a}=1, \mathrm{~b}=6, \mathrm{c}=\mathrm{k}$
So, $-\mathrm{b} / \mathrm{a}=\mathrm{p}+2 \mathrm{p}$
6/1=3p
$6=3 \mathrm{p}$
$\mathrm{p}=2$
So the roots are 2 and $2(2)=4$
Also we know that product of zeros=c/a
That is, $\mathrm{pq}=\mathrm{c} / \mathrm{a}$
$2 \times(4)=k / 1$
$\mathrm{k}=8$
OR
Given $p(x)=x^{3}-2 x^{2}+3 x+4$ and $g(x)=x^{2}-3 x+1$
By division algorithm, $\mathrm{g}(\mathrm{x})=\frac{p(x)-r(x)}{q(x)}$, So. $\mathrm{r}(\mathrm{x})$ must be subtracted that result is exactly divisible by $\mathrm{x}^{2}-3 \mathrm{x}+1$.

22. The distance formula is $\mathrm{d}=\sqrt{(x 2-x 1) 2+(y 2-y 1) 2}$

$$
\begin{aligned}
& \quad \begin{array}{l}
d=\sqrt{(4) 2+(-4) 2} \\
d=\sqrt{16+16} \\
d=\sqrt{32}=\sqrt{2 x 16} \\
d=4 \sqrt{2} \text { units }
\end{array} \\
& \text { OR }
\end{aligned}
$$

Given points are $\left(x_{1}, y_{1}\right)=(1,6)$

$$
\left(x_{2}, y_{2}\right)=(4,3) \text { and ratio } m: n=1: 2
$$

The coordinates are x, y is $\left(\frac{m \times 1+n x 2}{m+n}, \frac{m y 1+n y 2}{m+n}\right)$

$$
\begin{aligned}
& \left(\frac{1 x 1+2 x 4}{3}, \frac{1 x 6+2 x 3}{3}\right) \\
& \left(\frac{9}{3}, \frac{12}{3}\right)
\end{aligned}
$$

$(3,4)$
23. The three points are $A(1,1), B(3,2)$ and $C(5,3)$ We know that, Thus, area of triangle $A=\frac{1}{2}(1(2-3)+3(3-1)+5(1-2)$

$$
A=0
$$

Since, if area of triangle is 0 square units, then its vertices will be collinear Hence, $A(1,1), B(3,2)$ and $C(5,3)$ are not the vertices of triangle
24.

Solve the given problems

25 . Let us assume that $\sqrt{5}$ is a rational number. $\sqrt{5}=\frac{P}{q} \rightarrow--\rightarrow$
$=p, q \in z, q \neq 0, H C F$ of $(p, q)=1$

Equation 1, Squaring both side
We get $5=\frac{P 2}{q 2}$
p 2 , q 2 are not co-prime numbers.
This is contradictory to our assumption that P and q are co-prime.
\Rightarrow Our assumption that $\sqrt{5}$ is a rational number is wrong.
$\therefore \sqrt{5}$ is an irrational number.

> OR

HCF of 24 \& 40 is
24)40(1

$$
40=24 \times 1+16
$$

\qquad
24
16)24(1

$$
24=16 \times 1+8
$$

\qquad
HCF of $24 \& 40$ is 8
LCM of $\operatorname{HCF}(24,40) \& 20$ is

$$
\frac{4 \underline{8,20}}{25}==\rightarrow \quad 4 \times 2 \times 5=40
$$

26. Distance $=12 \mathrm{~km}$ speed of A be $x k m / h r$ and speed of B is $(x+2) k m / h r$

The time taken by A is $\mathrm{t}_{1}=\frac{12}{x}$
The time taken by B is $\mathrm{t}_{2}=\frac{12}{x+2}$
By question $\mathrm{t}_{2}=\mathrm{t}_{1}-\frac{1}{2}$
$\frac{12}{x+2}=\frac{12}{x}-\frac{1}{2}$
Solving the equation we get
$x^{2}+2 x-48=0$ this is quadratic equation solve this by using any method we get $x=6$ or $x=-8$
therefore time taken by A is $\mathrm{t}_{1}=\frac{12}{6}=2$ hours
OR
27. $\mathrm{X}=\mathrm{p} \tan \Theta+q \sec \Theta$ \& $\mathrm{y}=\mathrm{psec} \Theta+q \tan \Theta$

To prove $x^{2}-y^{2}$

$$
\begin{aligned}
& (p \tan \Theta+q \sec \Theta)^{2}-(p \sec \Theta+q \tan \Theta)^{2} \\
= & \left(p^{2} \tan 2 \theta+q^{2} \tan ^{2} \Theta+2 \operatorname{ptan} \Theta+q \sec \Theta\right)-\left(p^{2} \sec ^{2} \Theta+q^{2} \tan ^{2} \Theta+2 p \sec \Theta+q \tan \Theta\right) \\
= & p^{2}\left(\tan ^{2} \Theta-\sec ^{2} \Theta\right)+q^{2}\left(\sec ^{2} \Theta-\tan ^{2} \Theta\right) \\
= & p^{2}(-1)+q^{2}(1) \\
= & -p^{2}+q^{2}
\end{aligned}
$$

OR

$$
\frac{\operatorname{Cot} 2(90-\Theta)}{\tan 2 \Theta-1}+\frac{\operatorname{cosec} 2 \Theta}{\sec 2 \Theta-\operatorname{cosec} 2 \Theta}=\frac{1}{\sin 2 \Theta-\cos 2 \Theta}
$$

$\frac{\tan 2 \Theta}{\tan 2 \Theta-1}+\frac{\operatorname{cosec} 2 \Theta}{\sec 2 \Theta-\operatorname{cosec} 2 \Theta}$
$\frac{\sin 2 \Theta / \cos 2 \Theta}{\sin 2 \Theta-\cos 2 \Theta / \cos 2 \Theta}+\frac{1 / \sin 2 \Theta}{\sin 2-\cos 2 / \sin \cos }$
$\frac{\sin 2+\cos 2}{\sin 2-\cos 2}=\frac{1}{\sin 2 \Theta-\cos 2 \Theta}$
Hence proof
28.

C.I	f	fc
$20-40$	7	7
$40-60$	15	22
$60-80$	20	42
$80-100$	8	50

$N=50$
$N / 2=25, f c=22, h=20, L R L=60$ and $f=20$
Median $=\mathrm{LRL}+\frac{\frac{N}{2}-F c}{f} \times \mathrm{h}$
$=60+\frac{25-22}{20} \times 20$
$=63$

C.I	f
$1-3$	6
$3-5$	9
f0	
$5-7$	15
$7-9$	9
$9-11$	1

$$
\begin{aligned}
\text { Mode } & =\operatorname{LRL}+\left(\frac{f 1-f 0}{2 f 1-f 0-f 2}\right) \times \mathrm{h} \\
& =5+\left(\frac{15-9}{30-9-9}\right) \times 2 \\
& =5+12 / 12 \\
& =6
\end{aligned}
$$

29.

Daily income	no.of workers
<100	0
<120	8
<140	20
<160	34
<180	44
<200	50

30. $N(s)=n(R)+n(W)+n(B)$

$$
\begin{aligned}
& =3+5+8 \\
& =16
\end{aligned}
$$

a)red ball, the probability is $\mathrm{p}(\mathrm{a})=\frac{3}{16}$
b) not a white ball means, red+blue $=11$ the probability is $\mathrm{p}(\mathrm{a})=\frac{11}{16}$
31.

Theorem: The tangents drawn from an external point to a circle
(a) are equal
(b) subtend equal angles at the centre
(c) are equally inclined to the line joining the centre and the external point

Data: A is the centre of the circle. B is an external point.
$B P$ and $B Q$ are the tangents.
$A P, A Q$ and $A B$ are joined.
To prove : (a) BP = BQ
(b) $\angle \mathrm{PAB}=\angle \mathrm{QAB}$
(c) $\angle \mathrm{PBA}=\angle \mathrm{QBA}$

Proof: Statement
In $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQB}$
$\mathrm{AP}=\mathrm{AQ}$
$\angle \mathrm{APB}=\angle \mathrm{AQB}=90^{\circ}$
hyp $A B=$ hyp $A B$
$\therefore \triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$
\therefore (a) PB $=Q B$
(b) $\angle \mathrm{PAB}=\angle \mathrm{QAB}$
(c) $\angle \mathrm{PBA}=\angle \mathrm{QBA}$

Reason
radii of the same circle
Radius drawn at the point of contact
Common side
RHS Theorem
CPCT
QED
32.

33.

Area of rectangle is $=20 \times 10=200 \mathrm{~cm}^{2}$.
Here $A O B=90^{\circ}, O A E B$ is an sector of radius $O A=O B=10 \sqrt{2}$
Area of sector $=\frac{1}{2} r^{2} \Theta$.

$$
\begin{aligned}
& =\frac{1}{2} \times 10 \sqrt{2} \times 10 \sqrt{2} \times \frac{\Pi}{2} \\
& =157.14 \mathrm{~cm}^{2} .
\end{aligned}
$$

Area of shaded region = area of rectangle - (area of sector-area of AOB)

$$
\begin{aligned}
& =200-(157.14-100) \\
& =142.85 \mathrm{~cm}^{2} .
\end{aligned}
$$

OR

$$
\begin{aligned}
\text { Area of cloth used } & =\frac{\theta}{360} \times \prod r^{2} \\
& =\frac{120}{360} \times 22 / 7(21)^{2} \\
& =462 \mathrm{~cm}^{2}
\end{aligned}
$$

Length of the metallic wire is $\frac{\theta}{360} \times 2 \prod r$

$$
\begin{aligned}
& =\frac{\theta}{360} \times 2 \prod r \\
& =\frac{120}{360} \times 2 x 3.14 \times 21 \\
& =44 \mathrm{~cm} . \\
& =44+21+21=86 \mathrm{~cm}
\end{aligned}
$$

Solve

34.

Graphical method The equations are $x+y=7 \quad \& \quad 3 x-y=1$

$$
x+y=7
$$

x	0	7
y	7	0

$3 x-y=1$

x	0	0.33
y	-1	0

35. Let the terms be $a-2 d, a-d, a, a+d, a+2 d$

According to first condition sum of its terms is 55
So $a-2 d+a-d+a+a+d+a+2 d=55$
$5 a=55$
$a=11$
according to $2^{\text {nd }}$ condition $\mathrm{a}_{4}=\mathrm{a}_{1}+\mathrm{a}_{2}+5$

$$
\begin{aligned}
& a+d=a-2 d+a-d+5 \\
& 4 d=16 \\
& d=4
\end{aligned}
$$

therefore the terms are $a-2 d, a-d, a, a+d, a+2 d$ $3,7,11,15 \& 19$
OR

According to first condition $\mathrm{a}_{6}=2(\mathrm{a})_{3}+1$
$a+5 d=2(a+2 d)+1$
a-d=-1

> (1)
according to $2^{\text {nd }}$ condition $\mathrm{a}_{4}+\mathrm{a}_{5}=5\left(\mathrm{a}_{2}\right)$

$$
\begin{align*}
& a+3 d+a+4 d=5 a+5 d \\
& 3 a-2 d=0---\gg(2 \tag{2}
\end{align*}
$$

Solve equation 1 and 2 we get
$a=2$ and $d=3$
36.

In triangle $A B D, L D=60^{\circ}$.
$\operatorname{Tan} 60^{\circ}=\frac{A B}{B D}=$

$$
\sqrt{3}=\frac{60}{B D} \Rightarrow \mathrm{BD}=\frac{60}{\sqrt{3}}=\mathrm{EC}
$$

Similarly in triangle AEC, $\operatorname{Tan} 30^{\circ}=\frac{A E}{E C}$

$$
\frac{1}{\sqrt{3}}=\frac{A E}{60 / \sqrt{3}}
$$

$A E=20 \mathrm{~m}$.
Therefore height of the pole is $C D=A B-A E$

$$
\begin{aligned}
& =60-20 \\
& =40 \mathrm{~m} .
\end{aligned}
$$

37.

Volume $V=\frac{1}{3} \Pi h\left(r_{1}{ }^{2}+r_{2}^{2}+r_{1} \cdot r_{2}\right)$

$$
=\frac{1}{3} \times 3.14 \times 16(400+64+160)
$$

$$
=\frac{3.14 \times 16 \times 624}{3}
$$

$$
=10449.92 \mathrm{~cm}^{2} .
$$

Convert this to the liter we get 10.44 .
Therefore cost of the milk per liter is 10.44×20
Approximately Rs. 208.9 = Rs. 209

38.Pythagoras Theorem

In a right angles triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Data: In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$
To Prove : $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{CA}^{2}$
Construction: Draw BD $\perp \mathrm{AC}$.
Proof: Statement Compare $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADB}$, $\angle \mathrm{ABC}=\angle \mathrm{ADB}=90^{\circ}$ $\angle B A D$ is common.
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADB}$
$\Rightarrow \frac{A B}{\mathrm{AD}}=\frac{A C}{A B}$
$\therefore \mathrm{AB}^{2}=\mathrm{AC} \cdot \mathrm{AD}$ \qquad
Compare $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDC}$,
$\angle \mathrm{ABC}=\angle \mathrm{BDC}=90^{\circ}$
$\angle A C B$ is common
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{BDC}$
$\Rightarrow \frac{B C}{D C}=\frac{A C}{B C} \Rightarrow=$
$\mathrm{BC}^{2}=\mathrm{AC} \cdot \mathrm{DC}$
By adding (1) and (2) we get
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=(\mathrm{AC} . \mathrm{AD})+(\mathrm{AC} . \mathrm{DC})$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}(\mathrm{AD}+\mathrm{DC})$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC} . \mathrm{AC}=\mathrm{AC}^{2} \quad[$? $\mathrm{AD}+\mathrm{DC}=\mathrm{AC}]$
$\therefore \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$

