qwertyuiopasdfghjklzxcvbnmqwertyu opasdfghjklzxcvbnmqwertyuiopasdfgh jklzxcvbnmqwertyuiopasdfghjklzxcvb nmqwer MATHEMATICS

MODEL KEY ANSWER – ENGLISH MEDIUM

27-Jun-20

hiklzx

T.SHIVAKUMAR

lfghjklzxcvbnmqwertyuiopasdfgh klzxcvbnmqwertyuiopasdfghjklzxcvb iopasdfghjklzxcvbnmqwertyuiopas

10TH STANDARD ANNUAL EXAM -2020

Subject: Mathematics

Time : 3 hours

KEY ANSWER

Subject code: 81E Max.marks: 80

Choose the correct answer given below ------ 1x8=8

- 1. Equations have unique solution
- 2. 2
- 3. 1
- 4. $\frac{13}{12}$
- 5. 1:2
- 6. tangent
- 7. $\frac{\Theta}{360}$ x $\prod r^2$
- 8. 220 cm²

Answer the following questions ------ 1x8=8

- 9. Here, q =20, which is in the form $2^{n}x5^{n} = 2^{2}x5^{1}$ So, the rational number $\frac{23}{20}$ is a terminating decimal expansion.
- 10. 3
- 11. 1
- 12. $\left(\frac{x1+x2}{2}, \frac{y1+y2}{2}\right)$
- 13. **Basic Proportionality Theorem** states that "If a line is drawn **parallel** to one side of a triangle to intersect the other two sides in distinct points, the other two sides are *divided in the same ratio*".
- 14. 50⁰
- 15. x²+x-2=0
- 16. ∏rl+∏r²

Solve the following questions ------ 2x8=16

17. 2x+y=11 & x+y=8 by elimination method

2x+y=11

2x+2y=16

Y=5 & x= 3

18. Here a=5, d=3 & n=10 we have to find S₁₀, the formula is $S_n = \frac{n}{2} (2a + (n-1)d)$

$$S_{10} = \frac{10}{2} (2(5) + (10 - 1)3)$$
$$= 5(10 + 27)$$
$$S_{10} = 185$$

19. If the pair of linear equations are inconsistent then $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

 $a_1=2, a_2=2(k-4), b_1=-3 b_2=-k$ 2x(-k)=-3(2k-8) -2k=-6k+24 4k=24 K=6The equation is $2w^2$ Full 2=0, equation

20. The equation is 2x²-5x+3=0, a=2, b=-5 & c=3

Nature of the roots will be depend on b²-4ac

b²-4ac=25-4x2x3

=1 >0

If b^2 -4ac >0, then it will be two distinct real roots.

21. We know that sum of roots in a quadratic equation is given by

p+q=-b/a If p, q are roots The quadratic equation is $x^{2}-6x+k$ One root is twice the other. So, The roots are p, 2p Comparing coefficients, a=1,b=6,c=k So, - b/a=p+2p 6/1=3p 6=3p p=2 So the roots are 2 and 2(2)=4 Also we know that product of zeros=c/a That is, pq=c/a 2×(4)=k/1 k=8

OR

Given $p(x)=x^3-2x^2+3x+4$ and $g(x)=x^2-3x+1$ By division algorithm, $g(x)=\frac{p(x)-r(x)}{q(x)}$, So. r(x) must be subtracted that result is exactly divisible by x^2-3x+1 .

Thus , area of triangle $A = \frac{1}{2}(1(2-3)+3(3-1)+5(1-2))$

A=0

Since, if area of triangle is 0 square units , then its vertices will be collinear Hence, A(1,1) , B(3,2) and C(5,3) are not the vertices of triangle 24.

Solve the given problems ------ 3x9=27

25. Let us assume that $\sqrt{5}$ is a rational number. $\sqrt{5} = \frac{p}{q} \dots \rightarrow (1)$ = p, q \in z, q \neq 0, H C F of (p, q) = 1

Equation 1, Squaring both side We get $5=\frac{P2}{q2}$

p2, q2 are not co-prime numbers. This is contradictory to our assumption that P and q are co-prime. \Rightarrow Our assumption that $\sqrt{5}$ is a rational number is wrong.

 $\therefore \sqrt{5}$ is an irrational number. OR HCF of 24 & 40 is

24)40(1 40=24x1+16

<u>24</u> 16)24(1 24=16x1+8

16=8x2+0

HCF of 24 & 40 is 8

8)16(2

16

24

16

LCM of HCF (24, 40)& 20 is

2 5 ==**→** 4X2X5= 40

26. Distance =12km speed of A be xkm/hr and speed of B is (x+2)km/hr

4 8, 20

The time taken by A is $t_1 = \frac{12}{x}$ The time taken by B is $t_2 = \frac{12}{x+2}$ By question $t_2 = t_1 - \frac{1}{2}$ $\frac{12}{x+2} = \frac{12}{x} - \frac{1}{2}$ Solving the equation we get

T.SHIVAKUMAR

T.SHIVAKUMAR

C.I	f	
1-3	6	
3-5	9	f0
5-7	15	f1
7-9	9	f2
9-11	1	

Mode = LRL+
$$\left(\frac{f1-f0}{2f1-f0-f2}\right)$$
xh
=5+ $\left(\frac{15-9}{30-9-9}\right)$ x2
=5+12/12
=6

29.

	no.of	
Daily income	workers	
<100		0
<120		8
<140		20
<160		34
<180		44
<200		50

T.SHIVAKUMAR

30. N(s)=n(R)+n(W)+n(B) =3+5+8 =16 a)red ball, the probability is $p(a)=\frac{3}{16}$ b)not a white ball means, red+blue =11 the probability is $p(a)=\frac{11}{16}$

31.

Theorem: The tangents drawn from an external point to a circle

(a) are equal

(b) subtend equal angles at the centre

(c) are equally inclined to the line joining the centre and the external point

Data : A is the centre of the circle. B is an external point. BP and BQ are the tangents. AP, AQ and AB are joined. To prove : (a) BP = BQ (b) \angle PAB = \angle QAB (c) \angle PBA = \angle QBA

Proof: Statement Reason In $\triangle APB$ and $\triangle AQB$ AP = AQradii of the same circle Radius drawn at the point of contact $\angle APB = \angle AQB = 90^{\circ}$ hyp AB = hyp ABCommon side **RHS** Theorem $\therefore \Delta APB \cong \Delta AQB$ \therefore (a) PB = QB CPCT (b) $\angle PAB = \angle QAB$ (c) $\angle PBA = \angle QBA$ QED

T.SHIVAKUMAR

Area of cloth used =
$$\frac{\theta}{360} \times 1 [r^2]_{=462 \text{ cm}^2}$$

Legth of the metallic wire is $\frac{\theta}{360} \times 2 [1 r]_{=\frac{120}{360}} \times 2 2 [1 r]_{=\frac{120}{360}} \times 2 3 .14 \times 2 1$
 $= \frac{\theta}{360} \times 2 3 .14 \times 2 1$
 $= 44 \text{ cm}.$
 $= 44 + 21 + 21 = 86 \text{ cm}$
Solve ------ 4x4=16
34.
Solve $\frac{1}{\sqrt{7 0}}$ $\frac{3x - y = 1}{\sqrt{1 0 0.33}}$
 $\frac{1}{\sqrt{1 - 1 0}}$ $\frac{3x - y = 1}{\sqrt{1 - 1 0}}$
Scient $\frac{1}{\sqrt{1 - 1 0}}$ $\frac{3x - y = 1}{\sqrt{1 - 1 0}}$

Page 10

T.SHIVAKUMAR

38.Pythagoras Theorem

In a right angles triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Data : In \triangle ABC, \angle ABC = 90° To Prove : $AB^2 + BC^2 = CA^2$ Construction : Draw BD \perp AC. Proof: Statement Compare \triangle ABC and \triangle ADB, $\angle ABC = \angle ADB = 90^{\circ}$ ∠BAD is common. $\therefore \Delta ABC \sim \Delta ADB$ $\Rightarrow \frac{AB}{AD} = \frac{AC}{AB}$ $\therefore AB^2 = AC.AD \dots (1)$ Compare \triangle ABC and \triangle BDC, $\angle ABC = \angle BDC = 90^{\circ}$ ∠ACB is common $\therefore \Delta ABC \sim \Delta BDC$ $\Rightarrow \frac{BC}{DC} = \frac{AC}{BC} \Rightarrow =$ $BC^2 = AC.DC....(2)$ By adding (1) and (2) we get $AB^{2} + BC^{2} = (AC. AD) + (AC. DC)$ $AB^2 + BC^2 = AC (AD + DC)$ $AB^2 + BC^2 = AC$. $AC = AC^2$ $\therefore AB^2 + BC^2 = AC^2$

Reason

(2 Data and construction)

(2 Equiangular triangles)(2 A A similarity criteria)

(2 Data and construction)

(2 Equiangular Triangles)(2 AA similarity criteria)

 $[\square AD + DC = AC]$