CCE RR UNREVISED

 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560003

S. S. L. C. EXAMINATION, MARCH/APRIL, 2019

డూదరి లుత్తరగళు
MODEL ANSWERS

దననౌంశ : 25. 03. 2019]

Date: 25.03.2019]

ఎిజ్య : గొణిత్ర

Subject : MATHEMATICS

(జ్లుగరాషతికత లాలా అభ్యథీ / Regular Repeater)
(ఇంగ్లిజ్ భాష్లంతర / English Version)
[Max. Marks : 80

Qn. Nos.	Ans. Key	Value Points	Marks allotted	
I. 1.		If $A=\{4,8,12,16,20,24\}$ and $B=\{4,20,28\}$ then $A \cap B$ is (A) $\{4,8,12,16,20,24,28\}$ (B) $\{4,20\}$ (C) $\{28\}$ (D) $\}$ (B)	Ans. $:$ $\{4,20\}$	

Qn. Nos.	Ans. Key	Value Points	Marks allotted
2.	(A)	The sum to infinite terms of a Geometric progression whose first term is a and common ratio r is given by the formula. (A) $S_{\infty}=\frac{a}{1-r}$ (B) $\quad S_{\infty}=\frac{1-r}{a}$ (C) $S_{\infty}=\frac{a}{1+r}$ (D) $\quad S_{\infty}=a(1-r)$ Ans. : $S_{\infty}=\frac{a}{1-r}$	1
3.		If H and L are the HCF and LCM of two numbers A and B respectively then (A) $A \times H=L \times B$ (B) $A \times B=L \times H$ (C) $A+B=L+H$ (D) $A+B=L-H$ Ans. :	
	(B)	$A \times B=L \times H$	1

4.
5.

(C)

3
The standard form of a quadratic equation is
(A) $a x^{2}=0$
(B) $a x^{2}+b x=0$
(C) $a x^{2}+c=0$
(D) $a x^{2}+b x+c=0$

Ans. :
(D) $a x^{2}+b x+c=0$

The degree of the polynomial $P(x)=2 x^{3}+3 x^{2}-11 x+6$ is
(A) 2
(B) 6
(C) 3
(D) 4

Ans. :

7.
8.
(A) 5

The value of $\tan ^{2} 60^{\circ}+2 \tan ^{2} 45^{\circ}$ is
(A) 5
(B) $\sqrt{3}+1$
(C) 4
(D) $\sqrt{3}+2$

Ans. :
5
In $\triangle A B C$ right angled at $B, \overline{A B}=7 \mathrm{~cm}, \overline{B C}=24 \mathrm{~cm}$. Then length of $\overline{A C}$ is

(A) 30 cm
(B) 17 cm
(C) 25 cm
(D) 19 cm

Ans. :
(C) 25 cm

Qn. Nos.	Value Points
II.	Answer the following:
	(Question Numbers 9 to 14, give full marks to direct answers)

9. Find the arithmetic mean of 16 and 20.

Ans. :

$$
\begin{aligned}
\text { A,M. } & =\frac{a+c}{2} \\
& =\frac{16+20}{2} \\
& =\frac{36}{2} \\
& =18
\end{aligned}
$$

Find the value of ${ }^{5} P_{3}$.

Ans. :

$$
\begin{aligned}
{ }^{n} P_{r} & =\frac{n!}{(n-r)!} \\
{ }^{5} P_{3} & =\frac{5!}{(5-3)!} \\
& =\frac{5 \times 4 \times 3 \times 2!}{2!} \\
& =60
\end{aligned}
$$

The probability of winning a game is 0.8 . What is the probability of losing the same game ?

Ans. :

$$
\begin{array}{rlr}
P(\bar{A}) & =1-P(A) & 1 / 2 \\
& =1-0 \cdot 8 & \\
& =0.2 & 1 / 2
\end{array}
$$

Qn. Nos.	Value Points	Marks allotted

12. The Mean (\bar{x}) of certain scores is 60 and the standard deviation (σ) of the same scores is 3 . Find the coefficient of variation of the scores.

Ans. :

$$
\begin{aligned}
\text { C.V. } & =\frac{\sigma}{\bar{X}} \times 100 \\
& =\frac{3}{60} \times 100 \\
& =5
\end{aligned}
$$

Find the remainder obtained when $P(x)=4 x^{2}-7 x+9$ is divided by $(x-2)$.

Ans. :

$\not x+9$
$\underset{(-)}{\nless c}+\underset{(+)}{ }$
$+11$
Remainder is +11

Alternate method:

$$
\begin{aligned}
f(x) & =4 x^{2}-7 x+9 \\
f(2) & =4(2)^{2}-7(2)+9 \\
& =4(4)-14+9 \\
& =16-14+9=11
\end{aligned}
$$

Qn.

Nos.

Value Points	Marks
allotted	

Alternate method:

$$
x-2=0 \Rightarrow x=2
$$

2 \begin{tabular}{rrr}

4 \& | -7 |
| ---: |
| 8 | \& 9

\& 2

\hline 4 \& 1 \& 11

\hline
\end{tabular}

Remainder is 11.
Write the discriminant of the quadratic equation $a x^{2}+c=0$.
Ans. :
$\Delta=-4 a c$

In a group of 60 people, 40 people like to read newspapers, 35 people like to read magazines and 26 people like to read both. Find the number of people who read neither newspapers nor magazines.

Ans. :

$$
n(U)=60, \quad n(N)=40, \quad n(M)=35, \quad n(N \cap M)=26 .
$$

$$
n(M)+n(N)=n(M \cup N)+n(M \cap N) \quad 1 / 2
$$

$$
35+40=n(M \cup N)+26
$$

$$
n(M \cup N)=75-26=49
$$

$M \cup N=$ Set of people who read either newspaper or magazine $(M \cup N)^{\prime}=$ Set of people who read neither newspaper nor magazine

$$
\begin{aligned}
\therefore \quad n(M \cup N)^{\prime} & =n(\cup)-n(M \cup N) \\
& =60-49 \\
& =11
\end{aligned}
$$

Qn. Nos.	Value Points
16.	Find the tenth term of the progression $\frac{1}{5}, \frac{1}{3}, 1,-1, \ldots$.

Ans. :
Given $H P=\frac{1}{5}, \frac{1}{3}, 1,-1, \ldots$
In AP $5,3,1,-1, \ldots$
$a=5, \quad d=3-5=2, \quad n=10$
$T_{n}=a+(n-1) d$
$T_{10}=5+(10-1)(-2)$
$=5+9(-2)$
$=5-18$
$=-13$.
In $H P, T_{10}=-\frac{1}{13}$
2
Any other alternate method, give full marks.
Prove that $3+\sqrt{5}$ is an irrational number.
Ans. :
Let us assume $3+\sqrt{5}$ is a rational number
$\Rightarrow \quad 3+\sqrt{5}=\frac{p}{q}$ where $p, q \in z$ and $q \neq 0$
$\Rightarrow \quad \sqrt{5}=\frac{p}{q}-3$
$\Rightarrow \quad \sqrt{5}=\frac{p-3 q}{q}$
$\sqrt{5}$ is a rational number

$$
\because \quad \frac{p-3 q}{q} \text { is rational }
$$

But $\sqrt{5}$ is not a rational number
This leads to a contradiction,
$\therefore \quad$ Out assumption that $3+\sqrt{5}$ is a rational number is wrong.
$\therefore \quad 3+\sqrt{5}$ is an irrational number.

Qn. Nos.	Value Points	
18.	a) State the fundamental principle of counting.	2

Ans. :
a) If one activity can be done in m different ways and for these m different ways a second activity can be done in n different ways then two activities one after the other can be done in $m \times n$ number of ways.
b) $0!=1$
19. Using a suitable formula calculate the number of diagonals that can be drawn in the given polygon.

Ans. :
Polygon is an octagon

$$
\therefore \quad n=8
$$

Total number of sides and diagonals

$$
\begin{array}{rlr}
& ={ }^{8} C_{2} & 1 / 2 \\
{ }^{n} C_{r} & =\frac{n!}{(n-r)!r!} & \\
{ }^{n} C_{2} & =\frac{8!}{(8-2)!2!} \\
& =\frac{8 \times 7 \times 6!}{6!\times 2!}=\frac{56}{2}=28
\end{array}
$$

Number of diagonals $=28-8=20$

Qn.	Value Points	Marks Nos.

20. In an experiment of tossing a fair coin twice, find the probability of getting
a) two heads
b) exactly one tail.

Ans. :

Sample space : $S=\{(H T),(H H),(T T),(T H)\}$

$$
n(S)=4
$$

$A=$ Event of getting two heads

$$
=\{(H H)\}
$$

$\therefore \quad n(A)=1$
$P(A)=\frac{n(A)}{n(S)}=\frac{1}{4}$
$B=$ Event of getting exactly one tail

$$
=\{(H T),(T H)\}
$$

$$
\therefore \quad n(B)=2
$$

$$
P(B)=\frac{n(B)}{n(S)}=\frac{2}{4}
$$

Qn.

Nos.
21.

Find the product of $\sqrt[3]{2}$ and $\sqrt{3}$.
Ans. :
LCM of order of surds : 6

$$
\begin{array}{ll}
\therefore & \sqrt[3]{2}=\sqrt[3 \times 2]{2^{2}}=\sqrt[6]{4} \\
& \sqrt{3}=\sqrt[2 \times 3]{3^{3}}=\sqrt[6]{27} \\
\therefore & \sqrt[3]{2} \times \sqrt{3}=\sqrt[6]{4} \times \sqrt[6]{27}=\sqrt[6]{108}
\end{array}
$$

For any other suitable alternative method give marks.
Rationalise the denominator and simplify :

$$
\frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}
$$

Ans. :
Rationalising factor of $\sqrt{3}+\sqrt{2}$ is $\sqrt{3}-\sqrt{2}$

$$
\begin{aligned}
\frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}} & =\frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}} \\
& =\frac{\sqrt{3}(\sqrt{3}-\sqrt{2})}{(\sqrt{3})^{2}-(\sqrt{2})^{2}} \\
& =\frac{\sqrt{9}-\sqrt{6}}{3-2}=\frac{3-\sqrt{6}}{1}=3-\sqrt{6}
\end{aligned}
$$

Find the quotient and the remainder using synthetic division :

$$
\left(x^{3}+x^{2}-3 x+5\right) \div(x-1)
$$

OR

If one of the zeros of the polynomial $x^{2}-x-(2 k+2)$ is -4 , find the value of k.

Ans. :

Qn. Nos.	Value Points		Marks allotted
	$x-1=0 \Rightarrow x=1$		
	1 1 1 -3 5		
	$1-2-1$	1	
	$1 \begin{array}{llll}1 & 2 & -1 & 4\end{array}$		
	Quotient, $Q(x)=x^{2}+2 x-1$	1/2	
	Remainder, $R(x)=4$	1/2	2
	OR		
	Let $p(x)=x^{2}-x-(2 k+2)$		
	Given - 4 is a zero of $p(x)$		
	$\therefore \quad p(-4)=0$	1/2	
	$p(x)=x^{2}-x-(2 k+2)$		
	$0=(-4)^{2}-(-4)-(2 k+2)$	1/2	
	$0=16+4-2 k-2$	1/2	
	$0=18-2 k$		
	$\Rightarrow \quad 2 k=18 \quad \text { or } \quad k=\frac{18}{2}=9$	1/2	2

Qn.	Value Points	Marks Nos.

Draw a circle of radius 4 cm and construct a tangent at one end of its diameter.

Ans. :

$$
\begin{array}{lr}
\text { Circle - } & 1 / 2 \\
\text { Diameter - } & 1 / 2 \\
\text { Tangent - } & 1
\end{array}
$$

Note : Tangent can be constructed at A also.

OR

Ans. :

In $\triangle A B C, \overline{X Y} \| \overline{B C}$
By Thale's theorem, $\frac{A X}{X B}=\frac{A Y}{Y C}$

$$
\frac{p-3}{2 p-2}=\frac{1}{4}
$$

Cross multiplying, we get,
$4(p-3)=2 p-2$
$4 p-12=2 p-2$
Rearranging,
$4 p-2 p=12-2$
$2 p=10 ; \quad p=\frac{10}{2}=5$

In $\triangle A O B$ and $\triangle C O D$,
$\lfloor A O B=\lfloor C O D \quad$ (vertically opposite angles)
$\lfloor C D O=\angle O B A \quad$ (alternate angles)
26. Given $\tan A=\frac{3}{4}$, find $\sin A$ and $\cos A$.

Ans. :

$\tan A=\frac{3}{4}$
By Pythagorus theorem,
$B C^{2}+B A^{2}=A C^{2}$
$3^{2}+4^{2}=A C^{2}$
$\Rightarrow \quad A C^{2}=25 \Rightarrow A C=5$
$\sin A=\frac{o p p}{h y p}=\frac{3}{5}$
$\cos A=\frac{a d j}{h y p}=\frac{4}{5}$

Value Points

Nos.
27.

Find the equation of a line having angle of inclination 45° and y-intercept is 2 .

Ans. :
$\theta=45^{\circ}$,

$$
m=\tan \theta
$$

$$
c=2
$$

$$
1 / 2
$$

$$
m=\tan 45^{\circ}=1
$$

$$
1 / 2
$$

$$
\begin{aligned}
& y=m x+c \\
& y=(1) x+2 \Rightarrow y=x+2 \quad \text { or } \quad x-y+2=0
\end{aligned}
$$

Find the distance between the points $A(6,5)$ and $B(4,4)$.
2

Ans. :

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right) \\
& A(6,5) \quad B(4,4) \\
& \begin{aligned}
A B & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(4-6)^{2}+(4-5)^{2}} \\
& =\sqrt{(-2)^{2}+(-1)^{2}} \\
& =\sqrt{4+1}=\sqrt{5}
\end{aligned}
\end{aligned}
$$

$$
1 / 2
$$

$$
1 / 2
$$

The curved surface area of a right circular cone is $4070 \mathrm{~cm}^{2}$ and its slant height is 37 cm . Find the radius of the base of the cone.

Ans. :
Curved Surface Area (CSA) $=4070$
Slant height, $l=37 \mathrm{~cm}$
$r=$?
CSA $=\pi r l \quad 1 / 2$
$4070=\frac{22}{7} \times r \times 37$
Rearranging, $\quad r==_{110}^{22 \times 37}=\frac{110 \times 7}{22}$
$r=35 \mathrm{~cm}$

2

Ans. :
$1 / 2$
$1 / 2$

RR(B)-5008

Qn. Nos.	Value Points	Marks allotted

30. Draw a plan of a level ground using the information given below: 2
(Scale $20 \mathrm{~m}=1 \mathrm{~cm}$)

	Metre To C	
	220	
To D 100	160	
	120	80 to B
To E 60	80	
	From A	

Ans. :
$80 \mathrm{~m}=\frac{80}{20}=4 \mathrm{~cm}$
$120 \mathrm{~m}=\frac{120}{20}=6 \mathrm{~cm}$
$160 \mathrm{~m}=\frac{160}{20}=8 \mathrm{~cm}$
$220 \mathrm{~m}=\frac{220}{20}=11 \mathrm{~cm}$
$60 \mathrm{~m}=\frac{60}{20}=3 \mathrm{~cm}$
$100 \mathrm{~m}=\frac{100}{20}=5 \mathrm{~cm}$

Qn. Nos.	Value Points	Marks allotted

IV. 31.

Prove that the tangents drawn from an external point to a circle
a) are equal
b) subtend equal angles at the centre
c) are equally inclined to the line joining the centre and the external point.

Ans. :

Data: $\quad A$ is the centre of the circle. B is an external point. $\overline{B P}$ and $\overline{B Q}$ are the tangents
$A P, A Q, A B$ are joined.
To prove: a) $\quad \overline{B P}=\overline{B Q}$
b) $\quad \triangle A B=Q Q A B \quad 1 / 2$
c) $\quad \angle P B A=\lfloor Q B A$

Proof:

Statement	Reason
In $\triangle A P B$ and $\triangle A Q B$ $\triangle A P B=\triangle A Q B=90^{\circ}$	Radius drawn at the point of contact is perpendicular to the tangent hyp $A B=$ hyp $A B$
Common side	

Qn.

Value Points	Marks
allotted	

32.

The circumference of the circular base of a right cylindrical vessel is 132 cm and its height is 25 cm . Calculate the maximum quantity of water it can hold. (Use $\pi=\frac{22}{7}$).

OR

A solid metallic right circular cone is of height 20 cm and its base radius is 5 cm . This cone is melted and recast into a solid sphere. Find the radius of the sphere. (Use $\pi=\frac{22}{7}$).

Ans. :
$C=132 \mathrm{~cm}, \quad h=25 \mathrm{~cm}, \quad r=? \quad V=?$
$C=2 \pi r$
$132=2 \times \frac{22}{7} \times r$

Rearranging the terms,
$r=\frac{132 \times 7}{22 \times 2}=\frac{132 \times 7}{44}=21 \mathrm{~cm}$

Qn. Nos.	Value Points		Marks allotted
	Volume, $V=\pi r^{2} h$	1/2	
	$=\frac{22}{7} \times(21)^{2} \times 25$		
	$=\frac{22}{7} \times 21 \times 21 \times 25$	1/2	
	$=34650 \mathrm{~cm}^{3}$	$1 / 2$	3
	OR		
	Cone, $h=20 \mathrm{~cm}, \quad r=5 \mathrm{~cm}$	$1 / 2$	
	$V_{\text {cone }}=\frac{1}{3} \pi r^{2} h$		
	$=\frac{1}{3} \times \frac{22}{7} \times 5^{2} \times 20$		
	Sphere, $r=$?		
	$V_{\text {sphere }}=\frac{4}{3} \pi r^{3}$	$1 / 2$	
	Volume of cone is equal to volume of sphere		
	$V_{\text {cone }}=V_{\text {sphere }}$	$1 / 2$	
	$\frac{1}{3} \times \frac{22}{7} \times 5^{2} \times 20=\frac{4}{3} \times \frac{22}{7} \times r^{3}$	$1 / 2$	
	Rearranging, we get $r^{3}=\frac{5^{2} \times 20}{4}=5^{2} \times 5=5^{3}$	1/2	
	$r=5 \mathrm{~cm}$.	1/2	3
	RR(B)-5008		Turn over

Qn. Nos.	Value Points	Marks allotted

33.

Find the standard deviation for the following data :

Marks (x)	Number of students (f)
35	2
40	4
45	8
50	4
55	2

Ans. :
Actual Means method:

x	f	$f x$	$d=x-\bar{x}$	d^{2}	$f d^{2}$
35	2	70	-10	100	200
40	4	160	-5	25	100
45	8	360	0	0	0
50	4	200	5	25	100
55	2	110	10	100	200

$N=\sum f=20$
$\sum f x=900$
$\sum f d^{2}=600$
Mean, $\bar{x}=\frac{\sum f x}{N}$

$$
=\frac{900}{20}
$$

$=45$
S.D. $=\sigma=\sqrt{\frac{\sum f d^{2}}{N}}$
$=\sqrt{\frac{600}{20}}$
$=\sqrt{30}$
$=5 \cdot 5$

Qn.	Value Points	Marks Nos.

Let $A=45$

x f Step deviation $d=\frac{X-A}{C}$ $f d$ d^{2} $f d^{2}$ 35 2 -2 -4 4 8 40 4 -1 -4 1 4 45 8 0 0 0 0 50 4 +1 4 1 4 55 2 +2 4 4 8 $11 / 2$ $N=20$ $\sum f d=0$ $\sum f d^{2}=24$

Standard deviation $\sigma=\sqrt{\frac{\sum f d^{2}}{N}-\left(\frac{\sum f d}{N}\right)^{2}} \times C$

$$
\begin{aligned}
& =\sqrt{\frac{24}{20}-\left(\frac{0}{20}\right)^{2}} \times 5 \\
& =\sqrt{1 \cdot 2} \times 5 \\
& =1 \cdot 1 \times 5 \\
& =5.5
\end{aligned}
$$

Direct method:

x	f	$f x$	x^{2}	$f x^{2}$
35	2	70	1225	2450
40	4	160	1600	6400
45	8	360	2025	16200
50	4	200	2500	10000
55	2	110	3025	6050
$\sum f x=900$	$\sum 11 / 2$			

Qn. Nos.	Value Points
	$=\sqrt{\frac{41100}{20}-\left(\frac{900}{20}\right)^{2}}$
	$=\sqrt{\frac{\sum f x^{2}}{N}-\left(\frac{\sum f x}{N}\right)^{2}}$
	$=\sqrt{2055-(45)^{2}}$
	$=\sqrt{30}$
	$=5.5$

Assumed mean method:
Let assumed mean, $A=45$

x	f	$d=x-A$	$f d$	d^{2}	$f d^{2}$
35	2	- 10	- 20	100	200
40	4	- 5	-20	25	100
45	8	0	0	0	0
50	4	5	20	25	100
55	2	10	20	100	200
$N=20$			$\sum f d=0$		$\sum f d^{2}=600$

Standard deviation $\sigma=\sqrt{\frac{\sum f d^{2}}{N}-\left(\frac{\sum f d}{N}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{600}{20}-\left(\frac{0}{20}\right)^{2}} \\
& =\sqrt{30-0} \\
& =\sqrt{30} \\
& =5 \cdot 5
\end{aligned}
$$

3

3

Qn. Nos.	Value Points	Marks allotted

34. A building and a tower are on the same level ground. The angle of elevation of the top of the building from the foot of the tower is 30°. The angle of elevation of the top of the tower from the foot of the building is 60°. If the height of the tower is 50 m , then find the height of the building.

OR
Prove that $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$.

Ans. :

$$
C D=?
$$

$$
1 / 2
$$

In $\triangle A B D$,

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{A B}{B D} \\
& \sqrt{3}=\frac{50}{B D} \\
\Rightarrow \quad & B D=\frac{50}{\sqrt{3}} \mathrm{~m}
\end{aligned}
$$

In $\triangle B D C$,

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{C D}{B D} \\
& \frac{1}{\sqrt{3}}=\frac{C D}{\frac{50}{\sqrt{3}}}
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted	
	$\Rightarrow C D=\frac{50}{\sqrt{3}} \times \frac{1}{\sqrt{3}}$	$1 / 2$	
	$=\frac{50}{3}=16 \frac{2}{3}$	$1 / 2$	3

The height of the building is $16 \frac{2}{3} \mathrm{~m}$

OR
LHS $=\sqrt{\frac{1+\sin A}{1-\sin A}}$

$$
=\frac{\sqrt{1+\sin A}}{\sqrt{1-\sin A}} \times \frac{\sqrt{1+\sin A}}{\sqrt{1+\sin A}}
$$

Multiplying and dividing by $\sqrt{1+\sin A}$

$$
\begin{aligned}
& =\frac{\sqrt{(1+\sin A)^{2}}}{\sqrt{1-\sin ^{2} A}} \\
& =\frac{1+\sin A}{\sqrt{\cos ^{2} A}} \\
& =\frac{1+\sin A}{\cos A} \\
& =\frac{1}{\cos A}+\frac{\sin A}{\cos A} \\
& =\sec A+\tan A .
\end{aligned}
$$

Qn. Nos.		Value Points
35.	Solve by using formula:	3

$$
x^{2}-2 x+3=3 x+1
$$

OR
If m and n are the roots of the quadratic equation $x^{2}-6 x+2=0$, then find the value of
a) $\frac{1}{m}+\frac{1}{n}$
b) $(m+n)(m n)$.

Ans. :

$$
\begin{aligned}
& x^{2}-2 x+3=3 x+1 \\
& x^{2}-2 x+3-3 x-1=0 \\
& x^{2}-5 x+2=0
\end{aligned}
$$

When compared with $a x^{2}+b x+c=0, a=1, b=-5, c=2$

$$
\begin{array}{rlr}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & 1 / 2 \\
& =\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(2)}}{2(1)} & 1 / 2 \\
& =\frac{5 \pm \sqrt{25-8}}{2} & 1 / 2 \\
& =\frac{5 \pm \sqrt{17}}{2} & 1 / 2 \\
& x=\frac{5+\sqrt{17}}{2} \quad \text { or } \quad x=\frac{5-\sqrt{17}}{2} &
\end{array}
$$

OR

Nos.

Value Points

 allotted$x^{2}-6 x+2=0$ allotted

When compared with $a x^{2}+b x+c=0, a=1, b=-6, c=2$
Sum of the roots, $m+n=\frac{-b}{a}=\frac{-(-6)}{1}=6$
Product of the roots, $m n=\frac{c}{a}=\frac{2}{1}=2$
a) $\frac{1}{m}+\frac{1}{n}=\frac{m+n}{m n}=\frac{6}{2}=3$
b) $(m+n)(m n)=(6)(2)=12$
36. Prove that the area of an equilateral triangle of side ' a ' units is $\frac{a^{2} \sqrt{3}}{4}$ square units.

OR

$\triangle A B C$ is right angled triangle right angled at $C . D$ is a point on the side $\overline{A C}$ and E is a point on the side $\overline{B C}$. Show that

$$
A B^{2}+D E^{2}=A E^{2}+B D^{2}
$$

Ans. :

In equilateral triangle $A B C, \overline{A B}=\overline{B C}=\overline{A C}=a$

Value Points

In $\triangle A B C, \quad A B^{2}=A C^{2}+B C^{2}$
(using Pythagorus theorem)

In $\triangle C D E, \quad D E^{2}=C D^{2}+C E^{2}$

In $\triangle D C B, \quad D B^{2}=D C^{2}+C B^{2}$

In $\triangle A C E, \quad A E^{2}=A C^{2}+C E^{2}$

$$
\begin{aligned}
\text { LHS } & =A B^{2}+D E^{2} \\
& =A C^{2}+B C^{2}+C D^{2}+C E^{2} \\
& =\left(A C^{2}+C E^{2}\right)+\left(B C^{2}+C D^{2}\right)(\text { rearranging terms }) \\
& =A E^{2}+D B^{2} \\
& =\text { RHS }
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted

V. 37. Construct direct common tangents to two circles of radii 4 cm and 2 cm whose centres are 8 cm apart.

Ans. :

$P Q$ and $R S$ are the required tangents
4

Qn.	Value Points	Marks allotted

38.

Find the sum of first ten terms of an Arithmetic progression whose fourth term is 13 and eighth term is 29 .

OR
Find the three consecutive terms of a Geometric progression whose sum is 14 and their product is 64 .
Ans. :
Fourth term, $\quad T_{4}=a+3 d$

$$
13=a+3 d \quad \ldots \text { (i) } 1 / 2
$$

Eighth term, $T_{8}=a+7 d$

$$
\begin{equation*}
29=a+7 d \tag{ii}
\end{equation*}
$$

Equ. (ii) - Eqn. (i) \Rightarrow

$$
\begin{aligned}
& 29=a+7 d \\
& 23=a+3 d
\end{aligned}
$$

$4 d=16 ; \quad d=\frac{16}{4}=4$
$a+7 d=29$
$a+7(4)=29$
$a+28=29$
$a=29-28=1 \quad a=1, \quad d=4 \quad 1 / 2$
$S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$
$S_{10}=\frac{10}{2}\{2(1)+(10-1)(4)\}$
$=5\{2+9(4)\}$
= $5[38]=190$
$S_{10}=190$
OR

Qn. Nos.	Value Points	Marks allotted

Let the Geometric progression be
$\frac{a}{r}, a, a r$

Sum of the terms, $\frac{a}{r}+a+a r=14$
$1 / 2$

Product of the terms, $\left(\frac{a}{r}\right) a(a r)=64$

$$
\begin{aligned}
& \Rightarrow \quad a^{3}=64, \quad a=\sqrt[3]{64} \\
& \Rightarrow \quad a=4
\end{aligned}
$$

Eq. (ii) $\Rightarrow \frac{4}{r}+4+4 r=14$

$$
\begin{array}{rl}
& \frac{4+4 r+4 r^{2}}{r}=14 \\
\Rightarrow & 4+4 r+4 r^{2}=14 r \\
\Rightarrow & 4 r^{2}-10 r+4=0 \\
& \\
& \\
2 r^{2}-5 r+2=0 & \text { (rearranging) } \\
2 r^{2}-4 r-r+2=0 & 1 / 2 \\
2 r(r-2)-1(r-2)=0 & \\
& \\
& \\
& \\
& \\
2 r-1)(r-2)=0 & \\
\hline
\end{array}
$$

Nos.

Value Points

 Mllotted$a=4$

$$
a=4
$$

$$
a r=4\left(\frac{1}{2}\right)=2
$$

$$
a r=4(2)
$$

$$
h=8
$$

$$
1 / 2
$$

4
any other alternate method should given full marks
39. Prove that "if two triangles are equiangular, then their corresponding sides are in proportion".

Ans. :

Data: In $\triangle A B C$ and $\triangle D E F$,

$$
\begin{aligned}
& \lfloor D E F=\lfloor A B C \\
& \lfloor A C B=\lfloor D F E
\end{aligned}
$$

To prove : $\quad \frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$

Construction: Mark points G and H on $\overline{A B}$ and $\overline{A C}$ such that

$$
\overline{A G}=\overline{D E}, \quad \overline{A H}=\overline{D F}, \text { join } G \text { and } H
$$

RR(B)-5008

Qn. Nos.	Value Points	Marks allotted

Proof:

Statement	Reason	
In $\triangle A G H$ and $\triangle D E F$, $\overline{A G}=\overline{D E}$	Construction	
$\underline{G A H}=\underline{E D F}$	Data	
$\overline{A H}=\overline{D F}$	Construction	
$\therefore \triangle A G H \cong \triangle D E F$	SAS	
$\underline{A G H}=\underline{D E F}$	CPCT	
But \lfloor ABC $=\underline{D E F}$	Data 2	
$\Rightarrow \quad \triangle \underline{A G H}=\underline{A B C}$	Axiom-1	
$\therefore \quad \overline{G H} \\| \overline{B C}$	If the corresponding angles, are equal, then lines are parallel	

$\therefore \quad$ In $\triangle A B C, \frac{A B}{A G}=\frac{B C}{G H}=\frac{A C}{A H}$ Corollary of Thale's theorem
4
40. Solve graphically: $x^{2}-x-2=0$.

$$
\text { Hence, } \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F} \quad \Delta A G H \cong \Delta D E F
$$

Ans. :

$$
\begin{aligned}
& x x^{2}-x-2=0 \\
& x^{2}=x+2 \\
& y=x^{2} \text { and } y=x+2 \\
& y=x^{2} \\
& \begin{array}{|c|c|c|c|c|c|c|c|}
\hline x & 0 & 1 & -1 & 2 & -2 & 3 & -3 \\
\hline y & 0 & 1 & 1 & 4 & 4 & 9 & 9 \\
\hline
\end{array} \\
& \begin{array}{|c|c|c|c|}
\hline x & y+2 \\
\hline x & 0 & 2 & 3 \\
\hline y & 2 & 4 & 5 \\
\hline
\end{array}
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted
	Tables - 2	
	Drawing parabola - 1	
	Drawing line - 1/2	
	Identifying roots - 1/2	4
	Scale :	

Qn.	Value Points	Marks allotted

Alternate method:
$x^{2}-x-2=0$
$y=x^{2}-x-2$

x	0	1	-1	2	-2	3	-3	4
y	-2	-2	0	0	4	4	10	10

$X Y$ table -
Parabola -
Identifying roots -

