

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಜೂನ್ – 2019

S. S. L. C. EXAMINATION, JUNE, 2019

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 21. 06. 2019]

Date : 21. 06. 2019]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 81-E

CODE NO. : 81-E

ವಿಷಯ : ಗಣಿತ

Subject : MATHEMATICS

(ಹೊಸ ಪಠ್ಯಕ್ರಮ / New Syllabus)

(ಪುನರಾವರ್ತಿತ ಖಾಸಗಿ ಅಭ್ಯರ್ಥಿ/ Private Repeater)

(ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 100

[Max. Marks : 100

Qn. Nos.	Ans. Key	Value Points		Marks allotted
I. 1.		If the <i>n</i> -th term of an arithmetic progression is $5n + 3$, 3rd term of the arithmetic progression is	then	
		(A) 11 (B) 18		
		(C) 12 (D) 13		
		Ans. :		
	(B)	18		1
		☆ (21)1202-PR(C)	['	Turn over

81-E	8	1	- 2
------	---	---	-----

эт-с		2	CCE P
Qn. Nos.	Ans. Key	Value Points	Marks allotte
2.		In the following figure, PA, PC and CD are tangents drawn to a	
		circle of centre <i>O</i> . If $AP = 3$ cm, $CD = 5$ cm, then the length of <i>PC</i>	
		is D 5 cm C	
		A B	
		CHA	
		$\stackrel{\bullet}{P}$	
		(A) 3 cm (B) 5 cm	
		(C) 8 cm (D) 2 cm	
		Ans. :	
	(C)	8 cm	1
3.		If the lines drawn to the linear equations of the type $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are coincident on	
		each other, then the correct relation among the following is	
		(A) $\frac{a_1}{a_1} = \frac{b_1}{b_1} = \frac{c_1}{a_1}$ (B) $\frac{a_1}{a_1} \neq \frac{b_1}{b_1} \neq \frac{c_1}{a_1}$	
		(A) $\frac{1}{a_2} = \frac{1}{b_2} = \frac{1}{c_2}$ (B) $\frac{1}{a_2} \neq \frac{1}{b_2} \neq \frac{1}{c_2}$	
		$(c) \begin{array}{c} a_1 & b_1 & c_1 \\ a_1 & b_1 & c_1 \\ c_1 & c_1 \\ c_2 & c_1 \\ c_1 & c_2 \\ c_2 & c_1 \\ c_1 & c_2 \\ c_2 & c_1 \\ c_1 & c_2 \\ c_2 & c_2 \\ c_2 & c_1 \\ c_2 & c_2 \\ c_2 &$	
		(C) $\frac{1}{a_2} = \frac{1}{b_2} \neq \frac{1}{c_2}$ (D) $\frac{1}{a_2} \neq \frac{1}{b_2} = \frac{1}{c_2}$	
		Ans. :	
	(A)	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	
			1
4.		The distance between the origin and co-ordinates of a point	
		(<i>x</i> , <i>y</i>) is	
		(A) $x^2 + y^2$ (B) $\sqrt{x^2 - y^2}$	
		(x, y) is (A) $x^{2} + y^{2}$ (B) $\sqrt{x^{2} - y^{2}}$ (C) $x^{2} - y^{2}$ (D) $\sqrt{x^{2} + y^{2}}$ Ans. : $\sqrt{x^{2} + y^{2}}$	
		Ans. :	
	(D)	$\sqrt{x^2+y^2}$	1
ļ			1

Qn. Nos.	Ans. Key	Value Points	Marks allotted
5.		If the HCF of 72 and 120 is 24, then their LCM is	
		(A) 36 (B) 720	
		(C) 360 (D) 72	
		Ans. :	
	(C)	360	1
6.		The value of sin 30° + cos 60° is	
		(A) $\frac{1}{2}$ (B) $\frac{3}{2}$	
		(C) $\frac{1}{4}$ (D) 1	
		Ans. :	
	(D)	1	1
7.		In the given graph of $y = P(x)$, the number of zeros are	
		$\tilde{\epsilon} + \tilde{\epsilon}$	
		(A) 4 (B) 3 (C) 2 (D) 7	
		(C) 2 (D) 7	
	(D)	Ans. :	1
0	(B)	3	1
8.		Faces of a cubical die numbered from 1 to 6 is rolled once. The	
		probability of getting an odd number on the top face is $\frac{3}{1}$	
		(A) $\frac{3}{6}$ (B) $\frac{1}{6}$	
		(C) $\frac{2}{6}$ (D) $\frac{4}{6}$	
		Ans. :	
	(A)	$\frac{3}{6}$	1
I			1
		ً। (21)1202-PR(C)	Turn ov

Qn. Nos.	Value Points	Marks allotted
I.	Answer the following : $6 \times 1 = 6$	
	(Question Numbers 9 to 14, give full marks to direct answers)	
9.	Write the formula to find the sum of the first n terms of an Arithmetic progression, whose first term is a and the last term is a_n .	
	Ans. :	
	$S_n = \frac{n}{2} [a + a_n]$ OR $S_n = \frac{n}{2} [2a + (n - 1)d]$	1
10.	If a pair of linear equations represented by lines has no solutions	
	(inconsistent) then write what kinds of lines are these ?	
	Ans. :	
	Parallel lines	1
11.	Write the formula to find area of a sector of a circle, if angle at the	
	centre is θ degree.	
	Ans. :	
	$\frac{\pi r^2}{360} \times \theta \qquad \qquad \text{OR} \qquad \frac{\theta}{360} \times \pi r^2$	1
12.	Write 96 as the product of prime factors.	
	Ans. :	
	3 <u>96</u> 2 <u>32</u>	
	$2 16 \therefore \text{ The product of prime factors are } \frac{1}{2}$	
	$96 = 3 \times 2 \times$	
	$2 \underbrace{12}{1} = 3 \times 2^5$	1

CCE	PR
-----	----

CCE PR	5	01-E
Qn. Nos.	Value Points	Marks allotted
13.	Find the degree of the polynomial $P(x) = x^3 + 2x^2 - 5x - 6$.	
	Ans. :	
	The degree of the polynomial is 3	1
14.	In a $\triangle ABC$, $ ABC = 90^{\circ}$ and $ ACB = 30^{\circ}$, then find $AB : AC$.	
	A B 30° C	
	Ans. :	
	$AB: AC = \frac{AB}{AC}$	
	$\sin \theta = \frac{AB}{AC}$	
	$\sin 30^\circ = \frac{AB}{AC}$	1/2
	$\frac{1}{2} = \frac{AB}{AC} \qquad \qquad \therefore \qquad AB: AC = 1:2$	¹ / ₂ 1
III. 15.	Find the solution for the pair of linear equations :	2
	x + y = 14	
	x - y = 4	
	Ans. :	
	Substitution method :	
	$x + y = 14 \implies y = 14 - x$ (ii)	
	$x - y = 4 \tag{i}$	
	Substitute $y = 14 - x$ in (i)	1/2

ℜ (21)1202-PR(C)

[Turn over

	0		CCE PR
Qn. Nos.	Value Points		Marks allotted
	x - (14 - x) = 4		
	x - 14 + x = 4		
	2x = 4 + 14	$\frac{1}{2}$	
	$2x = 18 \implies x = \frac{18}{2} \implies x = 9$	1/2	
	substitute $x = 9$ in (ii)		
	y = 14 - x		
	$y = 14 - 9 \qquad \Rightarrow \qquad y = 5$	$\frac{1}{2}$	2
	Alternate method :		
	Elimination method :		
	x + y = 14 (i)		
	x - y = 4 (ii) [(i) - (ii)]	$\frac{1}{2}$	
	$\frac{(-)}{(+)}$ $(+)$ $(-)$		
	2y = 10		
	$y = \frac{10}{2} \qquad \Rightarrow \qquad y = 5$	1/2	
	Substitute $y = 5$ in (i)		
	x + 5 = 14	$\frac{1}{2}$	
	x = 14 - 5		
	$\chi = 9$	$\frac{1}{2}$	2
	Alternate method :		
	Cross multiplication method :		
	$x + y - 14 = 0$ $a_1 = 1$ $b_1 = 1$ $c_1 = -14$		
	$x - y - 4 = 0$ $a_2 = 1$ $b_2 = -1$ $c_2 = -4$		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/	
<u> </u>		$\frac{1}{2}$	I

CCE PR	7	81-E
Qn. Nos.	Value Points	Marks allotted
	$\frac{x}{-4-14} = \frac{y}{-14+4} = \frac{1}{-1-1}$	
	$\frac{x}{-18} = \frac{y}{-10} = \frac{1}{-2}$ ¹ / ₂	
	$\therefore \frac{x}{-18} = \frac{1}{-2}$ $\therefore \frac{y}{-10} = \frac{1}{-2}$ $\frac{1}{2}$	
	$\begin{array}{ll} -2x = -8 & -2y = -10 \\ x = \frac{-18}{-2} & y = \frac{-10}{-2} \end{array}$ $\begin{array}{l} 1/_{2} \\ 1/_{2} \end{array}$	
	$x = 9 \qquad \qquad y = 5$	2
16.	ABCD is a square of side 14 cm. Four congruent circles are drawn in	
	the square as shown in the figure. Calculate the area of the shaded	
	region. [Circles touch each other externally and also sides of the	
	square] 2	
	$A \xrightarrow{14 \text{ cm}} B$ 14 cm $D \xrightarrow{14 \text{ cm}} C$	
	Ans. :	
	Area of square $ABCD = 14 \times 14 = 196 \text{ cm}^2$ $\frac{1}{2}$	
	Diameter of each circle = $\frac{14}{2}$ cm = 7 cm	
	So, radius of each circle = $\frac{7}{2}$ = 3.5 cm	
	\therefore Area of one circle = πr^2	
	ℜ (21)1202-PR(C)	Turn over

8		CCE PR
Value Points		Marks allotted
$= \frac{22}{7} \times 3.5 \times 3.5$	$\frac{1}{2}$	
$= 38.5 \text{ cm}^2$		
$\therefore \text{Area of four circle} = 4 \times 38.5$		
$= 154 \text{ cm}^2$	$\frac{1}{2}$	
Hence, area of shaded region = $(196 - 154) = 42 \text{ cm}^2$	$\frac{1}{2}$	2
Find the distance between the points $(2, 3)$ and $(4, 1)$.	2	
Ans. :		
(2, 3)(4, 1)		
$(x_1, y_1) (x_2, y_2)$	$\frac{1}{2}$	
Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$\frac{1}{2}$	
$d = \sqrt{(4-2)^2 + (1-3)^2}$		
$d = \sqrt{(2)^2 + (-2)^2}$	$\frac{1}{2}$	
$d = \sqrt{4+4}$		
$d = \sqrt{8}$		
$d = 2\sqrt{2}$	$\frac{1}{2}$	2
Find the area of a triangle whose vertices are $(1, -1)$, $(-4, 6)$	and	
(-3, -5).	2	
Ans. :		
(1, -1) (-4, 6) (-3, -5)		
$(x_1, y_1) (x_2, y_2) (x_3, y_3)$	1/2	
Area of triangle = $\frac{1}{2} \left[x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \right]$	$\frac{1}{2}$	
	$= \frac{22}{7} \times 3.5 \times 3.5$ = 38.5 cm ² ∴ Area of four circle = 4 × 38.5 = 154 cm ² Hence, area of shaded region = (196 - 154) = 42 cm ² Find the distance between the points (2, 3) and (4, 1). Ans. : (2, 3) (4, 1) (x ₁ , y ₁) (x ₂ , y ₂) Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $d = \sqrt{(4 - 2)^2 + (1 - 3)^2}$ $d = \sqrt{(2)^2 + (-2)^2}$ $d = \sqrt{4 + 4}$ $d = \sqrt{8}$ $d = 2\sqrt{2}$ Find the area of a triangle whose vertices are (1, -1), (-4, 6) (-3, -5). Ans. : (1, -1) (-4, 6) (-3, -5) (x ₁ , y ₁) (x ₂ , y ₂) (x ₃ , y ₃)	$= \frac{22}{7} \times 3.5 \times 3.5$ $\frac{1}{2}$ $= 38.5 \text{ cm}^{2}$ ∴ Area of four circle = 4 × 38.5 $= 154 \text{ cm}^{2}$ $\frac{1}{2}$ Hence, area of shaded region = (196 - 154) = 42 cm ² $\frac{1}{2}$ Find the distance between the points (2, 3) and (4, 1). 2 Ans.: (2, 3) (4, 1) (x ₁ , y ₁) (x ₂ , y ₂) $\frac{1}{2}$ Distance $d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$ $\frac{1}{2}$ $d = \sqrt{(4 - 2)^{2} + (1 - 3)^{2}}$ $d = \sqrt{(2)^{2} + (-2)^{2}}$ $\frac{1}{2}$ Find the area of a triangle whose vertices are (1, -1), (-4, 6) and (-3, -5). 2 Ans.: (1, -1) (-4, 6) (-3, -5) (x ₁ , y ₁) (x ₂ , y ₂) (x ₃ , y ₃) $\frac{1}{2}$

CCE PR	
--------	--

Qn. Nos.	Value Points	Marks allotted
	$= \frac{1}{2} \left[1 \left(6 - \left(-5 \right) \right) + \left(-4 \right) \left(-5 - \left(-1 \right) \right) + \left(-3 \right) \left(-1 - 6 \right) \right]$	
	$= \frac{1}{2} [11 + 16 + 21] $ ¹ / ₂	
	$= \frac{1}{2} \times 48$	
	= 24 cm^2 $\frac{1}{2}$	
	\therefore Area of triangle is 24 cm ² .	2
19.	Prove that $5 + \sqrt{3}$ is an irrational number. 2	
	Ans. :	
	Let us assume, to the contrary, that $5 + \sqrt{3}$ is rational	
	Such that $5 + \sqrt{3} = \frac{a}{b}$ [$a \neq b, b \neq 0$] $\frac{1}{2}$	
	Therefore, $\frac{a}{b} - 5 = \sqrt{3}$	
	Rearranging the equation $\sqrt{3} = \frac{a}{b} - 5$	
	$\sqrt{3} = \frac{a-5b}{b}$ ^{1/2}	
	Since <i>a</i> and <i>b</i> are integers, we get $\frac{a}{b} - 5$ is rational, and so $\sqrt{3}$ is	
	rational	
	But this contradicts the fact that $\sqrt{3}$ is irrational $\frac{1}{2}$	
	This contradiction has arisen because of our incorrect assumption that $5 + \sqrt{3}$ is rational	
	So, we conclude that $5 + \sqrt{3}$ is irrational number. $\frac{1}{2}$	2

[Turn over

I		
Qn. Nos.	Value Points	Marks allottee
20.	\triangle ABC ~ \triangle DEF and their areas are 64 cm ² and 100 cm ²	
201	respectively. If $EF = 12$ cm then find the measure of BC . 2	
	OR	
	A vertical pole of height 6 m casts a shadow 4 m long on the ground,	
	and at the same time a tower on the same ground casts a shadow	
	28 m long. Find the height of the tower.	
	Ans. :	
	A B C E F	
	$\Delta ABC \sim \Delta DEF$	
	The ratio of the areas of two similar triangles is equal to the square of	
	the ratio of their corresponding sides	
	$\therefore \qquad \frac{\text{Area of } \Delta ABC}{\text{Area of } \Delta DEF} = \frac{BC^2}{EF^2} \qquad \qquad \frac{1}{2}$	
	$\frac{64}{100} = \frac{BC^2}{(12)^2}$	
	$\frac{64}{100} = \frac{BC^2}{144}$ ¹ / ₂	
	$\frac{64 \times 144}{100} = BC^2$	
	$\frac{8\times12}{10} = BC$	
	9.6 = BC	
	$\therefore BC = 9.6 \text{ cm} \frac{1}{2}$	2
	OR	

01-E	12	CCE PR
Qn. Nos.	Value Points	Marks allotted
21.	The diagonal <i>BD</i> of parallelogram <i>ABCD</i> intersects <i>AE</i> at <i>F</i> as shown in the figure, <i>E</i> is any point on <i>BC</i> , then prove that $DF \times EF = FB \times FA$.	
	Ans.:	
	$\frac{1}{2}$ In the $\triangle AFD$ and $\triangle BFE$	
	i) $AFD = BFE$ (vertical opposite angles) ii) $ADF = EFB$	
	iii) $DAF = BEF$ (:: $AD \mid \mid BC$ alternate angles) $\frac{1}{2}$	
	$\therefore \Delta \ AFD \sim \Delta \ BFE$ $\frac{FA}{EF} = \frac{DF}{FB}$ ¹ / ₂	
	$FA \times FB = EF \times DF$ $DF \times EF = FB \times FA$ ¹ / ₂	2

CE PR] 13	81-E
Qn. Nos.	Value Points	Marks allotted
22.	Sum and product of the zeroes of a quadratic polynomial	
	$P(x) = ax^2 + bx - 4$ are $\frac{1}{4}$ and -1 respectively. Then find	the values
	of <i>a</i> and <i>b</i> .	2
	OR	
	Find the quotient and remainder when $P(x) = 2x^2 + 3x + 1$	is divided
	by $g(x) = x + 2$.	
	Ans. :	
	$P(x) = ax^2 + bx - 4 \qquad \therefore \qquad c = -4$	
	$\alpha + \beta = \frac{1}{4} \qquad \qquad \alpha \times \beta = -1$	1/2
	$\frac{1}{4} = \frac{-b}{a} \qquad -1 = \frac{c}{a} = \frac{-4}{a}$	
	$a = -4b \rightarrow (i) \qquad -a = -4$	1/2
	a = 4	1/2
	Substitute $a = 4$ in (i)	
	4 = -4b	
	$4 = -4b$ $\frac{4}{-4} = b \qquad \Rightarrow b = -1$	¹ / ₂ 2
	OR	
I	✤ (21)1202-PR(C)	[Turn over

17		CCE FK
Value Points		Marks allotted
$p(x) = 2x^2 + 3x + 1$ $g(x) = x + 2$		
2x - 1		
$x+2$ $2x^2 + 3x + 1$		
$2x^2 + 4x$	1	
(+) (+)		
+ 3		
$\therefore \text{Quotient } q(x) = 2x - 1$	$\frac{1}{2}$	
Remainder $r(x) = 3$	$1/_{2}$	2
Find the value of k , in which one of its zeros is -4 of the polynom	nial	
$P(x) = x^2 - x - (2k + 2).$	2	
Ans. :		
$P(x) = x^2 - x - (2k + 2)$ Zeros of polynomial = -4		
$0 = (-4)^2 - (-4) - (2k + 2)$	1/2	
0 = 16 + 4 - 2k - 2	1/2	
0 = 18 - 2k		
2k = 18		
$k = \frac{18}{2}$	1/2	
	1/2	2
	Value Points $p(x) = 2x^2 + 3x + 1$ $g(x) = x + 2$ $x + 2$ $2x^2 + 3x + 1$ $2x^2 + 4x$ $(-)$ $-x + 1$ $-x - 2$ $(+)$ $(+)$ $+ 3$ \therefore Quotient $q(x) = 2x - 1$ Remainder $r(x) = 3$ Find the value of k, in which one of its zeros is -4 of the polynom $P(x) = x^2 - x - (2k + 2)$. Ans.: $P(x) = x^2 - x - (2k + 2)$ Zeros of polynomial = -4 $0 = (-4)^2 - (-4) - (2k + 2)$ $0 = 16 + 4 - 2k - 2$ $0 = 18 - 2k$	Value Points $p(x) = 2x^2 + 3x + 1$ $g(x) = x + 2$ $x + 2$ $2x^2 + 3x + 1$ $2x^2 + 4x$ 1 $(-)$ $-x + 1$ $-x - 2$ $(+)$ $(+)$ $+3$ \therefore Quotient $q(x) = 2x - 1$ $\frac{1}{2}$ Remainder $r(x) = 3$ $\frac{1}{2}$ Find the value of k, in which one of its zeros is -4 of the polynomial $P(x) = x^2 - x - (2k + 2)$. 2 Ans. : $P(x) = x^2 - x - (2k + 2)$ Zeros of polynomial $= -4$ $0 = (-4)^2 - (-4) - (2k + 2)$ $\frac{1}{2}$ $0 = 16 + 4 - 2k - 2$ $\frac{1}{2}$ $2k = 18$ $2k = 18$

CCE PR

Qn. Nos.	Value Point	s	Marks allotteo
24.	Solve the equation $x^2 - 3x - 10 = 0$ by	using formula. 2	
	Ans. :		
	$x^2 - 3x - 10 = 0$		
	$ax^2 + bx + c = 0, a = 1, b = -3, c =$	- 10	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1/2	
	$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-10)}}{2(1)}$	1/2	
	$x = \frac{3 \pm \sqrt{9 + 40}}{2}$		
	$x = \frac{3 \pm \sqrt{49}}{2}$	1/2	
	$x = \frac{3\pm7}{2}$		
	$x = \frac{3+7}{2} \qquad \qquad x =$	$\frac{3-7}{2}$	
	$x = \frac{3+7}{2}$ $x = \frac{10}{2}$ $x = 5$ $x = \frac{10}{2}$ $x = \frac{10}{2}$ $x = \frac{10}{2}$	$\frac{-4}{2}$ $\frac{1}{2}$	
	x = 5 $x =$		2
25.	If $\csc \theta = \frac{13}{12}$, then find the value of	² cos θ. 2	
	Ans. :		
	Ans. : $\cos \theta = \frac{13}{12}$ (:.)	$\csc \theta = \frac{1}{\sin \theta}$	

[Turn over

8	1	-E
---	---	----

)1-C		10		CCE PI
Qn. Nos.	Valu	e Points		Marks allotte
	$\frac{1}{\sin \theta} = \frac{13}{12}$ $\sin \theta = \frac{12}{13}$	$\begin{array}{c} A \\ 12 \\ \end{array} \\ \begin{array}{c} 13 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \theta \\ \end{array} \end{array}$	1/2	
	$\sin \theta = \frac{AB}{AC} = \frac{12}{13}$	$B \qquad C$ $\underline{B} = 90^{\circ}, \ AC \text{ diagonal}$ $AC^{2} = AB^{2} + BC^{2}$	1/2	
	$\therefore \cos A = \frac{BC}{AC}$	$(13)^2 = (12)^2 + BC^2$ 169 = 144 + BC^2	1/2	
	$\cos A = \frac{5}{13}$	$25 = BC^2$ $BC = 5$	1⁄2	2
26.	Show that $(\tan A \times \sin A) + \cos A$ Ans. :	$A = \sec A.$	2	
	L.H.S. = $[\tan A \times \sin A] + \cos A$ = $\frac{\sin A}{\cos A} \times \sin A + \cos A$		1/2	
	$= \frac{\sin^2 A}{\cos A} + \cos A$ $= \frac{\sin^2 A + \cos^2 A}{\cos A} \qquad \Rightarrow \frac{1}{\cos A}$	$\frac{1}{\log A}$	1/2 1/2	
	\Rightarrow se	ec A = R.H.S.	1/2	2
		le of radius 3.5 cm which are	inclined	

01-E	10		CCE PR
Qn. Nos.	Value Points		Marks allotted
	$\therefore \text{Probability of the event} \\ P(A) = \frac{n(A)}{n(S)}$	1/2	
	$P(A) = \frac{9}{90}$	1/2	2
29.	A metallic sphere of radius 9 cm is melted and recast into the	e shape of	
	a cylinder of radius 6 cm. Find the height of the cylinder.	2	
	Ans. :		
	Radius of sphere = 9 cm		
	Radius of cylinder = 6 cm		
	\therefore Height of cylinder = ?		
	Volume of sphere = Volume of cylinder		
	$\frac{4}{3}\pi r^3 = \pi r^2 h$	1/2	
	$\frac{4}{3} \times \frac{22}{7} \times 9 \times 9 \times 9 = \frac{22}{7} \times 6 \times 6 \times h$	1/2	
	$\frac{4 \times 9 \times 9 \times 9}{3 \times 6 \times 6} = h$	1/2	
	27 cm = h		
	\therefore Height of cylinder is 27 cm.	1/2	2
30.	The faces of two cubes of volume 64 cm^3 each are joined to	gether to	
	form a cuboid. Find the total surface area of the cuboid.	2	
	Ans. :		

Qn.		Value Points		Marks allotted
Nos.				anotted
33.	In the figure, AP, AX ar	nd AY are the tangents draw	n to the circles,	
	show that $AY = AX$.	Y		
	A			
	Ans. :			
	Tangents drawn from A t	to the circle of centre <i>C</i> is		
	AX = AP	(i)	1/2	
	Tangents drawn from A t	to the circle of centre D is		
	AY = AP	(ii)	1/2	
	Compare (i) and (ii)		1/2	
	AX = AP			
	AY = AP			
	$\therefore AX = AY$		1/2	2
34.	The areas of two circles a	are 92 cm ^{2} and 62 cm ^{2} resp	ectively. Find the	
	radius of the circle havin	ng its area equal to the sum of	f the areas of the	
	two circles.		2	
	Ans. :			
	Area of 1st circle = $92 c$	m^2		
	Area of 2nd circle = $62 c$	m^2		
		circle = $92 + 62$		
	Total area	$= 154 \text{ cm}^2$	1/2	
·				

91-E	22	CCE PR
Qn. Nos.	Value Points	Marks allotted
	$\therefore \text{Area of circle} = 154 \text{ cm}^2 \qquad \frac{1}{2}$ $154 = \pi r^2$ $154 = \frac{22}{7} \times r^2$	
	$\frac{154 \times 7}{22} = r^2 \qquad \Rightarrow r^2 = 7 \times 7 \qquad \frac{1}{2}$	
	\therefore $r = 7 \text{ cm}$	
	$\therefore \text{Radius of circle is 7 cm} \qquad \qquad \frac{1}{2}$	2
35.	Draw a circle of radius 4 cm and construct two tangents to it from an	
	external point 8 cm away from its centre. 2	
	Ans.:	
	i) Circle — $\frac{1}{2}$	
	ii) Straight line \overline{AB} (draw) — $\frac{1}{2}$	
	iii) Drawing of perpendicular — $\frac{1}{2}$	
	iv) Tangents — 1/2	2

CCE FR			01-12
Qn. Nos.	Value Points		Marks allotted
36.	Find the coordinates of the mid-point of the line segment joining	the	
	points (2, 3) and (4, 7).	2	
	Ans. :		
	(2, 3), (4, 7)		
	$(x_1, y_1), (x_2, y_2)$	$\frac{1}{2}$	
	By mid-point formula, coordinates of mid-point		
	$= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	1⁄2	
	$=\left(\frac{2+4}{2},\frac{3+7}{2}\right)$	1⁄2	
	$= \left(\frac{6}{2}, \frac{10}{2}\right)$		
	= (3, 5)	1⁄2	
	\therefore Coordinates of mid-points are (3, 5)		2
37.	Find the roots of the equation $x^2 + 7x + 12 = 0$ by factorisation.	2	
	Ans. :		
	$x^{2} + 7x + 12 = 0$ Last term = $12 = 4 \times 3$		
	Middle term = $7 = 4 + 3$		
	$x^2 + 4x + 3x + 12 = 0$	1⁄2	
	x(x+4)+3(x+4)=0	1⁄2	
	(x+3)(x+4)=0		
	x + 3 = 0 $x + 4 = 0$	$\frac{1}{2}$	
	$x = -3 \qquad \qquad x = -4$	1⁄2	2
		[Turn over

81-E		24		CCE PR
Qn. Nos.		Value Points		Marks allotted
38.	Find the nature of the roots	of the equation $4x^2 - 4x + 1 = 0$.	2	
	Ans. :			
	$4x^{2} - 4x + 1 = 0$ $ax^{2} + bx + c = 0$			
	$ax^2 + bx + c = 0$			
	a = 4, b = -4, c = 1		1/2	
	Discriminant $\Delta = b$	$b^2 - 4ac$	1/2	
	$\Delta = ($	-4) ² -4(4)(1)		
	$\Delta = 1$	16 – 16	1/2	
	$\Delta = 0$)		
	\therefore Nature of the roots are	e real and equal	1/2	2
39.	Evaluate : $\frac{\tan 65^{\circ}}{\cot 25^{\circ}} + \frac{\sin 25}{\cos 65^{\circ}}$	$\frac{5^{\circ}}{5^{\circ}}$.	2	
	Ans. :			
	$\frac{\tan 65^{\circ}}{\cot 25^{\circ}} + \frac{\sin 25^{\circ}}{\cos 65^{\circ}}$			
	$\cot A = \tan (90 - A)$	$\sin A = \cos \left(90 - A \right)$	1/2	
	cot 25 = tan (90 – 25)	sin 25° = cos (90 – 25)		
	$\cot 25^\circ$ = $\tan 65^\circ$	$\sin 25^\circ = \cos 65^\circ$	1/2	
	$\therefore \frac{\tan 65^{\circ}}{\tan 65^{\circ}} + \frac{\cos 65^{\circ}}{\cos 65^{\circ}}$		1/2	
	= 1 + 1			
	= 2		1/2	2
	*	* (21)1202-PR(C)		

CCE PR

CCE FR		91-E
Qn. Nos.	Value Points	Marks allotted
40.	If two coins are tossed together simultaneously, find the probability of getting at least one head. 2	
	Ans. :	
	Sample space $S = \{ (H, H), (T, T) (H, T) (T, H) \}$ $n(S) = 4$ $\frac{1}{2}$	
	Event $A = \{ At \text{ least one head} \}$ $A = \{ (H, T) (T, H) (H, H) \}$ ¹ / ₂	
	n(A) = 3	
	$\therefore P(A) = \frac{n(A)}{n(S)} = \frac{3}{4}$	
	$P(A) = \frac{3}{4}$ $\frac{1}{2}$	2
V. 41.	Prove that "the lengths of tangents drawn from an external point to a	
	circle are equal". 3	
	OR	
	Two concentric circles of radii 5 cm and 3 cm are drawn. Find the length of the chord of the larger circle which touches the smaller circle. Ans. :	
	A = B	
	1/2	
	₩ (21)1202-PR(C)	Turn ove

81-E		26		CCE PR		
Qn. Nos.	Value Points					
	Data: A is the centre of t	he circle, <i>B</i> is an external point	-,			
	<i>BP</i> and <i>BQ</i> are tan	gents.	1/2			
	To prove : BP = BQ		1/2			
	Construction : Join AB, AQ,	and AP.				
	Proof :					
	Statement	Reason				
	In $\triangle APB$ and $\triangle AQB$ $ APB = AQB = 90^{\circ}$	Radius drawn at the p contact is perpendicular tangent				
	hyp AB = hyp AB	Common side				
	AP = AQ	Radii of the same circle				
	$\therefore \Delta APB \cong \Delta AQB$	RHS theorem				
	$\therefore BP = BQ$	CPCT	1/2	3		
	Alternate method :	Q	1/2			
	In a circle of centre <i>O</i> , a po tangents <i>PQ</i> , <i>PR</i> on the circle f We are required to prove that	rom P.	e and two $\frac{1}{2}$			
	For this we join OP, OQ an	d OR, then OQP and ORP	are right			
	angles (because these are ang	les between radii and tangents) ½			
	· 一番(21)1202-PR(C)		I		

91-E	20	CCE PR
Qn. Nos.	Value Points	Marks allotted
	BC = AC Length of chord $AB = AC + BC$	
	$4 \text{ cm} = AC$ = $4 + 4$ $\frac{1}{2}$	
	AB = 8 cm	
	\therefore Length of the chord $AB = 8 \text{ cm}$ $\frac{1}{2}$	3
42.	Construct a triangle with sides 5 cm, 6 cm and 7 cm and then	
	construct another triangle whose sides are $\frac{3}{5}$ of the corresponding	
	sides of the given triangle. 3	
	Ans. :	
	i) ΔABC construction $1\frac{1}{2}$	
	ii) Drawing an acute angle line and division $\frac{1}{2}$ iii) Drawing $B_2 C' \parallel B_{F} C$ $\frac{1}{2}$	
	, , , , , , , , , , , , , , , , , , , ,	
	iv) Drawing $A'C' AC$ ¹ / ₂	3
	[Note: Any given side of the triangle may be taken as base]	
·		

 8.	Value Points									
43.	Find the mode for the following data in the frequency distribution									
	table :						3			
	Fam	ily size	1 - 3	3 - 5	5 - 7	7 - 9	9 - 11			
	Number	of families	7	8	2	2	1			
				OR						
	D ' 1. (1	C	C. 11	. 1.4.	(1 C	1.				
	Find the medi	an for the f	lollowin	g data in	the freq	uency di	stribution			
	table :		[r		· · · · · · · · · · · · · · · · · · ·			
	Weight	15-20	20-25	25-30	30-35	35-40				
	Number of students 2 3 6 4 5									
	Ans. :									
	Family size No. of families									
	1-3	7		Maximum class frequency is 8						
	3 — 5	8		$\therefore \text{ Mode class is } 3-5$ Lower limit of modal class $l=3$ Class size $h=2$ Frequency of the modal						
	5 — 7	2	L							
	7 — 9	2								
	9-11	1	F							
	9-11			class $f_1 = 8$ 1						
	Frequency of	N = 20		e modal cla	ass f_{a}	= 7				
	Frequency of class proceeding the modal class $f_0 = 7$									
	Frequency of	-				= 2				

* (21)1202-PR(C)

[Turn over

1-E			30		CCE PR
Qn. Nos.		Va	lue Points		Marks allotted
∴ Mod	$e = L + \left[\frac{1}{2} \right]$	$f_1 - f_0$	$\left[\frac{h}{f_2}\right] \times h$	1/2	
	= 3 + [-	$rac{8-7}{2 imes 8$) – 7	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1/2	
	$= 3 + \left[\frac{1}{1} \right]$	$\frac{1}{6-7-2}$	$] \times 2$	$\frac{1}{2}$	
	$= 3 + \frac{2}{7}$				
	= 3 + 0.2	8			
	= 3.28				
∴ Mod	e of the data	a is 3.28		$\frac{1}{2}$	3
			OR		
Weight (in kg)	No. of students	C.f.	$\frac{N}{2} = \frac{20}{2} = 10$		
15-20	2	2	∴ Median class is [25 – 30]		
20-25	3	5	Lower limit of the		
25-30	6	11	median class $l = 25$	1	
30-35	4	15	Cumulative frequency of class		
35-40	5	20	preceeding the median class $c.f. = 5$		
	N = 20				
Frequency	of median of	class f)) = 6		
Class size	h = 5				
∴ Med	$an = L + \left[\right]$	$\frac{\frac{N}{2} - c.f}{f}$	$\left[\begin{array}{c} \cdot \\ - \end{array} \right] \times h$	1/2	
		(2	1)1202-PR(C)		

CCE PR] 31	81-E
Qn. Nos.	Value Points	Marks allotted
	$= 25 + \left[\frac{10-5}{6}\right] \times 5$ $= 25 + \left[\frac{5}{6}\right] \times 5$ $\frac{1}{2}$	
	$= 25 + \frac{1}{6} \leq 1 \times 3$ $= 25 + 4.16 \qquad \frac{1}{2}$ $= 29.16$	
	$\therefore \text{Median of the data is } 29.16 \qquad \qquad \frac{1}{2}$	3
44.	From the top of a vertical building of $50\sqrt{3}$ m height on a level	
	ground the angle of depression of an object on the same ground is	
	observed to be 60°. Find the distance of the object from the foot of the	
	building. 3	
	OR	
	Two wind mills of height 50 m and $40\sqrt{3}$ m are on either side of the	
	field. A person observes the top of the wind mills from a point in	
	between them. The angle of elevation was found to be 45° and 30° .	
	Find the distance between the wind mills.	
	And is	
	Ans. :	
	✤ (21)1202-PR(C)	Turn over

81	-E
----	----

-12				54				CCE
Qn. Ios.			Value	Points				Mar allot
45.	The following ta 100 farms of a vi		es produc	tion yield	l per he	ctare of	wheat o	f
	Production yield in kg/hectare	50-55	55-60	60-65	65-70	70-75	75-80	
	Number of farms	2	8	12	24	38	16	
	Change the distrogive.	ibution	to a more	than typ	e distribı	ition, and	d draw its 3	3
	Ans. : Production y (in kg/had		No. of	farms		c.f.		
	More than 50		(2		100		
	More than 55		8	3		98		
	More than 60		1	2		90		
	More than 65		2	4		78		
	More than 70		3	8		54		
	More than 75		1	6		16		
	∴ Coordinate	points a	are					
	(50, 100)	(55, 9	98) (60,	90)				
	(65,78)	(70, 54	+) (75, 1	6)				
					Table -		1	
					Plottin	g the ogi	ve — 2	3

Qn. Nos.	Value Points	Marks allotted
46.	A cone is having its base radius 12 cm and height 20 cm. If the top of	
	this cone is cut into form of a small cone of base radius 3 cm is	
	removed, then the remaining part of the solid cone become a frustum.	
	Calculate the volume of the frustum. 3	
	HU OC High	
	OR	

A milk tank is in the shape of a cylinder with hemispheres of same radii attached to both ends of it as shown in figure. If the total height of the tank is 6 m and the radius is 1 m, calculate the maximum quantity of milk filled in the tank in litres. ($\pi = \frac{22}{7}$)

Qn. Nos.	Value Points		Marks allotteo
	Ans. :		
	Given $r_1 = 12 \text{ cm}$, $r_2 = 3 \text{ cm}$, $h_1 = 20 \text{ cm}$, $h_2 = ?$		
	We know $\frac{r_1}{r_2} = \frac{h_1}{h_2} \Rightarrow \frac{12}{3} = \frac{20}{h_2} \Rightarrow h_2 = 5 \text{ cm}$	1	
	Volume of the frustum		
	$= \frac{1}{3}\pi h \left(r_{1}^{2} + r_{2}^{2} + r_{1}r_{2} \right)$	1/2	
	$= \frac{1}{3} \times \frac{22}{7} \times 15 \left((12)^2 + (3)^2 + (12)(3) \right)$	$\frac{1}{2}$	
	$= \frac{110}{7} \times (144 + 9 + 36)$	1/2	
	$=\frac{110}{7} \times 189$		
	$= 2970 \text{ cm}^3.$		
	\therefore Volume of Frustum is 2970 cm ³ .	$\frac{1}{2}$	3
	OR		
	Radius of hemisphere $r = 1 \text{ m}$		
	Radius of cylinder $r = 1 \text{ m}$		
	Height of cylinder $h = 4 \text{ m}$		
	Volume of solid = Volume of cylinder + 2 (volume of hemisphere)	$\frac{1}{2}$	
	$= \pi r^2 h + 2 \left(\frac{2}{3} \pi r^3 \right)$		
	$= \pi r^2 h + \frac{4}{3} \pi r^3$		
	$= \pi r^2 \left[h + \frac{4}{3} r \right]$		
	$= \frac{22}{7} \times (1)^2 \left[4 + \frac{4}{3} (1) \right]$	$\frac{1}{2}$	
	$= \frac{22}{7} \times \frac{16}{3} \text{ m}^3$	$\frac{1}{2}$	
	漆 (21)1202-PR(C)	г	Turn ov

8	1	-E
---	---	----

81-F		38		CCE PR		
Qn. Nos.	Value Points					
	$= \frac{352}{21} \times (100)^3$	cm^3 1 m = 100 cm	1⁄2			
	$= \frac{352 \times 1000000}{21 \times 1000}$	- litres	1/2			
	$= \frac{352000}{21}$					
	= 16,761·9 litres		$\frac{1}{2}$			
	\therefore Capacity of milk tank is 10	5,761·9 litres		3		
V. 47.	The sum of the fourth and eight					
	24 and the sum of the sixth and terms of the Arithmetic progress		t three 4			
	Ans. :		т			
	$a_4 + a_8 = 24$					
	a + 3d + a + 7d = 24					
	2a + 10d = 24					
	a + 5d = 12	(i)	1			
	$a_6 + a_{10} = 44$					
	a + 5d + a + 9d = 44					
	2a + 14d = 44					
	a + 7d = 22	(ii)	1			
	(ii) — (i)					
	a + 7d = 22	Substitute $d = 5$ in (i)	1/2			
	a + 5d = 12					
	() () ()	a + 5(5) = 12				
	2d = 10	a + 25 = 12				
	$d = \frac{10}{2}$	a = 12 - 25				
	d = 5	a = -13	1/2			

Qn.			
Nos.	Value Po	ints	Marks allotted
	:. Three terms of Arithmetic prog	ression is	
	a, a+d a+2d		
	- 13, - 13 + 5, - 13 +	10 1⁄2	
	-13, -8, -3	1/2	4
48.	Prove that "in a right triangle, the sq	uare of the hypotenuse is equal to	
	the sum of the squares of the other t	wo sides".	ł
	Ans. :		
		С	
	Data : In \triangle ABC, \triangle ABC = 90°	1/2	
	To prove: $AB^2 + BC^2 = AC^2$	1/2	
	Construction : Draw $BD \perp AC$	1/2	
	Proof :		
	Statement	Reason	
	Compare 🗛 ABC and 🗛 ADB		
	$ABC = ADB = 90^{\circ}$		
	BAD is common	Data and construction	
	$\therefore \qquad ABC \sim ADB$	Equiangular triangles	
	$\Rightarrow \frac{AB}{AD} = \frac{AC}{AB}$	AA similarity 1	
	☆ (21)120	02-PR(C)	[Turn ove

81-E

CCE PR

Qn.	Value Points				
los.				allotted	
	$\therefore AB^2 = AC \times AD \dots (i)$				
	Compare \triangle <i>ABC</i> and \triangle <i>BDC</i>				
	$ABC = BDC = 90^{\circ}$				
	ACB = is common	Data and construction			
	$\therefore \bigtriangleup ABC \sim \bigstar BDC$	Equiangular triangles	1		
	$\Rightarrow \frac{BC}{DC} = \frac{AC}{BC}$				
	$BC^2 = AC \times DC$ (ii)	AA similarity			
	(i) + (ii)				
	$AB^2 + BC^2 = AC \times AD + AC \times DC$				
	= AC (AD + DC)				
	$= AC \times AC$	AD + DC = AC	1/2		
	$AB^2 + BC^2 = AC^2$			4	
	Alternate method :				
	In a ABC , $ABC = 90^{\circ}$		1/2		
	We need to prove that $AC^2 = AB^2 +$	BC^2	1/2		
	Let us draw $BD \perp AC$		$1/_{2}$		
	Now, $\triangle ADB \sim \triangle ABC$ (equiangular	triangle)			
	So, $\frac{AD}{AB} = \frac{AB}{AC}$ (Sides	are proportional)	1		

CCE PR

Nos.			Val	lue Point	s				Marks allotteo
	$AD \times AC$	= AB^2		(i)					
	Also $\triangle BDC \sim$ $\frac{CD}{BC} = \frac{1}{2}$			equiang	gular tria	ingle)			
	CD imes AC	$= BC^2$		(ii)				1	
	(i) + (ii)								
	$AB^2 + E$	$BC^2 = AI$	$D \times AC +$	$CD \times AC$					
	$AB^2 + B$	$BC^2 = AC$	C (AD + .	DC)					
	$AB^2 + B$	$BC^2 = AC$	$C \times AC$						
	$AB^2 + B$	$BC^2 = AC$	2					1⁄2	4
49.	Solve graphica	illy :						4	
	2x + y =	- 8							
	x - y =	1							
	Ans. :								
	2:	x + y = 8							
	y	= 8 - 22	x						
	x	1	2	3	4	5			
ſ	y	6	4	2	0	- 2			
	x	-y = 1							
	y	= x - 1							
	x	1	2	3	4	5			
		0	1	2	3	4	1		

81	-E
----	----

	42	CCE PI
Qn. Nos.	Value Points	Marks allotte
	Tables — 2	
	Drawing the lines of two linear equations — 1	
	Identifying the values of x and y — 1	4
	$ \frac{x}{-5} - 4 - 3 - 2 - 1 \\ -5 - 4 - 3 - 2 - 1 \\ -5 - 4 - 3 - 2 - 1 \\ -7 - 5 - 4 - 3 - 2 - 1 \\ -7 - 5 - 4 - 3 - 2 - 1 \\ -7 - 5 - 4 - 3 - 2 - 1 \\ -7 - 5 - 4 - 3 - 2 - 1 \\ -7 - 5 - 4 - 3 - 2 - 1 \\ -7 - 5 - 4 - 3 - 2 - 1 \\ -7 - 2 \\ -8 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9$	

ℜ (21)1202-PR(C)

[Turn over

81-F	44	CCE PR
Qn. Nos.	Value Points	Marks allotted
	OR	
	If the quadratic equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ has	as
	equal roots, then show that $2b = a + c$.	
	Ans. :	
	Let the required years are x	
	After x years the age of A is $= x + 19$	
	After x years the age of B is = $x + 15$	2
	The product of their ages is 480	2
	<i>i.e.</i> $(x + 19)(x + 15) = 480$	
	$x^2 + 19x + 15x + 285 = 480$	
	$x^2 + 19x + 15x + 285 - 480 = 0$	2
	$x^2 + 34x - 195 = 0$	2
	Last term : $-195 = +39 \times -5$	
	Middle term : $+34 = +39 - 5$	2
	$\therefore \qquad x^2 + 39x - 5x - 195 = 0$	
	x(x+39) - 5(x+39) = 0 ¹ /	2
	(x-5)(x+39)=0	
	x - 5 = 0 $x + 39 = 0$	
	x = +5 $x = -39$ ¹ /	2
	\therefore After 5 years the product of their age is 480 $\frac{1}{2}$	2 4
	OR	
	$(b-c) x^{2} + (c-a) x + (a-b) = 0$ $ax^{2} + bx + c = 0$ $a = (b-c) \qquad b = (c-a) \qquad c = (a-b)$	
	ax + bx + c = 0	,
	a = (b-c) $b = (c-a)$ $c = (a-b)$	2

Qn. Nos.	Value Points				
	Roots are equal $\Delta = 0$	1/2			
	Discriminant $\Delta = b^2 - 4ac$				
	$\therefore \qquad 0 = b^2 - 4ac$				
	$b^2 - 4ac = 0$	1/2			
	$(c-a)^2 - 4[(b-c)(a-b)] = 0$	1/2			
	$c^{2} - 2ac + a^{2} - 4[ab - ac - b^{2} + cb] = 0$	1/2			
	$c^2 - 2ac + a^2 - 4ab + 4ac + 4b^2 - 4cb = 0$				
	$a^2 + 4b^2 + c^2 - 4ab - 4bc + 2ac = 0$	1/2			
	$(a-2b+c)^2 = 0$	1/2			
	a-2b+c = 0				
	a + c = 2b				
	$\therefore \qquad 2b = a + c$	1/2			