CCE PR REVISED

 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560003

ఎశో.ఎశో.ఎలో.సి. జరిత్ట్స, జలనో - 2019
S. S. L. C. EXAMINATION, JUNE, 2019

యృదరి లుత్రేగిక
MODEL ANSWERS

దినాంశ : 21. 06. 2019]
Date: 21.06. 2019]

Code No. : 81-E

> ఎిజయ : గణఱతత
> Subject : MATHEMATICS

> (山ుNరాఙతికఠ 2ూఔగి అభ్యథీร/Private Repeater)
> (ఇంగ్లిష్ భలషాంతర / English Version)

[Max. Marks : 100

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I. 1.		If the n-th term of an arithmetic progression is $5 n+3$, then	
3 3rd term of the arithmetic progression is			
(A) 11	(B) 18		
(C) 12	(D) 13		
(B)	18		1

Qn.

Nos.
Ans
.

Key
2.

Qn. Nos.	Ans. Key	Value Points	Marks allotted	
5.		If the HCF of 72 and 120 is 24 , then their LCM is		
		(B) 720		
(A) 36	(D) 72			
(C) 360				
Ans. :				
	(C)			1

6.

The value of $\sin 30^{\circ}+\cos 60^{\circ}$ is
(A) $\frac{1}{2}$
(B) $\frac{3}{2}$
(C) $\frac{1}{4}$
(D) 1

Ans. :
7.
(D)

1
In the given graph of $y=P(x)$, the number of zeros are

(A) 4
(B) 3
(C) 2
(D) 7

Ans. :
(B) 3

Faces of a cubical die numbered from 1 to 6 is rolled once. The probability of getting an odd number on the top face is
(A) $\frac{3}{6}$
(B) $\frac{1}{6}$
(C) $\frac{2}{6}$
(D) $\frac{4}{6}$

Ans. :
(A)
$\frac{3}{6}$
s. :

Qn. Nos.	Value Points	Marks allotted
II.	Answer the following: (Question Numbers 9 to 14, give full marks to direct answers)	
Write the formula to find the sum of the first n terms of an Arithmetic progression, whose first term is a and the last term is a_{n}.		
Ans. : $S_{n}=\frac{n}{2}\left[a+a_{n}\right]$ OR $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$	1	

10. If a pair of linear equations represented by lines has no solutions (inconsistent) then write what kinds of lines are these?

Ans. :

Parallel lines
11. Write the formula to find area of a sector of a circle, if angle at the centre is θ degree.

Ans. :
$\frac{\pi r^{2}}{360} \times \theta$
OR $\quad \frac{\theta}{360} \times \pi r^{2}$

Write 96 as the product of prime factors.
Ans. :

3	96
2	32
2	16
2	8
2	4
2	2
	1

$\therefore \quad$ The product of prime factors are $\quad 1 / 2$

$$
\begin{aligned}
96 & =3 \times 2 \times 2 \times 2 \times 2 \times 2 \\
& =3 \times 2^{5}
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted

In a $\triangle A B C,\left\lfloor A B C=90^{\circ}\right.$ and $\left\lfloor A C B=30^{\circ}\right.$, then find $A B: A C$.

Ans. :
$A B: A C=\frac{A B}{A C}$
$\sin \theta=\frac{A B}{A C}$
$\sin 30^{\circ}=\frac{A B}{A C}$
$\frac{1}{2}=\frac{A B}{A C} \quad \therefore \quad A B: A C=1: 2$
III. 15.

Find the solution for the pair of linear equations :

$$
\begin{aligned}
& x+y=14 \\
& x-y=4
\end{aligned}
$$

Ans. :

Substitution method:
$x+y=14 \Rightarrow y=14-x$
$x-y=4$
Substitute $y=14-x$ in (i)

Value Points	Marks allotted

substitute $x=9$ in (ii)

$$
\begin{aligned}
& y=14-x \\
& y=14-9 \quad \Rightarrow \quad y=5
\end{aligned}
$$

Alternate method:
Elimination method:

$$
\begin{aligned}
x+y & =14 \\
x-y & =4
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(-)(+)(-)}{2 y=10} \\
& y=\frac{10}{2} \quad \Rightarrow \quad y=5
\end{aligned}
$$

Substitute $y=5$ in (i)

$$
\begin{aligned}
& x+5=14 \\
& x=14-5 \\
& x=9
\end{aligned}
$$

Alternate method:
Cross multiplication method:
$x+y-14=0$
$a_{1}=1$
$b_{1}=1$
$c_{1}=-14$
$x-y-4=0$
$a_{2}=1$
$b_{2}=-1$
$c_{2}=-4$

x		y		1
1	-14	1	1	
-1	-4	1	-1	

16. $A B C D$ is a square of side 14 cm . Four congruent circles are drawn in the square as shown in the figure. Calculate the area of the shaded region. [Circles touch each other externally and also sides of the square]

Ans. :
Area of square $A B C D=14 \times 14=196 \mathrm{~cm}^{2}$
Diameter of each circle $=\frac{14}{2} \mathrm{~cm}=7 \mathrm{~cm}$
So, radius of each circle $=\frac{7}{2}=3.5 \mathrm{~cm}$
$\therefore \quad$ Area of one circle $=\pi r^{2}$

Qn.

Nos.

Value Points	Marks
allotted	

17. Find the distance between the points (2, 3) and (4, 1).

Ans. :
$(2,3)(4,1)$
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$
Distance $\quad d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{(4-2)^{2}+(1-3)^{2}}$
$d=\sqrt{(2)^{2}+(-2)^{2}}$
$d=\sqrt{4+4}$
$d=\sqrt{8}$
$d=2 \sqrt{2}$
$1 / 2$
18. Find the area of a triangle whose vertices are $(1,-1),(-4,6)$ and $(-3,-5)$.

Ans. :
$(1,-1)(-4,6)(-3,-5)$
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right)$
Area of triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$1 / 2$

Qn. Nos.	Value Points	Marks allotted
	$=\frac{1}{2}[1(6-(-5))+(-4)(-5-(-1))+(-3)(-1-6)]$	
	$=\frac{1}{2}[11+16+21]$	$1 / 2$
	$=\frac{1}{2} \times 48$	
	$=24 \mathrm{~cm}^{2}$	$1 / 2$
		Area of triangle is $24 \mathrm{~cm}^{2}$.

19.

Prove that $5+\sqrt{3}$ is an irrational number.

Ans. :
Let us assume, to the contrary, that $5+\sqrt{3}$ is rational

$$
\text { Such that } 5+\sqrt{3}=\frac{a}{b} \quad[a \neq b, b \neq 0] \quad 1 / 2
$$

Therefore, $\frac{a}{b}-5=\sqrt{3}$

Rearranging the equation

$$
\begin{aligned}
& \sqrt{3}=\frac{a}{b}-5 \\
& \sqrt{3}=\frac{a-5 b}{b}
\end{aligned}
$$

Since a and b are integers, we get $\frac{a}{b}-5$ is rational, and so $\sqrt{3}$ is rational

But this contradicts the fact that $\sqrt{3}$ is irrational

This contradiction has arisen because of our incorrect assumption that $5+\sqrt{3}$ is rational

So, we conclude that $5+\sqrt{3}$ is irrational number.

Qn. Nos.	Value Points	Marks allotted

20.

$\triangle A B C \sim \triangle D E F$ and their areas are $64 \mathrm{~cm}^{2}$ and $100 \mathrm{~cm}^{2}$ respectively. If $E F=12 \mathrm{~cm}$ then find the measure of $B C$.

OR
A vertical pole of height 6 m casts a shadow 4 m long on the ground, and at the same time a tower on the same ground casts a shadow 28 m long. Find the height of the tower.

Ans. :

$\triangle A B C \sim \triangle D E F$
The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides

$$
\begin{array}{lll}
\therefore & \frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F}=\frac{B C^{2}}{E F^{2}} & 1 / 2 \\
& \frac{64}{100}=\frac{B C^{2}}{(12)^{2}} \\
& \frac{64}{100}=\frac{B C^{2}}{144} \\
& \frac{64 \times 144}{100}=B C^{2} \\
& \frac{8 \times 12}{10}=B C & 1 / 2 \\
\therefore \quad & B C=9 \cdot 6 \mathrm{~cm} & 1 / 2 \\
\therefore & B C
\end{array}
$$

OR

In the $\triangle A B E$ and $\triangle D C E$
i) $\quad \triangle A B E=\left\lfloor C D E \quad\left(\because 90^{\circ}\right)\right.$
ii) $\quad\lfloor E=\lfloor E \quad$ (Common angle)
$\therefore \quad \triangle A B E \sim \triangle D C E$
$\frac{D E}{B E}=\frac{C D}{A B}$
$\frac{4}{28}=\frac{6}{A B}$
$4 \times A B=28 \times 6$

$$
A B=\frac{28 \times 6}{4} \quad \Rightarrow \quad A B=x=42 \mathrm{~m}
$$

Alternate method:
$A B \| C D$, according to the Thales theorem (Corollaries)
$\frac{D E}{B E}=\frac{C D}{A B}$
$\frac{4}{28}=\frac{6}{A B}$
$4 \times A B=6 \times 28$
$A B=\frac{28 \times 6}{4} \quad \Rightarrow \quad 42$
$\therefore \quad A B=x=42 \mathrm{~m}$
$1 / 2$
2
[Turn over

Qn. Nos.	Value Points	Marks allotted

21.

The diagonal $B D$ of parallelogram $A B C D$ intersects $A E$ at F as shown in the figure, E is any point on $B C$, then prove that $D F \times E F=F B \times F A$.

Ans. :

In the $\triangle A F D$ and $\triangle B F E$
i) $\quad\lfloor A F D=\lfloor B F E \quad$ (vertical opposite angles)
ii) $\lfloor A D F=\lfloor E F B$
iii) $\quad \triangle D A F=\underline{B E F} \quad(\because A D| | B C$ alternate angles $)$
$\therefore \quad \triangle A F D \sim \triangle B F E$
$\frac{F A}{E F}=\frac{D F}{F B}$
$F A \times F B=E F \times D F$
$D F \times E F=F B \times F A$

Qn.	Value Points	Marks Nos.

22. Sum and product of the zeroes of a quadratic polynomial $P(x)=a x^{2}+b x-4$ are $\frac{1}{4}$ and -1 respectively. Then find the values
of a and b.

OR

Find the quotient and remainder when $P(x)=2 x^{2}+3 x+1$ is divided by $g(x)=x+2$.

Ans. :

$$
\begin{array}{ll}
P(x)=a x^{2}+b x-4 & \therefore \quad c=-4 \\
\alpha+\beta=\frac{1}{4} & \alpha \times \beta=-1 \\
\frac{1}{4}=\frac{-b}{a} & -1=\frac{c}{a}=\frac{-4}{a} \\
a=-4 b \rightarrow \text { (i) } & -a=-4 \\
a=4
\end{array}
$$

Substitute $a=4$ in (i)

$$
\begin{aligned}
& 4=-4 b \\
& \frac{4}{-4}=b \quad \Rightarrow \quad b=-1
\end{aligned}
$$

23. Find the value of k, in which one of its zeros is -4 of the polynomial

$$
P(x)=x^{2}-x-(2 k+2)
$$

Ans. :

$$
\begin{array}{ll}
P(x)=x^{2}-x-(2 k+2) & \text { Zeros of polynomial }=-4 \\
0=(-4)^{2}-(-4)-(2 k+2) & 1 / 2 \\
0=16+4-2 k-2 & 1 / 2 \\
0=18-2 k & 1 / 2 \\
2 k=18 & 1 / 2 \\
k=\frac{18}{2} & \\
k=9 &
\end{array}
$$

Qn.	Value Points	Marks Nos.

24. Solve the equation $x^{2}-3 x-10=0$ by using formula.

Ans. :
$x^{2}-3 x-10=0$
$a x^{2}+b x+c=0, \quad a=1, \quad b=-3, \quad c=-10$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(-10)}}{2(1)}$
$x=\frac{3 \pm \sqrt{9+40}}{2}$
$x=\frac{3 \pm \sqrt{49}}{2}$
$x=\frac{3 \pm 7}{2}$
$x=\frac{3+7}{2}$
$x=\frac{3-7}{2}$
$x=\frac{10}{2}$
$x=\frac{-4}{2}$
$x=-2$
25.

If $\operatorname{cosec} \theta=\frac{13}{12}$, then find the value of $\cos \theta$.
Ans. :
$\operatorname{cosec} \theta=\frac{13}{12}$

$$
\left(\therefore \quad \operatorname{cosec} \theta=\frac{1}{\sin \theta}\right)
$$

Qn.

Nos.
$\frac{1}{\sin \theta}=\frac{13}{12}$
$\sin \theta=\frac{12}{13}$
$\sin \theta=\frac{A B}{A C}=\frac{12}{13}$

$$
\left\lfloor B=90^{\circ}, A C\right. \text { diagonal }
$$

$\therefore \quad \cos A=\frac{B C}{A C}$

$$
169=144+B C^{2}
$$

$$
\begin{aligned}
& 25=B C^{2} \\
& B C=5
\end{aligned}
$$

$$
A C^{2}=A B^{2}+B C^{2}
$$

$$
(13)^{2}=(12)^{2}+B C^{2}
$$

$$
\cos A=\frac{5}{13}
$$

26. Show that $(\tan A \times \sin A)+\cos A=\sec A$.

Ans. :
L.H.S. $=[\tan A \times \sin A]+\cos A$
$=\frac{\sin A}{\cos A} \times \sin A+\cos A$

$$
1 / 2
$$

$=\frac{\sin ^{2} A}{\cos A}+\cos A$
$=\frac{\sin ^{2} A+\cos ^{2} A}{\cos A} \quad \Rightarrow \quad \frac{1}{\cos A}$ $\Rightarrow \quad \sec A=$ R.H.S.

2

Ans.

Draw a pair of tangents to a circle of radius 3.5 cm which are inclined to each other at an angle of 60°.

Ans. :

28. A box contains 90 discs, which are numbered from 1 to 90 . If one disc is drawn at random from the box, find the probability that it bears a perfect square number.

Ans. :
Sample space $=S=\{1,2,3,4,5, \ldots .90\}$

$$
\therefore \quad n(s)=90
$$

Event $A=$ \{ A perfect square number $\}$

$$
\begin{aligned}
& A=\{1,4,9,16,25,36,49,64,81\} \\
& n(A)=9
\end{aligned}
$$

(21)1202-PR(C)

Qn. Nos.		Value Points
	\therefore	Probability of the event
	$P(A)=\frac{n(A)}{n(S)}$	$1 / 2$
		$1 / 2$

29. A metallic sphere of radius 9 cm is melted and recast into the shape of a cylinder of radius 6 cm . Find the height of the cylinder.

Ans. :

Radius of sphere $=9 \mathrm{~cm}$

Radius of cylinder $=6 \mathrm{~cm}$
$\therefore \quad$ Height of cylinder $=$?

Volume of sphere $=$ Volume of cylinder

$$
\begin{array}{cc}
& \frac{4}{3} \pi r^{3}=\pi r^{2} h \\
\frac{4}{3} \times \frac{22}{7} \times 9 \times 9 \times 9=\frac{22}{7} \times 6 \times 6 \times h & 1 / 2 \\
& \frac{4 \times 9 \times 9 \times 9}{3 \times 6 \times 6}=h \\
& 27 \mathrm{~cm}=h \\
\therefore \quad & \text { Height of cylinder is } 27 \mathrm{~cm} .
\end{array}
$$

$\therefore \quad$ Height of cylinder is 27 cm .
30. The faces of two cubes of volume $64 \mathrm{~cm}^{3}$ each are joined together to form a cuboid. Find the total surface area of the cuboid.

Ans. :

Qn. Nos.	Value Points	Marks allotted

$$
\begin{array}{lr}
=2(l b+b h+h l) & 1 / 2 \\
=2((8)(4)+(4)(4)+(4)(8)) & \\
=2(32+16+32) & 1 / 2 \\
=2 \times 80 & \\
=160 \mathrm{~cm}^{2} & 1 / 2
\end{array}
$$

$$
a=4 \mathrm{~cm}
$$

$\therefore \quad$ The total surface area of the cuboid

Find the sum of series $3+7+11+\ldots$. up to 10 terms.
2

Ans. :
$3+7+10+\ldots$ up to 10 terms
$a=3 \quad d=7-3 \quad n=10 \quad S_{10}=$?
$d=4$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{10}=\frac{10}{2}[2 \times 3+(10-1) 4]$
$S_{10}=5[6+36]$
$S_{10}=5 \times 42$
$S_{10}=210$

Qn. Nos.	Value Points	Marks allotted

Ans. :

From the corollaries of Thales Theorem,

$\frac{A D}{A C}=\frac{B E}{B C}$
$\frac{6}{10}=\frac{B E}{15}$
$10 \times B E=6 \times 15$

$$
B E=\frac{6 \times 15}{10}
$$

$B E=9 \mathrm{~cm}$
$1 / 2$

Qn. Nos.	Value Points	Marks allotted

33.

In the figure, $A P, A X$ and $A Y$ are the tangents drawn to the circles, show that $A Y=A X$.

Ans. :
Tangents drawn from A to the circle of centre C is

$$
\begin{equation*}
A X=A P \quad \ldots \text { (i) } 1 / 2 \tag{i}
\end{equation*}
$$

Tangents drawn from A to the circle of centre D is

$$
A Y=A P \quad \ldots \text { (ii) } 1 / 2
$$

Compare (i) and (ii)

$$
\begin{aligned}
& A X=A P \\
& A Y=A P \\
& \therefore \quad A X=A Y \\
& \hline
\end{aligned}
$$

34. The areas of two circles are $92 \mathrm{~cm}^{2}$ and $62 \mathrm{~cm}^{2}$ respectively. Find the radius of the circle having its area equal to the sum of the areas of the two circles.

Ans. :
Area of 1 st circle $=92 \mathrm{~cm}^{2}$
Area of 2 nd circle $=62 \mathrm{~cm}^{2}$
$\therefore \quad$ Total area of both circle $=92+62$
Total area $\quad=154 \mathrm{~cm}^{2}$
$1 / 2$
(21)1202-PR(C)

Qn. Nos.	Value Points	Marks allotted		
	\therefore	Area of circle $=154 \mathrm{~cm}^{2}$	$1 / 2$	
	$154=\pi r^{2}$			
	$154=\frac{22}{7} \times r^{2}$			
	$\frac{154 \times 7}{22}=r^{2}$	\Rightarrow	$r^{2}=7 \times 7$	$1 / 2$
	$\therefore=7 \mathrm{~cm}$		$1 / 2$	2

35. Draw a circle of radius 4 cm and construct two tangents to it from an external point 8 cm away from its centre.

Ans. :

i) Circle -
ii) Straight line $\overline{A B}$ (draw) - $1 / 2$
iii) Drawing of perpendicular - $1 / 2$
iv) Tangents -

$$
1 / 2
$$

Qn. Nos.	Value Points	Marks allotted

36. Find the coordinates of the mid-point of the line segment joining the points (2, 3) and (4, 7).

Ans. :
$(2,3),(4,7)$
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$

By mid-point formula, coordinates of mid-point

$$
\begin{aligned}
& =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{2+4}{2}, \frac{3+7}{2}\right) \\
& =\left(\frac{6}{2}, \frac{10}{2}\right) \\
& =(3,5)
\end{aligned}
$$

$\therefore \quad$ Coordinates of mid-points are $(3,5)$
Find the roots of the equation $x^{2}+7 x+12=0$ by factorisation. 2 Ans. :

$$
\begin{aligned}
x^{2}+7 x+12=0 \quad & \text { Last term }=12=4 \times 3 \\
& \text { Middle term }=7=4+3
\end{aligned}
$$

$$
x(x+4)+3(x+4)=0
$$

$$
(x+3)(x+4)=0
$$

$$
x+3=0 \quad x+4=0
$$

$$
x^{2}+4 x+3 x+12=0
$$

$$
\begin{equation*}
x=-3 \quad x=-4 \tag{2}
\end{equation*}
$$

Value Points

Marks allotted
38. Find the nature of the roots of the equation $4 x^{2}-4 x+1=0$.

Ans. :
$4 x^{2}-4 x+1=0$
$a x^{2}+b x+c=0$
$a=4, \quad b=-4, \quad c=1$

Discriminant

$$
\Delta=b^{2}-4 a c
$$

$$
\Delta=(-4)^{2}-4(4)(1)
$$

$$
\Delta=16-16
$$

$$
\Delta=0
$$

$\therefore \quad$ Nature of the roots are real and equal
Evaluate : $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}+\frac{\sin 25^{\circ}}{\cos 65^{\circ}}$.

Ans. :
$\frac{\tan 65^{\circ}}{\cot 25^{\circ}}+\frac{\sin 25^{\circ}}{\cos 65^{\circ}}$
$\cot A=\tan (90-A)$
$\cot 25=\tan (90-25)$
$\therefore \quad \frac{\tan 65^{\circ}}{\tan 65^{\circ}}+\frac{\cos 65^{\circ}}{\cos 65^{\circ}}$
$=1+1$
$=2$

$$
\begin{array}{ll}
\sin A=\cos (90-A) & 1 / 2 \\
\sin 25^{\circ}=\cos (90-25) & \\
\sin 25^{\circ}=\cos 65^{\circ} & 1 / 2
\end{array}
$$

$$
1 / 2
$$

$$
1 / 2
$$

Qn. Nos.	Value Points	Marks allotted
40.	If two coins are tossed together simultaneously, find the probability of getting at least one head. Ans. : Sample space $S=\{(H, H),(T, T)(H, T)(T, H)\}$ $n(S)=4$ Event $A=\{$ At least one head $\}$ $\begin{aligned} & A=\{(H, T)(T, H)(H, H)\} \\ & n(A)=3 \\ \therefore & P(A)=\frac{n(A)}{n(S)}=\frac{3}{4} \\ & P(A)=\frac{3}{4} \end{aligned}$	2

IV. 41.

Prove that "the lengths of tangents drawn from an external point to a circle are equal".

OR
Two concentric circles of radii 5 cm and 3 cm are drawn. Find the length of the chord of the larger circle which touches the smaller circle.

Ans. :

Qn. Nos.	Value Points	Marks allotted
		3

Alternate method:

In a circle of centre O, a point P laying outside the circle and two tangents $P Q, P R$ on the circle from P.

We are required to prove that $P Q=P R$
For this we join $O P, O Q$ and $O R$, then $\lfloor O Q P$ and $\lfloor O R P$ are right angles (because these are angles between radii and tangents)

Qn.	Value Points	Marks Nos.

$\Delta O Q P=\Delta O R P($ RHS $)$
$\therefore \quad P Q=P R(C P C T) \quad 1 / 2$
Hence proved.

In the diagram $O C$ is radius, $A B$ is tangent
In the $\triangle O C B,\left\lfloor C=90^{\circ}, O B\right.$ is diagonal

$$
\begin{aligned}
& O B^{2}=O C^{2}+C B^{2} \\
& (5)^{2}=(3)^{2}+B C^{2} \\
& 25=9+B C^{2} \\
& 25-9=B C^{2} \\
& 16=B C^{2} \\
& B C=\sqrt{16}=4 \mathrm{~cm}
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted	
	$B C=A C$	Length of chord $A B=A C+B C$	
	$=4+4$	$1 / 2$	
		$A B=8 \mathrm{~cm}$	
		Length of the chord $A B=8 \mathrm{~cm}$	$1 / 2$

42. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then construct another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the given triangle.
Ans. :

i) $\triangle A B C$ construction $1 \frac{1}{2}$
ii) Drawing an acute angle line and division $1 / 2$
iii) Drawing $B_{3} C^{\prime} \| B_{5} C \quad 1 / 2$
iv) Drawing $A^{\prime} C^{\prime} \| A C$
[Note : Any given side of the triangle may be taken as base]
(21)1202-PR(C)

Qn. Nos.	Value Points						Marks allotted
43.	Find the mode for the following data in the frequency distribution table :						
	Family size	1-3	3-5	5-7	7-9	9-11	
	Number of families	7	8	2	2	1	

OR

Find the median for the following data in the frequency distribution table :

Weight (in kg)	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Number of students	2	3	6	4	5

Ans. :

Qn.

Nos.

$$
\begin{aligned}
& \text { Value Points } \\
\therefore \quad \text { Mode } & =L+\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h \\
& =3+\left[\frac{8-7}{(2 \times 8)-7-2}\right] \times 2 \\
& =3+\left[\frac{1}{16-7-2}\right] \times 2 \\
& =3+\frac{2}{7} \\
& =3+0.28 \\
& =3.28
\end{aligned}
$$

$\therefore \quad$ Mode of the data is 3.28
OR

Frequency of median class
Class size $h=5$
$\therefore \quad$ Median $=L+\left[\frac{\frac{N}{2}-c . f .}{f}\right] \times h$

Marks allotted

Qn. Nos.	Value Points	Marks allotted	
	$=25+\left[\frac{10-5}{6}\right] \times 5$	$1 / 2$	
	$=25+\left[\frac{5}{6}\right] \times 5$	$1 / 2$	
	$=25+4 \cdot 16$		
	$=29 \cdot 16$	$1 / 2$	3

From the top of a vertical building of $50 \sqrt{3} \mathrm{~m}$ height on a level ground the angle of depression of an object on the same ground is observed to be 60°. Find the distance of the object from the foot of the building.

OR

Two wind mills of height 50 m and $40 \sqrt{3} \mathrm{~m}$ are on either side of the field. A person observes the top of the wind mills from a point in between them. The angle of elevation was found to be 45° and 30°. Find the distance between the wind mills.

Ans. :
$P Q$ represent the height of the building
$\therefore \quad P Q=50 \sqrt{3} \mathrm{~m}$
$Q R$ be the distance between the building and the object $Q R=x$
Angle of depression is 60° since $P M \| Q R$

$$
\begin{aligned}
& \lfloor M P R=\lfloor P R Q \\
& 60^{\circ}=\lfloor P R Q
\end{aligned}
$$

In $\triangle P Q R,\left\lfloor P Q R=90^{\circ}, \quad\left\lfloor P R Q=60^{\circ}\right.\right.$

$$
\begin{array}{ll}
\therefore \quad \tan \theta=\frac{P Q}{Q R} \\
\tan 60^{\circ}=\frac{50 \sqrt{3}}{Q R} \quad \quad\left(\text { But } \tan 60^{\circ}=\sqrt{3}\right. \text {) } \\
\sqrt{3}=\frac{50 \sqrt{3}}{Q R} \\
Q R=\frac{50 \sqrt{3}}{\sqrt{3}} \\
Q R=50 \mathrm{~m}
\end{array}
$$

\therefore The object is 50 m away from the foot of the building

Qn.

Value Points

In $\triangle A B D, \tan \theta=\frac{A B}{B P}$
In $\triangle D P C, \tan \theta=\frac{D C}{P D}$
$\tan 30^{\circ}=\frac{40 \sqrt{3}}{B P}$
$\tan 45^{\circ}=\frac{50}{P D}$
$\frac{1}{\sqrt{3}}=\frac{40 \sqrt{3}}{B P}$
$1=\frac{50}{P D}$
$B P=40 \sqrt{3} \times \sqrt{3}$
$B P=40 \times 3$
$B P=120 \mathrm{~m}$

$$
P D=50 \mathrm{~m}
$$

$\therefore \quad$ Distance between the wind mills

$$
\begin{aligned}
& B D=B P+P D \\
& B D=120+50 \\
& B D=170 \mathrm{~m}
\end{aligned}
$$

$\therefore \quad$ The distance between the wind mills on either side
of field is 170 m

$$
1 / 2
$$

3

| Qn.
 Nos. | Value Points | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45. | The following table gives production yield per hectare of wheat of
 100 farms of a village. | | | | | |
| Production yield
 in kg/hectare | $50-55$ | $55-60$ | $60-65$ | $65-70$ | $70-75$ | $75-80$ |
| Number of
 farms | 2 | 8 | 12 | 24 | 38 | 16 |

Change the distribution to a more than type distribution, and draw its ogive.

Ans. :

Production yield (in $\mathrm{kg} / \mathrm{hac})$	No. of farms	c.f.
More than 50	2	100
More than 55	8	98
More than 60	12	90
More than 65	24	78
More than 70	38	54
More than 75	16	16

$\therefore \quad$ Coordinate points are
(50, 100$)(55,98)(60,90)$
$(65,78)(70,54)(75,16)$
$\begin{array}{ll}\text { Table }- & 1 \\ \text { Plotting the ogive }- & 2\end{array}$

2

3

Qn. Nos.	Value Points	Marks allotted

Qn. Nos.	Value Points	Marks allotted

46.

A cone is having its base radius 12 cm and height 20 cm . If the top of this cone is cut into form of a small cone of base radius 3 cm is removed, then the remaining part of the solid cone become a frustum. Calculate the volume of the frustum.

OR
A milk tank is in the shape of a cylinder with hemispheres of same radii attached to both ends of it as shown in figure. If the total height of the tank is 6 m and the radius is 1 m , calculate the maximum quantity of milk filled in the tank in litres. $\left(\pi=\frac{22}{7}\right)$

Qn.	Value Points	Marks Nos.

Ans. :
Given $r_{1}=12 \mathrm{~cm}, r_{2}=3 \mathrm{~cm}, h_{1}=20 \mathrm{~cm}, h_{2}=$?
We know $\frac{r_{1}}{r_{2}}=\frac{h_{1}}{h_{2}} \Rightarrow \frac{12}{3}=\frac{20}{h_{2}} \Rightarrow h_{2}=5 \mathrm{~cm}$
$\therefore \quad$ Volume of the frustum

$$
\begin{aligned}
& =\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right) \\
& =\frac{1}{3} \times \frac{22}{7} \times 15\left((12)^{2}+(3)^{2}+(12)(3)\right) \\
& =\frac{110}{7} \times(144+9+36) \\
& =\frac{110}{7} \times 189 \\
& =2970 \mathrm{~cm}^{3}
\end{aligned}
$$

$\therefore \quad$ Volume of Frustum is $2970 \mathrm{~cm}^{3}$. $1 / 2$

OR

Radius of hemisphere $r=1 \mathrm{~m}$
Radius of cylinder $r=1 \mathrm{~m}$
Height of cylinder $h=4 \mathrm{~m}$
Volume of solid $=$ Volume of cylinder +2 (volume of hemisphere)

$$
\begin{aligned}
& =\pi r^{2} h+2\left(\frac{2}{3} \pi r^{3}\right) \\
& =\pi r^{2} h+\frac{4}{3} \pi r^{3} \\
& =\pi r^{2}\left[h+\frac{4}{3} r\right] \\
& =\frac{22}{7} \times(1)^{2}\left[4+\frac{4}{3}(1)\right] \\
& =\frac{22}{7} \times \frac{16}{3} \mathrm{~m}^{3}
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted	
	$=\frac{352}{21} \times(100)^{3} \mathrm{~cm}^{3}$	$1 \mathrm{~m}=100 \mathrm{~cm}$	$1 / 2$
	$=\frac{352 \times 1000000}{21 \times 1000}$ litres	$1 / 2$	
	$=\frac{352000}{21}$		
	$=16,761 \cdot 9$ litres	$1 / 2$	
	$\therefore \quad$ Capacity of milk tank is $16,761 \cdot 9$ litres		

V. 47.

The sum of the fourth and eighth terms of an arithmetic progression is 24 and the sum of the sixth and tenth terms is 44 . Find the first three terms of the Arithmetic progression.

Ans. :
$a_{4}+a_{8}=24$
$a+3 d+a+7 d=24$
$2 a+10 d=24$
$a+5 d=12$
... (i)
$a_{6}+a_{10}=44$
$a+5 d+a+9 d=44$
$2 a+14 d=44$
$a+7 d=22$
(ii) - (i)
$a+7 d=22$
Substitute $d=5$ in (i)
$a+5 d=12$
$\begin{array}{ll}(-) \quad(-) \quad(-) \\ & 2 d=10\end{array}$
$a+5(5)=12$
$d=\frac{10}{2}$
$a+25=12$
$d=5$
$a=-13$

Qn. Nos.	Value Points				Marks allotted
		Three terms of Arithmetic progression is			
		$a, \quad a+d$	$a+2 d$		
		$-13,-13+5$,	$-13+10$	1/2	
		$-13,-8,-3$		1/2	4

48. Prove that "in a right triangle, the square of the hypotenuse is equal to
the sum of the squares of the other two sides".

Ans. :

Data: In $\triangle A B C,\left\lfloor A B C=90^{\circ}\right.$
To prove : $A B^{2}+B C^{2}=A C^{2}$

Construction: Draw $B D \perp A C$

Proof:
Statement
Compare $\triangle A B C$ and $\triangle A D B$
$\triangle A B C=\triangle A D B=90^{\circ}$
$\lfloor B A D$ is common
$\therefore \quad \triangle A B C \sim \triangle A D B$
$\Rightarrow \quad \frac{A B}{A D}=\frac{A C}{A B}$

Reason

Data and construction

Equiangular triangles
$A A$ similarity
(21)1202-PR(C)

1

Data and construction

Equiangular triangles
$A A$ similarity
(i) + (ii)

$$
\begin{aligned}
A B^{2}+B C^{2} & =A C \times A D+A C \times D C \\
& =A C(A D+D C) \\
& =A C \times A C \\
A B^{2}+ & B C^{2}=A C^{2}
\end{aligned}
$$

Alternate method:

In a $\triangle A B C, \quad\left\lfloor A B C=90^{\circ} \quad 1 / 2\right.$
We need to prove that $A C^{2}=A B^{2}+B C^{2} \quad 1 / 2$
Let us draw $B D \perp A C \quad 1 / 2$
Now, $\triangle A D B \sim \triangle A B C$ (equiangular triangle)
So, $\frac{A D}{A B}=\frac{A B}{A C}$
(Sides are proportional)

Qn. Nos.	Value Points	Marks allotted

49.

Solve graphically :
(i) + (ii)

$$
\begin{aligned}
& A B^{2}+B C^{2}=A D \times A C+C D \times A C \\
& A B^{2}+B C^{2}=A C(A D+D C) \\
& A B^{2}+B C^{2}=A C \times A C \\
& A B^{2}+B C^{2}=A C^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2 x+y=8 \\
& x-y=1
\end{aligned}
$$

Ans. :

$$
\begin{aligned}
& 2 x+y=8 \\
& y=8-2 x
\end{aligned}
$$

x	1	2	3	4	5
y	6	4	2	0	-2

$$
\begin{aligned}
& x-y=1 \\
& y=x-1
\end{aligned}
$$

x	1	2	3	4	5
y	0	1	2	3	4

Note : Any two points for each equation may be given marks.

Qn. Nos.	Value Points	Marks allotted
50.	The ages of two students A and B are 19 years and 15 years respectively. Find how many years it will take so that the products of their ages becomes equal to 480 .	

Qn.	Value Points	Marks allotted

If the quadratic equation $(b-c) x^{2}+(c-a) x+(a-b)=0$ has equal roots, then show that $2 b=a+c$.

Ans. :
Let the required years are x
After x years the age of A is $=x+19$
After x years the age of B is $=x+15$
The product of their ages is 480
i.e. $(x+19)(x+15)=480$
$x^{2}+19 x+15 x+285=480$
$x^{2}+19 x+15 x+285-480=0$

$$
x^{2}+34 x-195=0
$$

Last term: $\quad-195=+39 \times-5$
Middle term : $\quad+34=+39-5$

$$
\therefore \quad x^{2}+39 x-5 x-195=0
$$

$$
x(x+39)-5(x+39)=0
$$

$(x-5)(x+39)=0$

$$
\begin{array}{ll}
x-5=0 & x+39=0 \\
x=+5 & x=-39
\end{array}
$$

$\therefore \quad$ After 5 years the product of their age is 480
OR
$(b-c) x^{2}+(c-a) x+(a-b)=0$ $a x^{2}+b x+c=0$
$a=(b-c)$
$b=(c-a)$
$c=(a-b)$

Qn. Nos.	Value Points		Marks allotted
	Roots are equal $\Delta=0$ Discriminant $\Delta=b^{2}-4 a c$ $\begin{gathered} \therefore \quad 0=b^{2}-4 a c \\ b^{2}-4 a c=0 \\ (c-a)^{2}-4[(b-c)(a-b)]=0 \\ c^{2}-2 a c+a^{2}-4\left[a b-a c-b^{2}+c b\right]=0 \\ c^{2}-2 a c+a^{2}-4 a b+4 a c+4 b^{2}-4 c b=0 \\ a^{2}+4 b^{2}+c^{2}-4 a b-4 b c+2 a c=0 \\ (a-2 b+c)^{2}=0 \\ a-2 b+c=0 \\ a+c=2 b \\ \therefore \quad 2 b=a+c \end{gathered}$	1/2	

