CCE PR UNREVISED

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಜೂನ್ — 2019 S. S. L. C. EXAMINATION, JUNE, 2019 ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ: 24. 06. 2019] ಸಂಕೇತ ಸಂಖ್ಯೆ : **83-E (Phy)**

Date: 24. 06. 2019] CODE No.: 83-E (Phy)

ವಿಷಯ: ವಿಜ್ಞಾನ

Subject: SCIENCE

(ಭೌತಶಾಸ್ತ್ರ / Physics)

(ಹಳೆ ಪಠ್ಯಕ್ರಮ / Old Syllabus)

(ಪುನರಾವರ್ತಿತ ಖಾಸಗಿ ಅಭ್ಯರ್ಥಿ / Private Repeater)

(ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 100

[Max. Marks : 100

Qn. Nos.	Value Points					
1.						
	The solar device used for seasoning of wood and desalination of sea					
	water is					
	(A) solar cell					
	(B) solar collector					
	(C) solar heater					
	(D) solar lamp.					
	Ans.:					
	(C) — solar heater	1				

(24)1309-PR(D) (PHY)

[Turn over

Qn. Nos.	Value Points	Total			
4.	The component in Sonar, that converts ultrasonic waves into electrical signals is				
	(A) detector (B) transmitter				
	(C) converter (D) analyser.				
	Ans.:				
	(A) — detector	1			
7.	The device which works on the principle of mutual induction is				
	(A) motor (B) dynamo				
	(C) transistor (D) transformer.				
	Ans.:				
	(D) — transformer	1			
14.	Tidal energy is more reliable than wind energy. Why?				
	Ans.:				
	Fluctuations are comparatively less	1			
17.	Name the type of current produced when slip rings are replaced	1 by split			
	rings in a dynamo.				
	Ans.:				
	Direct Current (D.C.)	1			

Qn. Nos.	Value Points						
19.	Writ	te any two differences between	long	gitudinal waves and transverse			
	waves.						
	Ans.:						
	Transverse waves Longitudinal waves						
	i)	Particles vibrate in the	i)	Particles vibrate along the			
		direction perpendicular to the		direction (parallel) of the			
		direction of wave		propagation.			
		propagation.					
	ii)	The wave propagates in the	ii)	The wave propagates in the			
		form of crests and troughs.		form of compressions and			
				rarefactions.			
	iii)	Alternate crests and troughs	iii)	Alternate compressions and			
		constitute a wave.		rarefactions constitute a			
				wave.			
				(Any two) (1+1)	2		
22.	Exp	lain the intake stroke in the work	king	of a petrol engine.			
	Ans	.:					
	Inta	ke Stroke :					
	(i)	Inlet valve opens and outlet valv	e is	closed			
	(ii) Piston moves away from the head of the cylinder						
	(iii) The fuel mixture (petrol + air) enters into the cylinder through inlet						
		valve.		(Any <i>two</i>) 1 + 1	2		
	(24)1309-PR(D) (PHY)						

Qn. Nos.	Value Points				
25.	The efficiency of a heat engine is 30. If 60,000 joules of heat is supplied to the engine then calculate the work done by the engine.				
	Ans.: $ \eta = \frac{W}{H} \times 100 $ $ 30 = \frac{W}{60000} \times 100 $ $ 30 \times 600 = W $	$ \eta = 30 $			
	18000 joules = Work done	$\frac{1}{2}$	2		
28.	A ship sends ultrasonic sound. This sound reflects from seabed and returns after 6 seconds. If the speed of ultrasonic sound through seawater is $1.5~{\rm km~s}^{-1}$, find the depth of the sea.				
	Distance = $2 \times \text{depth of the sea}$	$V = 1.5 \mathrm{kms^{-1}}$			
	$V = \frac{2d}{t}$	t = 6 sec.			
	$d = \frac{Vt}{2}$	$\frac{1}{2}$			
	$d = \frac{1 \cdot 5 \times 6}{2}$	$\frac{1}{2}$			
	$d = 1.5 \times 3 = 4.5 \text{ km}$	$\frac{1}{2}$			
	Depth of the sea = 4.5 km.	$\frac{1}{2}$	2		

Qn. Nos.	Value Points	Total				
31.	Draw the diagram of D.C. motor. Label the following parts :					
	(i) Brushes					
	(ii) Coil on armature.					
	Ans.:					
	BI B					
	$ABCD \rightarrow \text{Coil on armature}$					
	B_1 , $B_2 \rightarrow Brushes$ $\frac{1}{2} + \frac{1}{2}$	2				
35.	Draw the diagram of petrol engine. Label the following parts :					
	(i) Spark plug					
	(ii) Inlet valve.					
	Ans.:					

Qn. Value Points Total Nos. (i) Spark plug (ii) Inlet valve 1 2 38. State Faraday's laws of electromagnetic induction. Ans.: Faraday's laws of electromagnetic induction. Whenever a magnetic field linked with a conductor changes, Ist Law: an induced e.m.f. is generated in the conductor. IInd Law: The magnitude of induced e.m.f. is directly proportional to the rate of change of magnetic field linked with the conductor. 1 2

	Value 1	Points	Tot	
Men	tion any two differences between	nuclear fission and nuclear fusion.		
Ans.	.:			
	Nuclear fission	Nuclear fusion		
(i)	A heavy nucleus splits into two lighter nuclei with liberation of energy and neutrons	(i) Two or more nuclei fuse to form a heavy nucleus with the liberation of energy		
(ii)	Nuclear fissions can be controlled	(ii) At present there is no mechanism to control fusion reactions		
(iii)	The process of fission does not require high temperature	(iii) The process of fusion requires extremely high temperature of the order $10^6~\mathrm{K}$		
(iv)	Causes radiation pollution problems due to radioactive products	(iv) Does not cause radiation pollution since the products are not radioactive.		
		(Any two) (2 × 1)	2	
Men	tion any two applications of simp	ole harmonic motion.		
Ans.	:			
(i)	Simple harmonic motion of pen of time.	dulum is used for the measurement		
(ii)	Tuning of the musical instrume fork which executes simple harm	ent is done with the vibrating tuning monic motion.		
(iii) Wave is consequence of simple harmonic motion. Study of waves is indirectly the study of simple harmonic motion.				
(iv)	·	structure because molecules are in This study is called vibration		
		(Any two) 2×1	2	
	(24)1309			

Qn. Nos.	Value Points	Total
45.	Draw the diagram of nuclear power reactor. Label the following parts : (i) Radiation sheild	
	(ii) Coolant.	
	Ans. :	
	Radiation Sheild Collant $2 + \frac{1}{2} + \frac{1}{2}$	3
48.	(a) Write two differences between <i>p</i> -type and <i>n</i> -type of	
	semiconductors.	
	(b) Write any two applications of diode.	
	OR	
	(a) Write two differences between intrinsic and extrinsic type of semiconductors.	
	Ans.:	

Qn. Nos.	Value Points				
	(a)	n-type semiconductor	p-type semiconductor		
	*	When pentavalent impurity atoms like As, Sb etc. are added to the intrinisic semiconductor. We get <i>n</i> -type	* When trivalent impurity like gallium and indium etc. are added in the intrinisic semiconductor. We get <i>p</i> -type		
		semiconductor	semiconductor. 1		
	* (b)	The majority carriers in <i>n</i> -type semiconductor are electrons and minority carries holes due to thermal energy. (i) Used to convert A.C. to D.C. (ii) Used in voltage regulation			
	(iii) Used in logic circuits in computers.				
	(Any two) $\frac{1}{2} + \frac{1}{2}$				
		O	R		
	(a)	Intrinisic semiconductor	Extrinisic semiconductors		
	*	Intrinisic semiconductors are the crystals of pure elements like germanium and silicon	* When some impurity atoms are added in the intrinisic semiconductor an extrinisic semiconductor is obtained. 1		
	*	The number of electrons is equal to the number of holes ($n_e = n_h$)	* The number of electrons is not equal to the number of holes ($n_e \neq n_h$) 1		

Qn. Nos.			Value Points	Total		
	(b)	(i)	Used in powerful magnets			
		(ii)	High temperature super conductors are used in microwave			
			devices			
		(iii)	Super conductor magnets are used in magnetic resonance			
			imaging (MRI).			
			(Any two) $\frac{1}{2} + \frac{1}{2}$	3		
50.	(a)	Me	ention the stages in the life cycle of a star and explain its			
		beg	ginning stage.			
	(b)	Wh	ny do stars appear in different colours?			
			OR			
	(a)	Ex	plain Big bang theory.			
	(b)	Wr	ite the relationship between escape velocity and orbital velocity.			
	Ans.:					
	(a)	(i)	Protostar			
		(ii)	Steady state			
		(iii)	Red giant			
		(iv)	White dwarf			
		(v)	Supernova			
		(vi)	Black holes. 2			
		Prot	tostar: The gaseous clouds contract due to their mutual			
		attr	action as the cloud contracts. There will be increase in density			
			ch in turn leads to increase in pressure, gradually there will be			
			regation of matter like hydrogen with spherical mass at the tre of the cloud.			
	/1.\			4		
	(b)	Intr	inisic temperature / refraction of light.	4		
			OR			

(24)1309-PR(D) (PHY)

Qn. Nos.		Value Points	Total
	(a)	The concept of big bang theory comes into light, based on the model	
		of supernova explosion of stars that led to the formation of new	
		stars, it is proposed that the universe might have begun with a start	
		of explosion. 2	
		Everything that we have in the universe was once concentrated in a	
		very small, hot place called Primordial Fire Ball.	
		Fire ball exploded with a bang and the matter in it was thrown away	
		with tremendous speed. Thus the universe is formed.	
		The evidence for this is the red shift of the light originating from	
		galaxies. 1	
	(b)	$V_e = \sqrt{2} V_o$	4