CCE RR UNREVISED

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಜೂನ್ — 2019 S. S. L. C. EXAMINATION, JUNE, 2019 ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ: 24. 06. 2019] ಸಂಕೇತ ಸಂಖ್ಯೆ : **83-E (Phy)**

Date: 24. 06. 2019] CODE No.: 83-E (Phy)

ವಿಷಯ: ವಿಜ್ಞಾನ

Subject: SCIENCE

(ಭೌತಶಾಸ್ತ್ರ / Physics)

(ಹಳೆ ಪಠ್ಯಕ್ರಮ / Old Syllabus)

(ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Repeater)

(ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks: 80

Qn. Nos.	Value Points	Total
1.	The solar device used for seasoning of wood and desalination of sea	
	water is	
	(A) solar cell	
	(B) solar collector	
	(C) solar heater	
	(D) solar lamp.	
	Ans.:	
	(C) — solar heater	1

(24)811-RR(B) (PHY)

[Turn over

Qn. Nos.	Value Point	3	Total
4.	The component in Sonar, that converts ultrasonic waves into electrical		
	signals is (A) detector (B)	transmitter	
	(C) converter (D)	analyser.	
	Ans.:		
	(A) — detector		1
7.	The device which works on the principle of	f mutual induction is	
	(A) motor (B)	dynamo	
	(C) transistor (D)	transformer.	
	Ans.:		
	(D) — transformer		1
14.	Tidal energy is more reliable than wind en	ergy. Why ?	
	Ans.:		
	Fluctuations are comparatively less		1
17.	Name the type of current produced when	slip rings are replaced by split	
	rings in a dynamo.		
	Ans.:		
	Direct Current (D.C.)		1

Qn. Nos.	Value Points			Total	
19.	Writ	te any two differences between	longitudinal waves and transverse		
	wav	es.			
	Ans	.:			
		Transverse waves	Longitudinal waves		
	i)	Particles vibrate in the	i) Particles vibrate along the		
		direction perpendicular to the	direction (parallel) of the		
		direction of wave	propagation.		
		propagation.			
	ii)	The wave propagates in the	ii) The wave propagates in the		
		form of crests and troughs.	form of compressions and		
			rarefactions.		
	iii)	Alternate crests and troughs	iii) Alternate compressions and		
		constitute a wave.	rarefactions constitute a		
			wave.		
			(Any two) (1+1)	2	
22.	Exp	lain the intake stroke in the work	king of a petrol engine.		
	Ans	.:			
	Inta	ke Stroke :			
	(i)	Inlet valve opens and outlet valv	ve is closed		
	(ii) Piston moves away from the head of the cylinder				
	(iii)	,-		2	
		valve.	(Any two) 1 + 1	2	
		(24)811-RR(B) (PHY)			

Qn. Nos.	Value Poin	ts	Total
25.	The efficiency of a heat engine is 30. If 60,000 joules of heat is supplied to the engine then calculate the work done by the engine.		
	Ans.: $ \eta = \frac{W}{H} \times 100 $ $ 30 = \frac{W}{60000} \times 100 $ $ 30 \times 600 = W $	$ \eta = 30 $	
	18000 joules = Work done	$\frac{1}{2}$	2
28.	A ship sends ultrasonic sound. This sound reflects from seabed and returns after 6 seconds. If the speed of ultrasonic sound through seawater is $1.5~\rm km~s^{-1}$ then find the depth of the sea.		
	Distance = $2 \times \text{depth of the sea}$ $V = \frac{2d}{t}$	$V = 1.5 \text{ kms}^{-1}$ $t = 6 \text{ sec.}$	
	$d = \frac{Vt}{2}$	$\frac{1}{2}$	
	$d = \frac{1 \cdot 5 \times 6}{2}$	$\frac{1}{2}$	
	$d = 1.5 \times 3 = 4.5 \text{ km}$	$\frac{1}{2}$	
	Depth of the sea = 4.5 km .	$\frac{1}{2}$	2

Ans.:

Qn. Nos.	Value Points	Total	
31.	Draw the diagram of D.C. motor. Label the following parts :		
	(i) Brushes		
	(ii) Coil on armature.		
	Ans.:		
	(i) B_1 , $B_2 \rightarrow Brushes$		
	(ii) $ABCD \rightarrow \text{Coil or armature}$ $\frac{1}{2} + \frac{1}{2}$	2	
35.	Draw the diagram of nuclear power reactor. Label the following parts :		
	(i) Radiation sheild		
	(ii) Coolant.		

Qn.

Value Points

Total

Nos. Radiation Sheild $2 + \frac{1}{2} + \frac{1}{2}$ 3

38.

- (a) Write two differences between p-type and n-type o semiconductors.
- (b) Write any two applications of diode.

OR

- (a) Write two differences between intrinsic and extrinsic type of semiconductors.
- (b) Write any two applications of super conductors.

Ans.:

(a)	n-type semiconductor	p-type semiconductor
*	When pentavalent impurity	★ When trivalent impurity like
	atoms like As, Sb etc. are	gallium and indium etc. are
	added to the intrinisic semi-	added in the intrinisic
	conductor. We get <i>n</i> -type	semiconductor. We get p -type
	semiconductor	semiconductor. 1

Qn. Nos.		Value Points	Total
	*	The majority carriers in * The majority carriers are electrons facilitated by holes, electrons and minority minority carriers are carriers are holes due to thermal energy.	
	(b)	(i) Used to convert A.C. to D.C. (ii) Used in voltage regulation system (iii) Used in logic circuits in computers. (Any two) $\frac{1}{2} + \frac{1}{2}$ OR	3
	(a) *	Intrinisic semiconductorExtrinisic semiconductorsIntrinisic semiconductors are the crystals of pure elements like germanium and silicon \star When some impurity atoms are added in the intrinisic 	
	(b)	(i) Used in powerful electromagnets (ii) High temperature super conductors are used in microwave devices (iii) Super conductor magnets are used in magnetic resonance imaging (MRI). (Any two) $\frac{1}{2} + \frac{1}{2}$	3

Qn. Nos.		Value Points	Total
40.	(a)	Mention the stages in the life cycle of a star and explain its beginning stage.	
	(b)	Why do stars appear in different colours?	
		OR	
	(a)	Explain Big bang theory.	
	(b)	Write the relationship between escape velocity and orbital velocity.	
	Ans	.:	
	(a)	(i) Protostar (ii) Steady state	
		(iii) Red giant (iv) White dwarf	
		(v) Supernova (vi) Black holes. 2	
	Protostar: The gaseous clouds contract due to their mutual		
	attraction as the cloud contracts. There will be increase in density which in turn leads to increase in pressure, gradually there will be		
	aggregation of matter like hydrogen with spherical mass at the		
	centre of the cloud.		
	(b)	Intrinisic temperature / refraction of light.	4
	OR		
	(a) The concept of Big bang theory comes into light, based on the model of supernova explosion of stars that led to the formation of new stars, it is proposed that the universe might have begun with a start of explosion.		
	Everything that we have in the universe was once concentrated in a		
	very small, hot place called Primordial Fire Ball.		
	Fire ball exploded with a bang and the matter in it was thrown away		
	with tremendous speed. Thus the universe is formed.		
		The evidence for this is the red shift of the light originating from	
	(1-)	galaxies. $\frac{1}{1}$	
	(b)	$V_e = \sqrt{2} V_o $ 1	4