CCE PF REVISED

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ — 2019 S. S. L. C. EXAMINATION, MARCH/APRIL, 2019 ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ: 02. 04. 2019] ಸಂಕೇತ ಸಂಖ್ಯೆ : **83-E (Phy)**

Date: 02. 04. 2019] CODE NO.: 83-E (Phy)

ವಿಷಯ: ವಿಜ್ಞಾನ

Subject: SCIENCE

(ಭೌತಶಾಸ್ತ್ರ / Physics)

(ಹೊಸ ಪಠ್ಯಕ್ರಮ / New Syllabus)

(ಖಾಸಗಿ ಅಭ್ಯರ್ಥಿ / Private Fresh)

(ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 100

[Max. Marks: 100

Qn. Nos.	Value Points			
1.	The change that occurs in the eye to see the distant objects clearly is			
	(A) focal length of the eye lens decreases			
	(B) curvature of the eye lens increases			
	(C) focal length of the eye lens increases			
	(D) ciliary muscles of the eye contract			
	Ans.:			
	(C) — focal length of the eye lens increases	1		

PF(C)-622 (PHY)

[Turn over

Qn. Nos.	Value Points		
4.	The resistance of a conductor is $27~\Omega$. If it is cut into three equal parts and connected in parallel, then its total resistance is		
	(A) 6Ω (B) 3Ω		
	(C) 9Ω (D) 27Ω		
	Ans.:		
	(B) — 3 Ω		1
7.	To obtain a diminished image of an object from a cond of the object should be	cave mirror, position	
	($F = \text{principal focus}$, $C = \text{centre of curvature}$, $P = \text{position}$	ole)	
	(A) between C and F (B) beyond C	7	
	(C) between P and F (D) at F		
	Ans.:		
	(B) — beyond C		1
14.	Convex mirror is commonly used as rear-view mirror	in vehicles. Why?	
	Ans.:		
	★ They always give an erect diminished image.	$\frac{1}{2}$	
	★ Also they have a wider field of view as they are c	urved outwards. $\frac{1}{2}$	1
16.	Observe the given figure. Name the eye defect indicat	ed in the figure and	
	also mention the lens used to correct this defect.		
	Ans.:		
	* Myopia	$\frac{1}{2}$	
	★ Concave lens	$\frac{1}{2}$	1

Qn. Nos.	Value Points	Total
17.	What is Tyndall effect ?	
	Ans. :	
	The phenomenon of scattering of light by the colloidal particles is called	
	Tyndall effect.	1
19.	Draw the diagram of an electric circuit in which the resistors R_1 , R_2	
	and R_3 are connected in parallel including an ammeter and a voltmeter	
	and mark the direction of the current.	
	Ans.:	
	Electric circuit connected in parallel. R, R2 R3 Direction of current	
	Diagram — $1\frac{1}{2}$	
	Parts — $\frac{1}{2}$	2

Qn. Nos.	Value Points	Total		
22.	Draw the diagram of a simple electric motor. Label the following parts :			
	(i) Split rings (ii) Brushes.			
	Ans.:			
	N S S			
	Brushes			
	Split ring			
	$1 + \frac{1}{2} + \frac{1}{2}$	2		
	OR			
	Split ring			
	Brushes			
	$1 + \frac{1}{2} + \frac{1}{2}$	2		

Qn. Nos.	Value Points				
26.	It is advantageous to connect electric devices in parallel instead of				
	connecting them in series. Why ?				
	OR				
	According to Joule's law of heating, mention the factors on which heat				
	produced in a resistor depends. According to this law write the formula				
	used to calculate the heat produced.				
	Ans.:				
	* The appliances connected in series need currents of widely different values to operate properly. $\frac{1}{2}$				
	* In a series circuit when one component fails the circuit is broken and none of the components work $\frac{1}{2}$				
	* But in a parallel circuit current divides through the electrical gadgets $\frac{1}{2}$				
	* This is helpful particularly when each gadget has different				
	resistance and requires different current to operate properly / Each electrical appliance can be operated separately. $\frac{1}{2}$	2			
	OR				
	Heat produced in a resistor is,				
	(i) directly proportional to the square of current for a given resistance $\frac{1}{2}$				
	(ii) directly proportional to resistance for a given current and $\frac{1}{2}$				
	(iii) directly proportional to the time for which the current flows through the resistor $\frac{1}{2}$				
	(iv) $H = I^2 Rt$ $\frac{1}{2}$	2			

Qn. Nos.	Value Points	Total		
28.	The focal length of a concave lens is 30 cm. At what distance should the object be placed from the lens so that it forms an image at 20 cm from the			
	lens ? Ans.:			
	$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ or, $\frac{1}{u} = \frac{1}{v} - \frac{1}{f}$			
	$\frac{1}{u} = \frac{1}{-20} - \frac{1}{(-30)} = -\frac{1}{20} + \frac{1}{30}$			
	$\frac{1}{u} = \frac{-3+2}{60}$			
	$\frac{1}{u} = \frac{1}{-60}$ or $u = -60 \text{ cm}$ $\frac{1}{2}$	2		
31.	An electric refrigerator rated 400 W is used for 8 hours a day. An electric	e		
	iron box rated 750 W is used for 2 hours a day. Calculate the cost of	f		
	using these appliances for 30 days, if the cost of 1 kWh is Rs. 3/			
	Ans.:			
	The total energy consumed by the refrigerator in 30 days			
	$= 400 \times 8 \times 30 = 96000 \text{ Wh} = 96 \text{ kWh}$			
	The total energy consumed by the iron box in 30 days			
	$= 750 \times 2 \times 30 = 45000 \text{ Wh} = 45 \text{ kWh}$			
	The total energy consumed by the refrigerator and iron box is			
	= 96 kWh + 45 kWh = 141 kWh $\frac{1}{2}$			
	The sum of bill amount for 141 kWh at rate of Rs. 3 per 1 kWh			
	= 141 × 3			
	= Rs. 423. $\frac{1}{2}$	2		

Qn. Nos.	Value Points	Total				
34.	What is dispersion of light? Mention the colour that bends the least and the colour that bends the most when light undergoes dispersion through a prism.					
	OR					
	Mention any four phenomena that can be observed due to atmospheric refraction of light on the earth.					
	Ans.:					
	The splitting of light into its component colours is called dispersion 1					
	\star The red bends the least $\frac{1}{2}$					
	\star The violet bends the most. $\frac{1}{2}$	2				
	OR					
	★ The sun is visible to us two minutes before the actual sunrise.					
	★ The sun is visible to us two minutes after the actual sunset also.					
	★ The apparent position of the star is slightly different from its actual position.					
	★ Twinkling of star					
	★ Formation of rainbow					
	 ★ The apparent random wavering or flickering of objects seen through a turbulent stream of hot air rising above a fire or a radiator. 					
	(Any four) $4 \times \frac{1}{2}$	2				
35.	Write the disadvantages of constructing hydroelectric plants. Ans.:					
	* Large areas of agricultural land and human habitation are to be sacrified as they get submerged. $\frac{1}{2}$					
	* Large eco-systems are destroyed when submerged under the water in dams $\frac{1}{2}$					
	* The vegetation which is submerged, rots under anaerobic conditions and gives rise to large amounts of methane which is also a greenhouse gas. $\frac{1}{2}$					
	* It creates the problem of satisfactory rehabilitation of displaced people. $\frac{1}{2}$	2				

Qn. Nos.	Value Points	Total
38.	State Fleming's right hand rule.	
	Ans.:	
	★ Stretch the thumb, forefinger and middle finger in such a way that	
	they are perpendicular to each other $\frac{1}{2}$	
	* Forefinger shows the magnetic field $\frac{1}{2}$	
	* Thumb finger shows the motion of conductor $\frac{1}{2}$	
	* Middle finger shows induced current. $\frac{1}{2}$	2
41.	State the two laws of reflection of light.	
	Ans.:	
	(i) The angle of incidence is equal to the angle of reflection.	
	(ii) The incident ray, the normal to the mirror at the point of incidence	
	and the reflected ray, all lie in the same plane.	2
43.	Write the properties of image formed in a plane mirror.	
	Ans.:	
	* Image formed by a plane mirror is always virtual and erect. $\frac{1}{2}$	
	* The size of the image is equal to that of the object. $\frac{1}{2}$	
	\star The image formed is as far behind the mirror as the object is in	
	front of it. $\frac{1}{2}$	
	* The image is laterally inverted. $\frac{1}{2}$	2

CCE P	F 9 83	B-E (Phy)
Qn. Nos.	Value Points	Total
45.	Draw the ray diagrams for the image formation in a convex lens when an object is placed (i) at focus F_1 (ii) beyond $2F_1$. Ans.:	
	3 F ₂ g' 2F ₂	

48.

- Name the major constituent of biogas. Write the properties of biogas (i) which make it a good fuel.
- (ii) Name the two devices that work using heat energy of the sun.

OR

3

Qn. Nos.	Value Points		
	(i)	Write the advantages of solar cells.	
	(ii)	Write any two hazards of nuclear power generation.	
	Ans	.:	
	(i)	* Methane / CH ₄ . $\frac{1}{2}$	
		★ Leaves no residue like ash. $\frac{1}{2}$	
		* It burns without smoke / ecofriendly. $\frac{1}{2}$	
		* Its heating capacity is high. $\frac{1}{2}$	
	(ii)	★ Solar water heater $\frac{1}{2}$	
		★ Solar cooker. $\frac{1}{2}$	3
		OR	
	(i)	* They have no moving parts. $\frac{1}{2}$	
		* Require little maintenance and work quite satisfactorily without the use of any focusing device. $\frac{1}{2}$	
		* They can be set up in remote and inaccessible hamlets or $\frac{1}{2}$	
		* Very sparsely inhabited areas in which laying of a power transmission line may be expensive and not commercially viable. $\frac{1}{2}$	
	(ii)	★ Improper nuclear waste storage and disposal result in environmental contamination $\frac{1}{2}$	
		* There is a risk of accidental leakage of nuclear radiation. $\frac{1}{2}$	3
50.	(i)	How does overload and short-circuit occur in an electric circuit ?	
		Explain. What is the function of fuse during this situation?	
	(ii)	Mention two properties of magnetic field lines.	
	Ans	.:	

Qn. Nos.			Value Points	Total
	(i)	*	Overloading can occur when the live wire and the neutral wire come into direct contact.	
		*	This occurs when the insulation of wires is damaged or there is a fault in the appliance / when many electrical appliances are connected to one circuit simultaneously. $\frac{1}{2}$	
		*	In such a situation the current in the circuit abruptly increases and short circuit occurs. $\frac{1}{2}$	
		*	The heating that takes place in the fuse melts it to break the electric circuit, and prevents the electric circuit and the appliance from a possible damage. $\frac{1}{2} + \frac{1}{2}$	
	(ii)	*	No two field lines are found to cross each other.	
		*	The density of the magnetic field lines are more in their poles.	
		*	The magnetic field lines emerge from north pole and merge at south pole.	
		*	Inside the magnet, the direction of field lines is from its south pole to its north pole.	
		*	Thus the magnetic field lines are closed curves.	
			(Any two) $2 \times \frac{1}{2}$	4