CCE RR UNREVISED

 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560003

S. S. L. C. EXAMINATION, MARCH/APRIL, 2019

యూదరి లుత్రరగఆక

MODEL ANSWERS

దినాంచ : 02. 04. 2019]
Date: 02.04.2019]

Code no. : 83-E (Phy)

> வిజ్జ : విజ్ణాన

Subject : SCIENCE

(భౌతలాస్త్ర / Physics)
(ळళి Ш్య్యృひひ / Old Syllabus)
 (ఇంగ్లిష్ భాఱాంతర / English Version)

Qn. Nos.	Value Points	Total
1.	The principle of working of solar cells is	
(A) \quad magnetic effect		
(B) \quad electromagnetic induction		
(C) chemical effect		
(D) photovoltaic effect		
Ans. :		
(D) $-\quad$ photovoltaic effect	1	

Qn. Nos.	Value Points	Total
4.	The device used to increase or decrease the input A.C. voltage is (A) motor (B) induction coil (C) transformer (D) commutator Ans. : (C) - transformer	1
6.	The frequency of the current produced in A.C. dynamo depends on the (A) rate of rotation of the armature (B) strength of the magnetic field (C) number of turns of the coil (D) size of the dynamo Ans. : (A) - rate of rotation of the armature	1
12.	Wind mills cannot be installed in all the regions. Why ? Ans. : i) The potential of wind varies from region to region ii) In all regions the speed of wind will not be between $8 \mathrm{~ms}^{-1}$ and $22 \mathrm{~ms}^{-1}$. (Any one) (Or any suitable answer)	

Qn.	Value Points	Total
Nos.		

13. Doppler effect of sound is not experienced by the listener when the listener and the source of sound move with the same speed and in the same direction. Why ?

Ans. :

Doppler effect of sound is experienced only when there is a relative
motion between the source of sound and the listener.

OR

There is no relative motion between the source of sound and the listener.
21. A tuning fork vibrates 6000 times in 60 seconds. If the sound wave produced travels at $330 \mathrm{~ms}^{-1}$ then, find its wavelength.

Ans. :

Number of vibrations $=6000$
$\begin{aligned} \text { Total time taken } & =60 \mathrm{~s} \\ \text { Frequency }(n) & =\frac{6000}{60}\end{aligned}$

$$
n=100 \mathrm{~Hz}
$$

Wave velocity $(v) \quad=n \lambda$
Wavelength $\lambda \quad=\frac{v}{n}$
$=\frac{330}{100}$
$=3.3 \mathrm{~m}$
\therefore Wavelength $\quad=3.3 \mathrm{~m}$
$n=100 \mathrm{~Hz}$

Qn. Nos.	Value Points
22.	Draw the diagram of a petrol engine. Label the following parts:

(i) Inlet valve
(ii) Piston.

Ans. :

Petrol Engine

$$
1+\frac{1}{2}+\frac{1}{2}
$$

State Faraday's laws of electromagnetic induction.
Ans. :
Faraday's laws of electromagnetic induction.
Ist Law: Whenever a magnetic field linked with a conductor changes, an induced e.m.f. is generated in the conductor.

IInd Law : The magnitude of induced e.m.f. is directly proportional to the rate of change of magnetic field linked with the conductor.

$\begin{aligned} & \text { Qn. } \\ & \text { Nos. } \end{aligned}$	Value Points	Total
31.	Mention any four limitations of steam engine. OR What is a heat engine ? Mention the function of crank shaft in heat engine. Ans. : Limitations of steam engine : i) Steam engine is bulky. ii) The efficiency of steam engine is very low. iii) Steam engine cannot be started instantly. iv) There is a chance of bursting of boiler due to the storing of steam at high pressure. v) Not suitable for light weight vehicles. $\left(4 \times \frac{1}{2}\right)$	2

32. Ultrasonic sound waves sent by a ship return after $6 s$ by reflection from the sea bed. If the speed of ultrasonic wave in sea water is $1530 \mathrm{~ms}^{-1}$ then, find the depth of the sea in kilometres.

Ans. :
Time $(t)=6 \mathrm{~s}$
Speed $(v)=1530 \mathrm{~ms}^{-1}$
Distance (d) = ?
$d=\frac{v t}{2}$
$d=\frac{1530 \times 6}{2}$
$=1530 \times 3$
$d=4590 \mathrm{~m}$
$d=\frac{4590}{1000}$
$=4.59 \mathrm{~km}$
$\therefore \quad$ Depth of the ocean $=4.59 \mathrm{~km}$.

Qn.	Value Points	Total
Nos.		

35.

Draw the diagram of a nuclear power reactor. Label the following parts :
(a) Reflector
(b) Heat exchanger.

Ans. :

$$
\left(2+\frac{1}{2}+\frac{1}{2}\right)
$$

37. Observe the given circuit symbol of a transistor and answer the following questions:

(a) Name the regions of the transistor marked as P and Q and mention their function.
(b) Mention the type of this transistor.

Ans. :

(b) The total momentum of the system is conserved when the net force acting on the system is zero.

Acceleration of the rocket depends on amount of fuel burnt and exhaust velocity.

OR
(a) The remnant of supernova explosion of a massive star compressed into a very small region of intense gravitational field and is called a black hole.

A black hole can be recognised by its impact of gravitational force on the nearer objects and its density.
(b) Orbital velocity $V_{o}=\sqrt{R g}$

Escape velocity $V_{e}=\sqrt{2 R g}$

$$
\begin{equation*}
\therefore \quad V_{e}=\sqrt{2} \times V_{o} \tag{1}
\end{equation*}
$$

The minimum velocity with which a body must be projected so that it escapes from the earth's gravitational field should be $11 \cdot 2 \mathrm{kms}^{-1}$. 1

[^0]
[^0]:

