

CCE RR UNREVISED

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ – 2019

S. S. L. C. EXAMINATION, MARCH/APRIL, 2019

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 02. 04. 2019]

Date : 02. 04. 2019]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Phy)

CODE NO. : 83-E (Phy)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

(ಭೌತಶಾಸ್ತ್ರ / Physics)

(ಹಳೆ ಪಠ್ಯಕ್ರಮ / Old Syllabus)

(ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Repeater)

(ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks : 80

Qn. Nos.	Value Points	Total			
1.	The principle of working of solar cells is				
	(A) magnetic effect				
	(B) electromagnetic induction				
	(C) chemical effect				
	(D) photovoltaic effectAns. :				
	(D) — photovoltaic effect	1			

RR(B)-5024 (PHY)

[Turn over

CCE RR

Qn. Nos.	Value Points	Total
4.	The device used to increase or decrease the input A.C. voltage is	
	(A) motor	
	(B) induction coil	
	(C) transformer	
	(D) commutator	
	Ans.:	
	(C) — transformer	1
6.	The frequency of the current produced in A.C. dynamo depends on the	
	(A) rate of rotation of the armature	
	(B) strength of the magnetic field	
	(C) number of turns of the coil	
	(D) size of the dynamo	
	Ans. :	
	(A) — rate of rotation of the armature	1
2.	Wind mills cannot be installed in all the regions. Why ?	
	Ans. :	
	i) The potential of wind varies from region to region	
	ii) In all regions the speed of wind will not be between 8 ms ^{-1} and	
	22 ms^{-1} . (Any one)	
	(Or any suitable answer)	1

RR(B)-5024 (PHY)

CCE	RR
-----	----

83-E (Phy)

Qn. Nos.		Value Points	Total
13.	Doppler effect of sou	nd is not experienced by the listener when the	
	listener and the sourc	ce of sound move with the same speed and in the	
	same direction. Why ?		
	Ans. :		
	Doppler effect of sou	nd is experienced only when there is a relative	
	motion between the so	ource of sound and the listener.	1
		OR	
	There is no relative	motion between the source of sound and the	
	listener.		
21.	A tuning fork vibrate	s 6000 times in 60 seconds. If the sound wave	
	produced travels at 330 ms ^{-1} then, find its wavelength.		
	Ans. :		
	Number of vibrations	= 6000	
	Total time taken	= 60 s	
	Frequency (n)	$=\frac{6000}{60}$ $\frac{1}{2}$	
	n	= 100 Hz	
	Wave velocity (v)	$= n \lambda$ $\frac{1}{2}$	
	Wavelength λ	$=\frac{v}{n}$	
		$=\frac{330}{100}$ $\frac{1}{2}$	
		= 3·3 m	
	∴ Wavelength	$= 3.3 \text{ m}$ $\frac{1}{2}$	2
	I		

RR(B)-5024 (PHY)

[Turn over

83-E	(Phy)
------	-------

CCE RR

CCE RR	
--------	--

83-E (Phy)

Qn. Nos.	Value Points		Total
31.	Mention any four limitations of steam engine.		
	OR		
	What is a heat engine ? Mention the function of crank sha	ft in heat	
	engine.		
	Ans. :		
	Limitations of steam engine :		
	i) Steam engine is bulky.		
	ii) The efficiency of steam engine is very low.		
	iii) Steam engine cannot be started instantly.		
	iv) There is a chance of bursting of boiler due to the storing o high pressure.	f steam at	
	v) Not suitable for light weight vehicles.	$(4 \times \frac{1}{2})$	2
	OR		
	A heat engine is a device which converts heat energy into m	nechanical	
	energy.	1	
	Crank shaft converts linear motion of the piston into circular m	otion. 1	2
32.	Ultrasonic sound waves sent by a ship return after 6s by reflec	ction from	
	the sea bed. If the speed of ultrasonic wave in sea water is 15	530 ms^{-1}	
	then, find the depth of the sea in kilometres.		
	Ans. :		
	Time $(t) = 6 s$		
	Speed (v) = 1530 ms ⁻¹		
	Distance $(d) = ?$		
	$d = \frac{vt}{2}$	$\frac{1}{2}$	
	$d = \frac{1530 \times 6}{2}$	$\frac{1}{2}$	
	$= 1530 \times 3$		
	d = 4590 m	$\frac{1}{2}$	
	$d = \frac{4590}{1000}$		
	= 4.59 km	$\frac{1}{2}$	
	\therefore Depth of the ocean = 4.59 km.		2
	RR(B)-5024 (PHY)	[]	`urn ov

83-E (Phy)

CCE RR

Qn. Nos.		Value Points	Total
	(a)	$P \rightarrow \text{Emitter} \qquad \frac{1}{2}$	
		$Q \rightarrow \text{Base}$ $\frac{1}{2}$	
		<i>Emitter</i> : It supplies a large number of majority charge carriers. $\frac{1}{2}$	
		<i>Base</i> : It regulates the flow of charges from emitter to collector. $\frac{1}{2}$	
	(b)	Type of transistor : npn transistor.1	3
40.	(a)	Explain the protostar stage in the stellar evolution.	
	(b)	State the law of conservation of momentum. Write the two factors	
		on which acceleration of the rocket depend ?	
		OR	
	(a)	Explain the black hole stage in the stellar evolution. Based on what	
		factors the existence of black hole can be identified ?	
	(b)	Mention the relationship between orbital velocity and escape	
		velocity. What is the meaning of the statement "Escape velocity is	
		$11\cdot 2 \text{ kms}^{-1}$ " on the earth.	
	Ans	s. :	
	(a)	(i) Mutual attraction of hydrogen clouds.	
		(ii) Increase in density and pressure due to contraction of gases	
		(iii) The central portion accounts for 99% of the mass of the cloud.	
		(iv) The sphere formed at the centre of the cloud due to the unidirectional force (gravitational force) $4 \times \frac{1}{2} = 2$	

RR(B)-5024 (PHY)

[Turn over

CCE RR

Qn. Nos.		Value Points	Total
	(b)	The total momentum of the system is conserved when the net force	
		acting on the system is zero. 1	
		Acceleration of the rocket depends on amount of fuel burnt and	
		exhaust velocity. 1	4
		OR	
	(a)	The remnant of supernova explosion of a massive star compressed	
		into a very small region of intense gravitational field and is called a	
		black hole. 1	
		A black hole can be recognised by its impact of gravitational force	
		on the nearer objects and its density.	
	(b)	Orbital velocity $V_o = \sqrt{Rg}$	
		Escape velocity $V_e = \sqrt{2Rg}$	
		$\therefore \qquad V_e = \sqrt{2} \times V_o \qquad \qquad 1$	
		The minimum velocity with which a body must be projected so	
		that it escapes from the earth's gravitational field should be	
		11.2 kms^{-1} . 1	4

RR(B)-5024 (PHY)

_