CCE PR UNREVISED

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಜೂನ್ — 2019 S. S. L. C. EXAMINATION, JUNE, 2019 ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ: 24. 06. 2019] ಸಂಕೇತ ಸಂಖ್ಯೆ: **83-E (Chem.)**

Date: 24.06.2019] **CODE NO.: 83-E (Chem.)**

ವಿಷಯ: ವಿಜ್ಞಾನ

Subject: SCIENCE

(ರಸಾಯನಶಾಸ್ತ್ರ / Chemistry)

(ಹಳೆ ಪಠ್ಯಕ್ರಮ / Old Syllabus)

(ಪುನರಾವರ್ತಿತ ಖಾಸಗಿ ಅಭ್ಯರ್ಥಿ / Private Repeater) (ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 100

[Max. Marks: 100

Qn. Nos.		Value Points	Total
2.	Whi	ch of the following elements has Octet Electronic Configuration?	
	(A)	Sodium (atomic number is 11)	
	(B)	Argon (atomic number is 18)	
	(C)	Calcium (atomic number is 20)	
	(D) Ans.	Lithium (atomic number is 3).	
	(B) -	– Argon (atomic number is 18)	1

(24)1309-PR(D) (CHE)

[Turn over

Qn. Nos.	Value Points	Total
5.	In the preparation of Jaggery, the compound used to slightly eliminate	
	the dark colour of Jaggery is	
	(A) norit	
	(B) hydrosol	
	(C) celotex	
	(D) cellulose.	
	Ans.:	
	(B) — hydrosol	1
9.	The compound that has greater rate of diffusion among C_2H_6 , C_3H_6 ,	
	$\mathrm{CH_4}$ and $\mathrm{C_4H_{10}}$ at normal temperature and pressure is	
	(A) C ₂ H ₆	
	(B) C ₃ H ₆	
	(C) $C_4 H_{10}$	
	(D) CH ₄ .	
	Ans.:	
	(D) — CH ₄	1

Qn. Nos.		Value Points	Total	
11.	Match the names of organic compounds given in Column-A with their			
	molecular formula given in	molecular formula given in Column-B and write the answer along with		
	its letters :			
	Column - A	Column - B		
	(A) Butyne	(i) C_6H_6		
	(B) Methane	(ii) C ₄ H ₈		
	(C) Propene	(iii) C ₄ H ₆		
	(D) Benzene	(iv) CH ₄		
		(v) C_3H_8		
		(vi) C ₆ H ₁₂		
		(vii) C ₃ H ₆		
	Ans. :			
	(A) — (iii) C ₄ H ₆			
	(B) — (iv) CH ₄			
	(C) — (vii) C ₃ H ₆			
	(D) — (i) C ₆ H ₆	4 × 1	4	
13.	State Boyle's law.			
	Ans.:			
	At constant temperature the	volume of a given mass of dry gas is inversly		
	proportional to its pressure.		1	
15.	Write the ground state electr	onic configuration of carbon atom.		
	Ans.:			
	$1s^2 2s^2 2p^2$		1	

Qn. Nos.	Value Points	Total
18.	n-butane and iso-butane are called isomers. Why ?	
	Ans.:	
	Same molecular formula but different structural formulae.	1
20.	Draw the diagram of the apparatus used in refining of copper. Label the	
	following parts:	
	(i) Anode	
	(ii) Cathode.	
	Ans.:	
	Cathode (ii) Anode (i)	
	$(1 + \frac{1}{2} + \frac{1}{2})$	2

Qn. Nos.			Value Poin	ts			Total
23.	A part of the		dic table is giv	en below. Obs	serve the tab	le and	
		5 B 11	6 C 12	$_7$ N 14	8 O 16		
		13 Al ²⁷	14 Si ²⁸	7 15 P 31	0		
	Name the ele	ment which h	as				
	(i) highes	st ionisation er	nergy				
	(ii) highes	st atomic size					
	Ans.:						
	(i) 8 O 16						
	(ii) ₁₃ Al ²	7				1 + 1	2
26.	Explain the 1	method of extr	action of amor	phous silicon.			
			OR				
	Write the che	emical equatio	ns for the follo	wing chemical	reactions :		
	(i) Silicor	n reacts with o	xygen				
	(ii) Silicor	n reacts with s	team.				
	Ans.:		7 10 414 000 D				

Qn. Nos.		Value Points		Total
		Finely powdered silica (sand or quartz) is mixed with magnes	sium	
		powder and heated in a fire-clay crucible, magnesium oxide	and	
		silicon is formed.	1	
		$SiO_2 + 2Mg \xrightarrow{heat} Si + 2MgO$		
		Dilute hydro-fluoric acid is used to remove unreacted silica.		
		Dilute hydrochloric acid is used to dissolve magnesium oxide.	1	2
		OR		
	(i)	$Si + O_2 \rightarrow SiO_2$	1	
	(ii)	$Si + 2H_2O \rightarrow SiO_2 + 2H_2\uparrow$	1	2
29.	Men	ntion the raw materials used in the manufacture of glass.		
		OR		
	Men	ation the type of paper used in the following:		
	(i)	Post card		
	(ii)	Dip tea bags.		
	Ans.	:		
	(i)	Soda ash (Na_2CO_3)	$\frac{1}{2}$	
	(ii)	Limestone (CaCO ₃)	$\frac{1}{2}$	
	(iii)	Sand (${ m SiO}_2$)	$\frac{1}{2}$	
	(iv)	Pieces of broken glass.	$\frac{1}{2}$	2
		OR		
	(i)	Card board paper	1	
	(ii)	Filter paper.	1	2

Qn. Nos.	Value Points	Total
33.	Mention the steps involved in the manufacture of sucrose from	
	sugarcane.	
	OR	
	Write the balanced chemical equations for the chemical reactions taking	
	place in the conversion of sucrose into ethanol.	
	Ans.:	
	(i) Extraction of the juice from the source $\frac{1}{2}$	
	(ii) Purification of the juice $\frac{1}{2}$	
	(iii) Concentration and Crystallization $\frac{1}{2}$	
	(iv) Separation and drying of crystals. $\frac{1}{2}$	2
	OR	
	$C_{12}H_{22}O_{11} + H_2O \xrightarrow{\text{Enzyme}} C_6H_{12}O_6 + C_6H_{12}O_6$	
	Sucrose Glucose Fructose 1	
	$C_6H_{12}O_6 \xrightarrow{Enzyme} 2C_2H_5OH + 2CO_2 \uparrow$ Invertase	
	Glucose or fructose Ethanol Carbon dioxide 1	2

Qn. Nos.	Value Points	Total
37.	Write any two differences between crystalline silicon and amorphous silicon. Ans.:	
	Amorphous Silicon Crystalline Silicon	
	* It is a brown powder * It is a dark grey, crystalline solid. Roughly resembles the structure of diamond.	
	* It does not conduct electricity * Slightly conducts electricity at low temperature	
	★ More reactive ★ Less reactive	
	* When heated in the air, it oxidizes at the surface level even when heated. and it catches fire	
	(Any two) (1+1)	2
40.	Write any two advantages of optic fibres. Ans.:	
	(i) Optic fibres does not interact with air, water and it never corrodes.	
	(ii) Message reaches the destination much faster since photons	
	transmit much faster than electrons.	
	(iii) Optic fibres are more efficient than metallic wires because they transmit more messages at once.	
	(Any two) (1 + 1)	2

Qn. Nos.	Value Points	Total
42.	Write the structural formula for the following compounds :	
	(i) Toluene	
	(ii) Ethane.	
	Ans.:	
	(i) Toluene: $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(ii) Ethane: H H H-C-C-H H H H H	2
47.	Draw the diagram of the apparatus used in electroplating. Label the	
	following parts:	
	(i) Electrolyte	
	(ii) Ammeter	
	Ans.:	

Qn. Nos.	Value Points	Total
	(ii) Ammeter (i) Electrolyte $2 + \frac{1}{2} + \frac{1}{2}$	3
51.	(a) What is the function of limestone and coke in the extraction of	
	iron from haematite ?	
	(b) Mention the alloy in the preparation of the following:	
	(i) Permanent magnets	
	(ii) Bus coaches.	
	Ans.:	
	(a) Limestone:	
	$CaCO_3 \xrightarrow{heat} CaO + CO_2 \uparrow$	
	$CaO + SiO_2 \rightarrow CaSiO_3 (Slag)$ 1	
	OR	

Qn. Nos.		Value Points		Total
		Limestone removes the silica present in the haematite and produ	ıces	
		slag.		
		Coke:		
		$2C + O_2 \rightarrow 2CO \uparrow$		
		$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2 \uparrow$	1	
		Coke acts as a reducing agent and converts haematite into mo	lten	
		iron.		
	(b)	(i) Alnico	1	
		(ii) Duralumin.	1	4