CCE PR UNREVISED

 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560003

ఎశో.ఎశో.ఎలో.సి. జరిత్ట్స, జలనో - 2019
S. S. L. C. EXAMINATION, JUNE, 2019

ஹూదరి లుక్తరగళు

MODEL ANSWERS

దినాంళ : 24. 06. 2019]
Date: 24.06.2019]

Code no. : 83-E (Chem.)

வిజయ : విజ్ణ్గా

Subject : SCIENCE

(రనాయినలాస్త్ర / Chemistry)
(ळళి జఠ్యృపు山 / Old Syllabus)

(ఇంగ్లిష్మో భౌఱాంతర / English Version)

[Max. Marks : 100

$\begin{aligned} & \text { Qn. } \\ & \text { Nos. } \\ & \hline \end{aligned}$	Value Points	Total
	Which of the following elements has Octet Electronic Configuration ? (A) Sodium (atomic number is 11) (B) Argon (atomic number is 18) (C) Calcium (atomic number is 20) (D) Lithium (atomic number is 3). Ans. : (B) $-\quad$ Argon (atomic number is 18)	1

In the preparation of Jaggery, the compound used to slightly eliminate the dark colour of Jaggery is
(A) norit
(B) hydrosol
(C) celotex
(D) cellulose.

Ans. :
(B) - hydrosol
(A) $\quad \mathrm{C}_{2} \mathrm{H}_{6}$
(B) $\mathrm{C}_{3} \mathrm{H}_{6}$
(C) $\mathrm{C}_{4} \mathrm{H}_{10}$
(D) $\quad \mathrm{CH}_{4}$.

Ans. :
(D) $-\mathrm{CH}_{4}$
9. The compound that has greater rate of diffusion among $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}$,
CH_{4} and $\mathrm{C}_{4} \mathrm{H}_{10}$ at normal temperature and pressure is

Qn. Nos.	Value Points	Total
11.	Match the names of organic compounds given in Column-A with their	
	molecular formula given in Column-B and write the answer along with	
	its letters :	

Column - A

(A) Butyne
(B) Methane
(ii) $\mathrm{C}_{4} \mathrm{H}_{8}$
(C) Propene
(iii) $\mathrm{C}_{4} \mathrm{H}_{6}$
(D) Benzene
(iv) CH_{4}
(v) $\mathrm{C}_{3} \mathrm{H}_{8}$
(vi) $\mathrm{C}_{6} \mathrm{H}_{12}$
(vii) $\mathrm{C}_{3} \mathrm{H}_{6}$

Ans. :
(A) \quad (iii) $\quad \mathrm{C}_{4} \mathrm{H}_{6}$
(B) \quad (iv) CH_{4}
$\begin{array}{lll}\text { (C) } & - & \text { (vii) } \\ \mathrm{C}_{3} \mathrm{H}_{6} \\ (\mathrm{D}) & - & \text { (i) } \\ \mathrm{C}_{6} \mathrm{H}_{6}\end{array}$
$\begin{array}{lll}\text { (C) } & - & \text { (vii) } \\ \mathrm{C}_{3} \mathrm{H}_{6} \\ \text { (D) } & -\quad \text { (i) } & \mathrm{C}_{6} \mathrm{H}_{6}\end{array}$ 4×1
x
13. State Boyle's law.

Ans. :
At constant temperature the volume of a given mass of dry gas is inversly proportional to its pressure.
15. Write the ground state electronic configuration of carbon atom.

Ans. :
$1 s^{2} \quad 2 s^{2} \quad 2 p^{2}$

Column - B

(i) $\mathrm{C}_{6} \mathrm{H}_{6}$
18.

Ans. :

Same molecular formula but different structural formulae.
20. Draw the diagram of the apparatus used in refining of copper. Label the following parts :
(i) Anode
(ii) Cathode.

Ans. :
Cathode (ii)

$$
\left(1+\frac{1}{2}+\frac{1}{2}\right)
$$

Cathe

Qn. Nos.
23.
:---
answer the questions :
$\qquad$${ }_{5} \mathrm{~B}^{11}$ ${ }_{6} \mathrm{C}^{12}$ ${ }_{7} \mathrm{~N}^{14}$ ${ }_{8} \mathrm{O}^{16}$${ }_{13} \mathrm{Al}^{27}$
${ }_{14} \mathrm{Si}^{28}$
${ }_{15} \mathrm{P}^{31}$

Name the element which has
(i) highest ionisation energy
(ii) highest atomic size

Ans. :
(i) $\quad{ }_{8} \mathrm{O}^{16}$
(ii) $\quad 13 \mathrm{Al}^{27}$

Explain the method of extraction of amorphous silicon.

Write the chemical equations for the following chemical reactions :
(i) Silicon reacts with oxygen
(ii) Silicon reacts with steam.

Ans. :

Finely powdered silica (sand or quartz) is mixed with magnesium powder and heated in a fire-clay crucible, magnesium oxide and silicon is formed.
$\mathrm{SiO}_{2}+2 \mathrm{Mg} \xrightarrow{\text { heat }} \mathrm{Si}+2 \mathrm{MgO}$

Dilute hydro-fluoric acid is used to remove unreacted silica.

Dilute hydrochloric acid is used to dissolve magnesium oxide. 1
OR
(i) $\mathrm{Si}+\mathrm{O}_{2} \rightarrow \mathrm{SiO}_{2}$
(ii) $\mathrm{Si}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+2 \mathrm{H}_{2} \uparrow$

Mention the raw materials used in the manufacture of glass.

OR

Mention the type of paper used in the following :
(i) Post card
(ii) Dip tea bags.

Ans. :
(i) Soda ash $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$
(ii) Limestone $\left(\mathrm{CaCO}_{3}\right)$
(iii) $\operatorname{Sand}\left(\mathrm{SiO}_{2}\right)$
(iv) Pieces of broken glass.

OR

(i) Card board paper
(ii) Filter paper.

OR

Write the balanced chemical equations for the chemical reactions taking place in the conversion of sucrose into ethanol.

Ans. :
(i) Extraction of the juice from the source
(ii) Purification of the juice
(iii) Concentration and Crystallization
(iv) Separation and drying of crystals.

OR
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { Invertase }]{\text { Enzyme }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Sucrose
Glucose Fructose
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \xrightarrow[\text { Invertase }]{\text { Enzyme }} 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2} \uparrow$
$\begin{array}{llll}\text { Glucose or fructose } & \text { Ethanol } & \text { Carbon dioxide } & 1\end{array}$
Mention the steps involved in the manufacture of sucrose from sugarcane.
40. Write any two advantages of optic fibres.

Ans. :
(i) Optic fibres does not interact with air, water and it never corrodes.
(ii) Message reaches the destination much faster since photons transmit much faster than electrons.
(iii) Optic fibres are more efficient than metallic wires because they transmit more messages at once.
(Any two) (1+1)
Ans.

$$
\begin{equation*}
\text { (Any two) (} 1+1 \text {) } \tag{2}
\end{equation*}
$$

47. Draw the diagram of the apparatus used in electroplating. Label the following parts :
(i) Electrolyte
(ii) Ammeter

Ans. :

| Qn.
 Nos. | Value Points | Total |
| :---: | :---: | :---: | :---: | :---: |

(a) What is the function of limestone and coke in the extraction of iron from haematite?
(b) Mention the alloy in the preparation of the following :
(i) Permanent magnets
(ii) Bus coaches.

Ans. :
(a) Limestone:

$$
\begin{aligned}
& \mathrm{CaCO}_{3} \xrightarrow{\text { heat }} \mathrm{CaO}+\mathrm{CO}_{2} \uparrow \\
& \mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}(\text { Slag })
\end{aligned}
$$

Qn. Nos.	Value Points	Total
	Limestone removes the silica present in the haematite and produces slag. Coke : $\begin{aligned} & 2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO} \uparrow \\ & \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2} \uparrow \end{aligned}$ Coke acts as a reducing agent and converts haematite into molten iron. (b) (i) Alnico (ii) Duralumin.	4

