CCE RR REVISED

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಜೂನ್ — 2019 S. S. L. C. EXAMINATION, JUNE, 2019 ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ: 24. 06. 2019] ಸಂಕೇತ ಸಂಖ್ಯೆ: **83-E (Chem.)**

Date: 24.06.2019] **CODE NO.: 83-E (Chem.)**

ವಿಷಯ: ವಿಜ್ಞಾನ

Subject: SCIENCE

(ರಸಾಯನಶಾಸ್ತ್ರ / Chemistry) (ಹೊಸ ಪಠ್ಯಕ್ರಮ / New Syllabus)

(ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Repeater)

(ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks : 80

Qn. Nos.	Value Points					
1.	The number of groups and periods in the modern periodic table respectively, are (A) 7 and 9 (B) 18 and 7 (C) 7 and 18 (D) 9 and 7. Ans.:					
6.	Ans.: (B) — 18 and 7 The possible chemical reaction among the following is (A) $FeSO_4 + Pb \rightarrow PbSO_4 + Fe$ (B) $ZnSO_4 + Fe \rightarrow FeSO_4 + Zn$ (C) $2 AgNO_3 + Cu \rightarrow Cu (NO_3)_2 + 2 Ag$ (D) $PbCl_2 + Cu \rightarrow CuCl_2 + Pb$. Ans.:					
	(C) $-2 \text{ AgNO}_3 + \text{Cu} \rightarrow \text{Cu} (\text{NO}_3)_2 + 2 \text{ Ag}$					

(24)511-RR(A) (CHE)

[Turn over

Qn. Nos.	Value Points	Total					
8.	$Fe_2O_3 + 2 Al \rightarrow Al_2O_3 + 2 Fe$						
	The type of above chemical reaction is						
	(A) combination reaction						
	(B) double displacement reaction						
	(C) decomposition reaction						
	(D) displacement reaction.						
	Ans.:						
	(D) — displacement reaction	1					
14.	What is a covalent bond?						
	Ans.:						
	Chemical bond which is formed by the sharing of electrons between two						
	atoms is known as covalent bond.	1					
17.	Name the first member of alkynes and write its molecular formula.						
	Ans.:						
	Ethyne (or Acetylene)						
	C_2H_2 $2 \times \frac{1}{2}$	1					
20.	Name the gas liberated when an acid reacts with metallic carbonate.						
	Write the chemical equation of the reaction when this gas is passed						
	through lime water. What is the colour of the precipitate obtained in this						
	reaction?						
	OR						
	Give scientific reason:						
	(i) While diluting an acid, the acid should be added to water.						
	(ii) Plaster of Paris should be stored in a moisture-proof container.						
	Ans.:						

Qn. Nos.	Value Points					
	Carbon dioxide (or CO_2) $\frac{1}{2}$					
	$Ca (OH)_2 (aq) + CO_2 (g) \rightarrow CaCO_3 (s) + H_2O(l)$					
	Whi	te precipitate. $\frac{1}{2}$				
		OR				
	(i)	If water is added to concentrated acid the heat generated may cause				
		the mixture to splash out and cause burns.				
		The glass container may also break due to excessive local heating.				
		(Any one) 1				
	(ii) Otherwise, it reacts with moisture and changes to gypsum which is					
		a solid mass.	2			
24.	(i)	Write the balanced chemical equation for the reaction taking place				
	when aluminium reacts with dilute hydrochloric acid.					
	(ii)	Hydrogen gas is not liberated when a metal reacts with				
		concentrated nitric acid. Give reason.				
		OR				
		Show the formation of NaCl and MgCl_2 with the help of electron dot				
		structure.				
	Ans	.:				

Qn. Nos.	Value Points				
	(i) $2 \text{ Al} + 6 \text{ HCl} \rightarrow 2 \text{AlCl}_3 + 3 \text{H}_2$	1			
	(ii) Nitric acid is a strong oxidising agent.	2			
	It oxidises hydrogen produced to water and itself gets reduced any of the nitrogen oxides.				
	$ \begin{array}{ccc} & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	1			
	$\operatorname{Mg} : + \overset{\overset{\star}{\overset{\star}{\overset{\star}{\overset{\star}{\overset{\star}{\overset{\star}{\overset{\star}{$	1 2			
26.	Explain substitution reaction in hydrocarbons with an example.				
	OR				
	Explain the mechanism of cleaning action of soaps.				
	Ans.:				
	Saturated hydrocarbons are fairly unreactive but undergo substitution reactions in the presence of sunlight. Chlorine can replace the hydrogen atoms one by one. $CH_A + Cl_A \rightarrow CH_A Cl + HCl$ 1				
	$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$				
	OR				
	(i) The ionic end of soap interacts with water while the carbon charinteracts with oil.				
	(ii) The soap molecules thus form structures called miscelles, whe one end of the molecules is towards the oil droplet while the ion end faces outside.				
	(iii) Thus an emulsion forms in water.	2			
	(iv) The soap miscelles help in pulling out the dirt in water and the cleans clothes.				

5

Qn. Nos.	Value Points	Total
30.	The general formula of two specific groups of saturated and unsaturated hydrocarbons is $\mathbf{C}_n\mathbf{H}_{2n}$. Write the structures of the member of each	
	group when $n = 3$.	
	Ans.: $ \begin{array}{c} H \\ H \end{array} $ $ \begin{array}{c} C \\ C \\ H \end{array} $ $ \begin{array}{c} C \\ C \\ H \end{array} $ $ \begin{array}{c} C \\ C \\ H \end{array} $ $ \begin{array}{c} H \\ H \\ H \end{array} $ $ \begin{array}{c} H \\ H \end{array} $	
	Propene 1	2
32.	The position of elements A, B, C, D in the modern periodic table is given	

The position of elements *A*, *B*, *C*, *D* in the modern periodic table is given in the following table. Answer the following questions by observing the table:

	Group 1	Group 2
Period 3	A	В
Period 4	C	D

- (i) Which element has the highest atomic size? Why?
- (ii) Which element has the least metallic property? Why?

Ans.:

- (i) C: New shells are added down the group (OR down the group, electrons enter the new shell)
- (ii) B: Across the period, the tendency to lose electrons decreases(OR Electrons remain in the same shell)

2

83-E (C	Chem.) 6	CCE RR
Qn. Nos.	Value Points	Total
35.	Draw the diagram of the apparatus used in electrolysis of water. Label the following parts:	
	(i) Cathode	
	(ii) Graphite rod.	
	Ans.:	
	Apparatus showing electrolysis of water :	

 $2 + \frac{1}{2} + \frac{1}{2}$

Graphite rod

Cathode

6 V Battery

3

- 38. Draw the diagram of the arrangement of apparatus to show the action of steam on a metal. Label the following parts :
 - Metal sample (i)
 - Delivery tube. (ii)

Ans.:

Qn. Nos.	Value Points				
	Apparatus showing action of steam on metals. Metal sample Delivery tube $2+\frac{1}{2}+\frac{1}{2}$				
41.	(i)	What is neutralisation reaction?			
	(ii) Name the products of chlor-alkali process. Write one use of each. Ans.:				
	(i) The reaction between an acid and a base to give a salt and water is				
		known as a neutralisation reaction.			
	(ii)	The products of chlor-alkali process are :			
		★ hydrogen $\frac{1}{2}$			
		\star chlorine $\frac{1}{2}$			
		★ brine containing NaOH. $\frac{1}{2}$			
		Uses of hydrogen : used as			
		★ a fuel			
		★ margarine			
		* ammonia for fertilisers (Any one) $\frac{1}{2}$			

Qn. Nos.	Value Points				
	Use	es of chlorine :			
	*	used in water treatment			
	 ★ used as a cleaning agent in swimming pools 				
	*	used in making PVC, CFCs			
	*	used as a disinfectant			
	*	used as a pesticide.	(Any one)	$\frac{1}{2}$	
	Use	es of NaOH:			
	*	used for degreasing metals			
	*	used for making paper			
	*	used for making soaps and deterg	gents		
	*	used for making artificial fibres.	(Any one)	$\frac{1}{2}$	4