<u>Objectives</u>

After studying this Unit, you will be able to

- describe the formation of different types of solutions;
- express concentration of solution in different units;
- state and explain Henry's law and Raoult's law;
- distinguish between ideal and non-ideal solutions;
- explain deviations of real solutions from Raoult's law;
- describe colligative properties of solutions and correlate these with molar masses of the solutes;
- explain abnormal colligative properties exhibited by some solutes in solutions.

Almost all processes in body occur in some kind of liquid solutions.

In normal life we rarely come across pure substances. Most of these are mixtures containing two or more pure substances. Their utility or importance in life depends on their composition. For example, the properties of brass (mixture of copper and zinc) are quite different from those of German silver (mixture of copper, zinc and nickel) or bronze (mixture of copper and tin); 1 part per million (ppm) of fluoride ions in water prevents tooth decay, while 1.5 ppm causes the tooth to become mottled and high concentrations of fluoride ions can be poisonous (for example, sodium fluoride is used in rat poison); intravenous injections are always dissolved in water containing salts at particular ionic concentrations that match with blood plasma concentrations and so on.

In this Unit, we will consider mostly liquid solutions and their formation. This will be followed by studying the properties of the solutions, like vapour pressure and colligative properties. We will begin with types of solutions and then various alternatives in which concentrations of a solute can be expressed in liquid solution.

2.1 Types of Solutions

Solutions are **homogeneous** mixtures of two or more than two components. By homogenous mixture we mean that its composition and properties are uniform throughout the mixture. Generally, the component that is present in the largest quantity is known as **solvent**. Solvent determines the physical state in which solution exists. One or more components present in the solution other than solvent are called **solutes.** In this Unit we shall consider only **binary solutions** (i.e.,

consisting of two components). Here each component may be solid, liquid or in gaseous state and are summarised in Table 2.1.

Type of Solution	Solute	Solvent	Common Examples
Gaseous Solutions	Gas	Gas	Mixture of oxygen and nitrogen gases
	Liquid	Gas	Chloroform mixed with nitrogen gas
	Solid	Gas	Camphor in nitrogen gas
Liquid Solutions	Gas	Liquid	Oxygen dissolved in water
	Liquid	Liquid	Ethanol dissolved in water
	Solid	Liquid	Glucose dissolved in water
Solid Solutions	Gas	Solid	Solution of hydrogen in palladium
	Liquid	Solid	Amalgam of mercury with sodium
	Solid	Solid	Copper dissolved in gold
			,

 Table 2.1: Types of Solutions

2.2 Expressing Concentration of Solutions Composition of a solution can be described by expressing its concentration. The latter can be expressed either qualitatively or quantitatively. For example, qualitatively we can say that the solution is dilute (i.e., relatively very small quantity of solute) or it is concentrated (i.e., relatively very large quantity of solute). But in real life these kinds of description can add to lot of confusion and thus the need for a quantitative description of the solution.

There are several ways by which we can describe the concentration of the solution quantitatively.

(i) *Mass percentage* (w/w): The mass percentage of a component of a solution is defined as:

Mass % of a component

 $= \frac{\text{Mass of the component in the solution}}{\text{Total mass of the solution}} \times 100$ (2.1)

For example, if a solution is described by 10% glucose in water by mass, it means that 10 g of glucose is dissolved in 90 g of water resulting in a 100 g solution. Concentration described by mass percentage is commonly used in industrial chemical applications. For example, commercial bleaching solution contains 3.62 mass percentage of sodium hypochlorite in water.

(ii) Volume percentage (V/V): The volume percentage is defined as:

Volume % of a component = $\frac{\text{Volume of the component}}{\text{Total volume of solution}} \times 100$ (2.2)

For example, 10% ethanol solution in water means that 10 mL of ethanol is dissolved in water such that the total volume of the solution is 100 mL. Solutions containing liquids are commonly expressed in this unit. For example, a 35% (v/v) solution of ethylene glycol, an antifreeze, is used in cars for cooling the engine. At this concentration the antifreeze lowers the freezing point of water to 255.4K (-17.6°C).

- (iii) *Mass by volume percentage* (w/V): Another unit which is commonly used in medicine and pharmacy is mass by volume percentage. It is the mass of solute dissolved in 100 mL of the solution.
- (iv) Parts per million: When a solute is present in trace quantities, it is convenient to express concentration in parts per million (ppm) and is defined as:

Parts per million =

 $\frac{\text{Number of parts of the component}}{\text{Total number of parts of all components of the solution}} \times 10^{6} (2.3)$

As in the case of percentage, concentration in parts per million can also be expressed as mass to mass, volume to volume and mass to volume. A litre of sea water (which weighs 1030 g) contains about 6×10^{-3} g of dissolved oxygen (O₂). Such a small concentration is also expressed as 5.8 g per 10^6 g (5.8 ppm) of sea water. The concentration of pollutants in water or atmosphere is often expressed in terms of $\mu g m L^{-1}$ or ppm.

(v) *Mole fraction*: Commonly used symbol for mole fraction is *x* and subscript used on the right hand side of *x* denotes the component. It is defined as:

Mole fraction of a component =

Number of moles of the componentTotal number of moles of all the components

For example, in a binary mixture, if the number of moles of A and B are n_A and n_B respectively, the mole fraction of A will be

$$x_{\rm A} = \frac{n_{\rm A}}{n_{\rm A} + n_{\rm B}} \tag{2.5}$$

For a solution containing i number of components, we have:

$$x_{i} = \frac{n_{i}}{n_{1} + n_{2} + \dots + n_{i}} = \frac{n_{i}}{\sum n_{i}}$$
(2.6)

It can be shown that in a given solution sum of all the mole fractions is unity, i.e.

$$x_1 + x_2 + \dots + x_i = 1$$
 (2.7)

Mole fraction unit is very useful in relating some physical properties of solutions, say vapour pressure with the concentration of the solution and quite useful in describing the calculations involving gas mixtures.

 $\begin{array}{l} \hline \hline {\it Cxample \ 2.1} \\ \hline {\it Calculate the mole fraction of ethylene glycol (C_2H_6O_2) in a solution containing 20% of C_2H_6O_2 by mass.} \\ \hline {\it Solution} \\ \hline {\it Solution} \\ \hline {\it Assume that we have 100 g of solution (one can start with any amount of solution because the results obtained will be the same). Solution will contain 20 g of ethylene glycol and 80 g of water. \\ \hline {\it Molar mass of C_2H_6O_2 = 12 \times 2 + 1 \times 6 + 16 \times 2 = 62 g mol^{-1}.} \\ \hline {\it Moles of C_2H_6O_2 = \frac{20 g}{62 g mol^{-1}} = 0.322 mol} \\ \hline {\it Moles of water = \frac{80 g}{18 g mol^{-1}} = 4.444 mol} \\ \hline {\it x_{glycol} = \frac{moles of C_2H_6O_2}{moles of C_2H_6O_2 + moles of H_2O} \\ \hline {\it = \frac{0.322 mol}{0.322 mol + 4.444 mol} = 0.068} \\ \hline {\it Similarly, x_{water} = \frac{4.444 mol}{0.322 mol + 4.444 mol} = 0.932} \\ \hline {\it Mole fraction of water can also be calculated as: 1 - 0.068 = 0.932} \\ \hline \end{array}$

(vi) *Molarity*: Molarity (*M*) is defined as number of moles of solute dissolved in one litre (or one cubic decimetre) of solution,

$$Molarity = \frac{Moles of solute}{Volume of solution in litre}$$
(2.8)

For example, $0.25 \text{ mol } L^{-1}$ (or 0.25 M) solution of NaOH means that 0.25 mol of NaOH has been dissolved in one litre (or one cubic decimetre).

Example 2.2	Calculate the molarity of a solution containing 5 g of NaOH in 450 mL solution.
<u>Solution</u>	Moles of NaOH = $\frac{5 \text{ g}}{40 \text{ g mol}^{-1}}$ = 0.125 mol
	Volume of the solution in litres = $450 \text{ mL} / 1000 \text{ mL L}^{-1}$ Using equation (2.8),
	Molarity = $\frac{0.125 \text{ mol} \times 1000 \text{ mL L}^{-1}}{450 \text{ mL}} = 0.278 \text{ M}$
	= 0.278 mol L^{-1} = 0.278 mol dm ⁻³

(vii) *Molality*: Molality (*m*) is defined as the number of moles of the solute per kilogram (kg) of the solvent and is expressed as:

Molality (m) =
$$\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$$
 (2.9)

For example, 1.00 mol kg^{-1} (or 1.00 m) solution of KCl means that 1 mol (74.5 g) of KCl is dissolved in 1 kg of water.

Each method of expressing concentration of the solutions has its own merits and demerits. Mass %, ppm, mole fraction and molality are independent of temperature, whereas molarity is a function of temperature. This is because volume depends on temperature and the mass does not.

Calculate molality of 2.5 g of ethanoic acid (CH₃COOH) in 75 g of benzene. Molar mass of C₂H₄O₂: 12 × 2 + 1 × 4 + 16 × 2 = 60 g mol⁻¹ Moles of C₂H₄O₂ = $\frac{2.5 \text{ g}}{60 \text{ g mol}^{-1}} = 0.0417 \text{ mol}$ Mass of benzene in kg = 75 g/1000 g kg⁻¹ = 75 × 10⁻³ kg Molality of C₂H₄O₂ = $\frac{\text{Moles of C}_2\text{H}_4\text{O}_2}{\text{kg of benzene}} = \frac{0.0417 \text{ mol} \times 1000 \text{ g kg}^{-1}}{75 \text{ g}}$ = 0.556 mol kg⁻¹

Intext Questions

- **2.1** Calculate the mass percentage of benzene (C_6H_6) and carbon tetrachloride (CCl_4) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.
- **2.2** Calculate the mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride.
- **2.3** Calculate the molarity of each of the following solutions: (a) 30 g of $Co(NO_3)_2$. $6H_2O$ in 4.3 L of solution (b) 30 mL of 0.5 M H_2SO_4 diluted to 500 mL.
- **2.4** Calculate the mass of urea (NH_2CONH_2) required in making 2.5 kg of 0.25 molal aqueous solution.
- **2.5** Calculate (a) molality (b) molarity and (c) mole fraction of KI if the density of 20% (mass/mass) aqueous KI is 1.202 g mL^{-1} .
- 2.3 Solubility Solubility of a substance is its maximum amount that can be dissolved in a specified amount of solvent at a specified temperature. It depends upon the nature of solute and solvent as well as temperature and pressure. Let us consider the effect of these factors in solution of a solid or a gas in a liquid.

2.3.1 Solubility of a Solid in a Liquid

Every solid does not dissolve in a given liquid. While sodium chloride and sugar dissolve readily in water, naphthalene and anthracene do not. On the other hand, naphthalene and anthracene dissolve readily in benzene but sodium chloride and sugar do not. It is observed that polar solutes dissolve in polar solvents and non polar solutes in nonpolar solvents. In general, a solute dissolves in a solvent if the intermolecular interactions are similar in the two or we may say **like dissolves like**.

When a solid solute is added to the solvent, some solute dissolves and its concentration increases in solution. This process is known as dissolution. Some solute particles in solution collide with the solid solute particles and get separated out of solution. This process is known as crystallisation. A stage is reached when the two processes occur at the same rate. Under such conditions, number of solute particles going into solution will be equal to the solute particles separating out and a state of dynamic equilibrium is reached.

Solute + Solvent \rightleftharpoons Solution (2.10)

At this stage the concentration of solute in solution will remain constant under the given conditions, i.e., temperature and pressure. Similar process is followed when gases are dissolved in liquid solvents. Such a solution in which no more solute can be dissolved at the same temperature and pressure is called a **saturated solution**. An *unsaturated solution* is one in which more solute can be dissolved at the same temperature. The solution which is in dynamic equilibrium with undissolved solute is the saturated solution and contains the maximum amount of solute dissolved in a given amount of solvent. Thus, the concentration of solute in such a solution is its solubility.

Earlier we have observed that solubility of one substance into another depends on the nature of the substances. In addition to these variables, two other parameters, i.e., temperature and pressure also control this phenomenon.

Effect of temperature

The solubility of a solid in a liquid is significantly affected by temperature changes. Consider the equilibrium represented by equation 2.10. This, being dynamic equilibrium, must follow **Le Chateliers Principle.** In general, if in a *nearly saturated solution*, the dissolution process is endothermic (Δ_{sol} H > 0), the solubility should increase with rise in temperature and if it is exothermic (Δ_{sol} H < 0) the solubility should decrease. These trends are also observed experimentally.

Effect of pressure

Pressure does not have any significant effect on solubility of solids in liquids. It is so because solids and liquids are highly incompressible and practically remain unaffected by changes in pressure.

2.3.2 Solubility of a Gas in a Liquid

Many gases dissolve in water. Oxygen dissolves only to a small extent in water. It is this dissolved oxygen which sustains all aquatic life. On the other hand, hydrogen chloride gas (HCl) is highly soluble in water. Solubility of gases in liquids is greatly affected by pressure and

temperature. The solubility of gases increase with increase of pressure. For solution of gases in a solvent, consider a system as shown in Fig. 2.1 (a). The lower part is solution and the upper part is gaseous system at pressure p and temperature T. Assume this system to be in a state of dynamic equilibrium, i.e., under these conditions rate of gaseous particles entering and leaving the solution phase is the same. Now increase the pressure over the solution phase by compressing the gas to a smaller volume [Fig. 2.1 (b)]. This will increase the number of gaseous particles per unit volume over the solution and also the rate at which the gaseous particles are striking the surface of solution to enter it. The solubility of the gas will increase until a new equilibrium is reached resulting in an increase in the pressure of a gas above the solution and thus its solubility increases.

Fig. 2.1: Effect of pressure on the solubility of a gas. The concentration of dissolved gas is proportional to the pressure on the gas above the solution.

Fig. 2.2: Experimental results for the solubility of HCl gas in cyclohexane at 293 K. The slope of the line is the Henry's Law constant, K_H.

Henry was the first to give a quantitative relation between pressure and solubility of a gas in a solvent which is known as **Henry's law**. The law states that at a constant temperature, **the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas present above the surface of liquid or solution.** Dalton, a contemporary of Henry, also concluded independently that the solubility of a gas in a liquid solution is a function of partial

pressure of the gas. If we use the mole fraction of a gas in the solution as a measure of its solubility, then it can be said that the **mole fraction of gas in the solution is proportional to the partial pressure of the gas over the solution.** The most commonly used form of Henry's law states that "**the partial pressure of the gas in vapour phase (***p***) is proportional to the mole fraction of the gas (***x***) in the solution**" and is expressed as:

$$p = K_{\rm H} x \tag{2.11}$$

Here $K_{\rm H}$ is the Henry's law constant. If we draw a graph between partial pressure of the gas versus mole fraction of the gas in solution, then we should get a plot of the type as shown in Fig. 2.2.

Different gases have different $K_{\rm H}$ values at the same temperature (Table 2.2). This suggests that $K_{\rm H}$ is a function of the nature of the gas.

It is obvious from equation (2.11) that higher the value of $K_{\rm H}$ at a given pressure, the lower is the solubility of the gas in the liquid. It can be seen from Table 2.2 that $K_{\rm H}$ values for both N₂ and O₂ increase with increase of temperature indicating that the solubility of gases

Gas	Temperature/K	K _H /kbar	Gas	Temperature/K	K _H /kbar
Не	293	144.97	Argon	298	40.3
H_2	293	69.16	CO ₂	298	1.67
N_2	293	76.48	Formaldehyde	298	1.83×10-5
N_2	303	88.84	ronnaidenyde	250	1.00/10
O_2	293	34.86	Methane	298	0.413
O_2	303	46.82	Vinyl chloride	298	0.611

Table 2.2: Values of Henry's Law Constant for Some Selected Gases in Water

increases with decrease of temperature. It is due to this reason that aquatic species are more comfortable in cold waters rather than in warm waters.

Example2.4If N2 gas is bubbled through water at 293 K, how many millimoles of N2 gas would dissolve in 1 litre of water? Assume that N2 exerts a partial pressure of 0.987 bar. Given that Henry's law constant for N2 at 293 K is 76.48 kbar.SolutionThe solubility of gas is related to the mole fraction in aqueous solution. The mole fraction of the gas in the solution is calculated by applying Henry's law. Thus:x (Nitrogen) = $\frac{p (nitrogen)}{K_{\rm H}} = \frac{0.987 bar}{76.480 bar} = 1.29 \times 10^{-5}$ As 1 litre of water contains 55.5 mol of it, therefore if n represents number of moles of N2 in solution.x (Nitrogen) = $\frac{n \mod n}{n \mod + 55.5 \mod 1} = \frac{n}{55.5} = 1.29 \times 10^{-5}$ (n in denominator is neglected as it is <<55.5)</th>Thus $n = 1.29 \times 10^{-5} \times 55.5 \mod = 7.16 \times 10^{-4} \mod 1$ $= \frac{7.16 \times 10^{-4} \mod \times 1000 \mod 1}{1 \mod 1} = 0.716 \mod 1$

Henry's law finds several applications in industry and explains some biological phenomena. Notable among these are:

- To increase the solubility of CO₂ in soft drinks and soda water, the bottle is sealed under high pressure.
- Scuba divers must cope with high concentrations of dissolved gases while breathing air at high pressure underwater. Increased pressure increases the solubility of atmospheric gases in blood. When the divers come towards surface, the pressure gradually decreases. This releases the dissolved gases and leads to the formation of bubbles of nitrogen in the blood. This blocks capillaries and creates a medical condition known as *bends*, which are painful and dangerous to life.

To avoid bends, as well as, the toxic effects of high concentrations of nitrogen in the blood, the tanks used by scuba divers are filled with air diluted with helium (11.7% helium, 56.2% nitrogen and 32.1% oxygen).

• At high altitudes the partial pressure of oxygen is less than that at the ground level. This leads to low concentrations of oxygen in the blood and tissues of people living at high altitudes or climbers. Low blood oxygen causes climbers to become weak and unable to think clearly, symptoms of a condition known as *anoxia*.

Effect of Temperature

Solubility of gases in liquids decreases with rise in temperature. When dissolved, the gas molecules are present in liquid phase and the process of dissolution can be considered similar to condensation and heat is evolved in this process. We have learnt in the last Section that dissolution process involves dynamic equilibrium and thus must follow **Le Chatelier's Principle**. As dissolution is an exothermic process, the solubility should decrease with increase of temperature.

Intext Questions

- **2.6** H_2S , a toxic gas with rotten egg like smell, is used for the qualitative analysis. If the solubility of H_2S in water at STP is 0.195 m, calculate Henry's law constant.
- **2.7** Henry's law constant for CO_2 in water is 1.67×10^8 Pa at 298 K. Calculate the quantity of CO_2 in 500 mL of soda water when packed under 2.5 atm CO_2 pressure at 298 K.
- 2.4 Vapour Pressure of Liquid Solutions

Liquid solutions are formed when solvent is a liquid. The solute can be a gas, a liquid or a solid. Solutions of gases in liquids have already been discussed in Section 2.3.2. In this Section, we shall discuss the solutions of liquids and solids in a liquid. Such solutions may contain one or more volatile components. Generally, the liquid solvent is volatile. The solute may or may not be volatile. We shall discuss the properties of only binary solutions, that is, the solutions containing two components, namely, the solutions of (i) liquids in liquids and (ii) solids in liquids.

2.4.1 Vapour
Pressure of
Liquid-
Liquid
SolutionsLet us consider a binary solution of two volatile liquids and denote the
two components as 1 and 2. When taken in a closed vessel, both the
components would evaporate and eventually an equilibrium would be
established between vapour phase and the liquid phase. Let the total
vapour pressure at this stage be p_{total} and p_1 and p_2 be the partial
vapour pressures of the two components 1 and 2 respectively. These
partial pressures are related to the mole fractions x_1 and x_2 of the two
components 1 and 2 respectively.

The French chemist, Francois Marte Raoult (1886) gave the quantitative relationship between them. The relationship is known as the **Raoult's law** which states that **for a solution of volatile liquids**,

the partial vapour pressure of each component of the solution is directly proportional to its mole fraction present in solution.

Thus, for component 1

$$p_{1} \propto x_{1}$$
and $p_{1} = p_{1}^{0} x_{1}$
(2.12)

where p_1^0 is the vapour pressure of pure component 1 at the same temperature.

Similarly, for component 2

$$p_2 = p_2^{0} x_2 \tag{2.13}$$

where p_2^{0} represents the vapour pressure of the pure component 2. According to **Dalton's law of partial pressures**, the total pressure

 (p_{total}) over the solution phase in the container will be the sum of the partial pressures of the components of the solution and is given as:

$$p_{\text{total}} = p_1 + p_2 \tag{2.14}$$

Substituting the values of p_1 and p_2 , we get

$$p_{\text{total}} = x_1 p_1^0 + x_2 p_2^0$$

= (1 - x_2) p_1^0 + x_2 p_2^0 (2.15)

$$= p_1^0 + (p_2^0 - p_1^0) x_2$$
 (2.16)

Following conclusions can be drawn from equation (2.16).

- (i) Total vapour pressure over the solution can be related to the mole fraction of any one component.
- (ii) Total vapour pressure over the solution varies linearly with the mole fraction of component 2.

Fig. 2.3: The plot of vapour pressure and mole fraction of an ideal solution at constant temperature. The dashed lines I and II represent the partial pressure of the components. (It can be seen from the plot that p_1 and p_2 are directly proportional to x_1 and x_2 , respectively). The total vapour pressure is given by line marked III in the figure.

(iii) Depending on the vapour pressures of the pure components 1 and 2, total vapour pressure over the solution decreases or increases with the increase of the mole fraction of component 1.

A plot of p_1 or p_2 versus the mole fractions x_1 and x_2 for a solution gives a linear plot as shown in Fig. 2.3. These lines (I and II) pass through the points for which x_1 and x_2 are equal to unity. Similarly the plot (line III) of p_{total} versus x_2 is also linear (Fig. 2.3). The minimum value of p_{total} is p_1^{0} and the maximum value is p_2^{0} , assuming that component 1 is less volatile than component 2, i.e., $p_1^{0} < p_2^{0}$.

The composition of vapour phase in equilibrium with the solution is determined by the partial pressures of the components. If y_1 and y_2 are the mole fractions of the

components 1 and 2 respectively in the vapour phase then, using Dalton's law of partial pressures:

$p_1 = y_1 p_{\text{total}}$	(2.17)
------------------------------	--------

$$p_2 = y_2 p_{\text{total}} \tag{2.18}$$

$$p_{\rm i} = y_{\rm i} \quad p_{\rm total} \tag{2.19}$$

Vapour pressure of chloroform (CHCl₃) and dichloromethane (CH₂Cl₂) Example 2.5 at 298 K are 200 mm Hg and 415 mm Hg respectively. (i) Calculate the vapour pressure of the solution prepared by mixing 25.5 g of $CHCl_3$ and 40 g of CH_2Cl_2 at 298 K and, (ii) mole fractions of each component in vapour phase. Solution (i) Molar mass of $CH_2Cl_2 = 12 \times 1 + 1 \times 2 + 35.5 \times 2 = 85 \text{ g mol}^{-1}$ Molar mass of $CHCl_3 = 12 \times 1 + 1 \times 1 + 35.5 \times 3 = 119.5 \text{ g mol}^{-1}$ $= \frac{40 \text{ g}}{85 \text{ g mol}^{-1}} = 0.47 \text{ mol}$ Moles of CH_2Cl_2 $= \frac{25.5 \text{ g}}{119.5 \text{ g mol}^{-1}} = 0.213 \text{ mol}$ Moles of CHCl₃ Total number of moles = 0.47 + 0.213 = 0.683 mol $x_{\text{CH}_2\text{Cl}_2} = \frac{0.47 \text{ mol}}{0.683 \text{ mol}} = 0.688$ $x_{\text{CHCl}_3} = 1.00 - 0.688 = 0.312$ Using equation (2.16), $p_{\text{total}} = p_1^0 + (p_2^0 - p_1^0) x_2 = 200 + (415 - 200) \times 0.688$ = 200 + 147.9 = 347.9 mm Hg (ii) Using the relation (2.19), $y_i = p_i/p_{total}$, we can calculate the mole fraction of the components in gas phase (y_i) . $p_{\rm CH_2Cl_2}$ = 0.688 \times 415 mm Hg = 285.5 mm Hg $p_{\text{CHCl}_3} = 0.312 \times 200 \text{ mm Hg} = 62.4 \text{ mm Hg}$ $y_{CH_2Cl_2}$ = 285.5 mm Hg/347.9 mm Hg = 0.82 $y_{\text{CHCl}_3} = 62.4 \text{ mm Hg}/347.9 \text{ mm Hg} = 0.18$ **Note:** Since, CH_2Cl_2 is a more volatile component than $CHCl_3$, $[p_{CH_2Cl_2}^o] =$ 415 mm Hg and $p_{CHCl_3}^0$ = 200 mm Hg] and the vapour phase is also richer in CH_2Cl_2 [$Y_{CH_2Cl_2} = 0.82$ and $Y_{CHCl_3} = 0.18$], it may thus be concluded that at equilibrium, vapour phase will be always rich in the component which is more volatile.

2.4.2 Raoult's Law as a special case of Henry's Law According to Raoult's law, the vapour pressure of a volatile component in a given solution is given by $p_i = x_i p_i^0$. In the solution of a gas in a liquid, one of the components is so volatile that it exists as a gas and we have already seen that its solubility is given by Henry's law which states that

$$p = K_{\rm H} x$$

If we compare the equations for Raoult's law and Henry's law, it can be seen that the partial pressure of the volatile component or gas is directly proportional to its mole fraction in solution. Only the proportionality constant $K_{\rm H}$ differs from p_1^{0} . Thus, Raoult's law becomes a special case of Henry's law in which $K_{\rm H}$ becomes equal to p_1^{0} .

2.4.3 Vapour Pressure of Solutions of Solids in Liquids Another important class of solutions consists of solids dissolved in liquid, for example, sodium chloride, glucose, urea and cane sugar in water and iodine and sulphur dissolved in carbon disulphide. Some physical properties of these solutions are quite different from those of pure solvents. For example, vapour pressure. We have learnt in Unit 5, Class XI, that liquids at a given temperature vapourise and under

Fig. 2.4: Decrease in the vapour pressure of the solvent on account of the presence of solute in the solvent (a) evaporation of the molecules of the solvent from its surface is denoted by , (b) in a solution, solute particles have been denoted by and they also occupy part of the surface area.

equilibrium conditions the pressure exerted by the vapours of the liquid over the liquid phase is called vapour pressure [Fig. 2.4 (a)]. In a pure liquid the entire surface is occupied by the molecules of the liquid. If a non-volatile solute is added to a solvent to give a solution [Fig. 2.4.(b)], the vapour pressure of the solution is solely from the solvent alone. This vapour pressure of the solution at a given temperature is found to be lower than the vapour pressure of the pure solvent at the same temperature. In the solution, the surface has both solute and solvent molecules; thereby the fraction of the surface covered by the solvent molecules gets reduced. Consequently, the number of solvent molecules escaping from the surface is correspondingly reduced, thus, the vapour pressure is also reduced.

The decrease in the vapour pressure of solvent depends on the quantity of non-volatile solute present in the solution, irrespective of its nature. For example, decrease in the vapour pressure of water by adding 1.0 mol of sucrose to one kg of water is nearly similar to that produced by adding 1.0 mol of urea to the same quantity of water at the same temperature.

Raoult's law in its general form can be stated as, for any solution the partial vapour pressure of each volatile component in the solution is directly proportional to its mole fraction.

In a binary solution, let us denote the solvent by 1 and solute by 2. When the solute is non-volatile, only the solvent molecules are present in vapour phase and contribute to vapour pressure. Let p_1 be

Fig. 2.5 If a solution obeys Raoult's law for all concentrations, its vapour pressure would vary linearly from zero to the vapour pressure of the pure solvent.

2.5 Ideal and Nonideal Solutions

2.5.1 Ideal Solutions

the vapour pressure of the solvent, x_1 be its mole fraction, p_i^0 be its vapour pressure in the pure state. Then according to Raoult's law

$$p_{1} \propto x_{1}$$
and $p_{1} = x_{1} p_{1}^{0}$
(2.20)

The proportionality constant is equal to the vapour pressure of pure solvent, p_1^0 . A plot between the vapour pressure and the mole fraction of the solvent is linear (Fig. 2.5).

Liquid-liquid solutions can be classified into ideal and non-ideal solutions on the basis of Raoult's law.

The solutions which obey Raoult's law over the entire range of concentration are known as *ideal solutions*. The ideal solutions have two other important properties. The enthalpy of mixing of the pure components to form the solution is zero and the volume of mixing is also zero, i.e.,

$$\Delta_{\min} H = 0, \qquad \Delta_{\min} V = 0 \qquad (2.21)$$

It means that no heat is absorbed or evolved when the components are mixed. Also, the volume of solution would be equal to the sum of volumes of the two components. At molecular level, ideal behaviour of the solutions can be explained by considering two components A and B. In pure components, the intermolecular attractive interactions will be of types A-A and B-B, whereas in the binary solutions in addition to these two interactions, A-B type of interactions will also be present. If the intermolecular attractive forces between the A-A and B-B are nearly equal to those between A-B, this leads to the formation of ideal solution. A perfectly ideal solution is rare but some solutions are nearly ideal in behaviour. Solution of n-hexane and n-heptane, bromoethane and chloroethane, benzene and toluene, etc. fall into this category.

2.5.2 Non-ideal Solutions When a solution does not obey Raoult's law over the entire range of concentration, then it is called *non-ideal solution*. The vapour pressure of such a solution is either higher or lower than that predicted by Raoult's law (equation 2.16). If it is higher, the solution exhibits **positive deviation** and if it is lower, it exhibits **negative deviation** from Raoult's law. The plots of vapour pressure as a function of mole fractions for such solutions are shown in Fig. 2.6.

The cause for these deviations lie in the nature of interactions at the molecular level. In case of positive deviation from Raoult's law, A-B interactions are weaker than those between A-A or B-B, i.e., in this case the intermolecular attractive forces between the solute-solvent molecules are weaker than those between the solute-solvent molecules are weaker than those between the solute-solute and solvent-solvent molecules. This means that in such solutions, molecules of A (or B) will find it easier to escape than in pure state. This will increase the vapour

Fig.2.6 The vapour pressures of two component systems as a function of composition (a) a solution that shows positive deviation from Raoult's law and (b) a solution that shows negative deviation from Raoult's law.

pressure and result in positive deviation. Mixtures of ethanol and acetone behave in this manner. In pure ethanol, molecules are hydrogen bonded. On adding acetone, its molecules get in between the host molecules and break some of the hydrogen bonds between them. Due to weakening of interactions, the solution shows positive deviation from Raoult's law [Fig. 2.6 (a)]. In a solution formed by adding carbon disulphide to acetone, the dipolar interactions between solute-solvent molecules are weaker than the respective interactions among the solute-solute and solvent-solvent molecules. This solution also shows positive deviation.

In case of negative deviations from Raoult's law, the intermolecular attractive forces between A-A and B-B are weaker than those between A-B and leads to decrease in vapour pressure resulting in negative deviations. An example of this type is a mixture of phenol and aniline. In this case the intermolecular hydrogen bonding between phenolic proton and lone pair on nitrogen atom of aniline is stronger than the respective intermolecular hydrogen bonding between similar molecules. Similarly, a mixture of chloroform and acetone forms a solution with negative deviation from Raoult's law. This is because chloroform molecule is able to form hydrogen bond with acetone molecule as shown.

This decreases the escaping tendency of molecules for each component and consequently the vapour pressure decreases resulting in negative deviation from Raoult's law [Fig. 2.6. (b)].

Some liquids on mixing, form **azeotropes** which are binary mixtures having the same composition in liquid and vapour phase and boil at a constant temperature. In such cases, it is not possible to separate the components by fractional distillation. There are two types of azeotropes called **minimum boiling azeotrope and maximum boiling azeotrope**. The solutions which show a large positive deviation from Raoult's law form minimum boiling azeotrope at a specific composition.

For example, ethanol-water mixture (obtained by fermentation of sugars) on fractional distillation gives a solution containing approximately 95% by volume of ethanol. Once this composition, known as azeotrope composition, has been achieved, the liquid and vapour have the same composition, and no further separation occurs.

The solutions that show large negative deviation from Raoult's law form maximum boiling azeotrope at a specific composition. Nitric acid and water is an example of this class of azeotrope. This azeotrope has the approximate composition, 68% nitric acid and 32% water by mass, with a boiling point of 393.5 K.

Intext Question

2.8 The vapour pressure of pure liquids A and B are 450 and 700 mm Hg respectively, at 350 K. Find out the composition of the liquid mixture if total vapour pressure is 600 mm Hg. Also find the composition of the vapour phase.

2.6 Colligative

Properties and Determination of Molar Mass We have learnt in Section 2.4.3 that the vapour pressure of solution decreases when a non-volatile solute is added to a volatile solvent. There are many properties of solutions which are connected with this decrease of vapour pressure. These are: (1) relative lowering of vapour pressure of the solvent (2) depression of freezing point of the solvent (3) elevation of boiling point of the solvent and (4) osmotic pressure of the solution. All these properties depend on the number of solute particles irrespective of their nature relative to the total number of particles present in the solution. Such properties are called *colligative properties* (colligative: from Latin: co means together, ligare means to bind). In the following Sections we will discuss these properties one by one.

2.6.1 Relative Lowering of Vapour Pressure We have learnt in Section 2.4.3 that the vapour pressure of a solvent in solution is less than that of the pure solvent. Raoult established that the lowering of vapour pressure depends only on the concentration of the solute particles and it is independent of their identity. The equation (2.20) given in Section 2.4.3 establishes a relation between vapour pressure of the solution, mole fraction and vapour pressure of the solvent, i.e.,

$$p_1 = x_1 p_1^0 \tag{2.22}$$

The reduction in the vapour pressure of solvent (Δp_1) is given as:

$$\Delta p_1 = p_1^0 - p_1 = p_1^0 - p_1^0 x_1$$

= $p_1^0 (1 - x_1)$ (2.23)

Knowing that $x_2 = 1 - x_1$, equation (2.23) reduces to $x_2 = x - x_1^0$ (2.24)

$$\Delta p_1 = x_2 p_1 \tag{2.24}$$

In a solution containing several non-volatile solutes, the lowering of the vapour pressure depends on the sum of the mole fraction of different solutes.

Equation (2.24) can be written as

$$\frac{\Delta p_1}{p_1^0} = \frac{p_1^0 - p_1}{p_1^0} = x_2 \tag{2.25}$$

The expression on the left hand side of the equation as mentioned earlier is called **relative lowering of vapour pressure and is equal to the mole fraction of the solute**. The above equation can be written as:

$$\frac{p_1^0 - p_1}{p_1^0} = \frac{n_2}{n_1 + n_2} \left(\text{since } x_2 = \frac{n_2}{n_1 + n_2} \right)$$
(2.26)

Here n_1 and n_2 are the number of moles of solvent and solute respectively present in the solution. For dilute solutions $n_2 < < n_1$, hence neglecting n_2 in the denominator we have

$$\frac{p_1^0 - p_1}{p_1^0} = \frac{n_2}{n_1}$$
(2.27)

or
$$\frac{p_1^0 - p_1}{p_1^0} = \frac{\mathbf{w}_2 \times M_1}{M_2 \times \mathbf{w}_1}$$
 (2.28)

Here w_1 and w_2 are the masses and M_1 and M_2 are the molar masses of the solvent and solute respectively.

From this equation (2.28), knowing all other quantities, the molar mass of solute (M_2) can be calculated.

<u>Example 2.6</u>	The vapour pressure of pure benzene at a certain temperature is 0.850 bar. A non-volatile, non-electrolyte solid weighing 0.5 g when added to 39.0 g of benzene (molar mass 78 g mol ⁻¹). Vapour pressure of the solution, then, is 0.845 bar. What is the molar mass of the solid substance?					
<u>Solution</u>	The various quantities known to us are as follows: $n^{0} = 0.850$ har: $n = 0.845$ har: $M = 78$ g mol ⁻¹ : $w = 0.5$ g; $w = 39$ g					
	Substituting these values in equation (2.28), we get					
	$\frac{0.850 \text{ bar} - 0.845 \text{ bar}}{0.850 \text{ bar}} = \frac{0.5 \text{ g} \times 78 \text{ g mol}^{-1}}{M_2 \times 39 \text{ g}}$					
	Therefore, $M_2 = 170 \text{ g mol}^{-1}$					

2.6.2 Elevation of Boiling Point
We have learnt in Unit 5, Class XI, that the vapour pressure of a liquid increases with increase of temperature. It boils at the temperature at which its vapour pressure is equal to the atmospheric pressure. For example, water boils at 373.15 K (100° C) because at this temperature the vapour pressure of water is 1.013 bar (1 atmosphere). We have also learnt in the last section that vapour pressure of the solvent decreases in the presence of non-volatile solute. Fig. 2.7 depicts the variation of vapour pressure of the pure solvent and solution as a function of temperature. For example, the vapour pressure of an aqueous solution of sucrose is less than 1.013 bar at 373.15 K. In order to make this solution boil, its vapour pressure must be increased to 1.013 bar by raising the temperature above the boiling temperature of the pure solvent (water). Thus, the boiling

Fig. 2.7: The vapour pressure curve for solution lies below the curve for pure water. The diagram shows that $\Delta T_{\rm b}$ denotes the elevation of boiling point of a solvent in solution.

point of a solution is always higher than that of the boiling point of the pure solvent in which the solution is prepared as shown in Fig. 2.7. Similar to lowering of vapour pressure, the elevation of boiling point also depends on the number of solute molecules rather than their nature. A solution of 1 mol of sucrose in 1000 g of water boils at 373.52 K at one atmospheric pressure.

Let $T_{\rm b}^0$ be the boiling point of pure solvent and $T_{\rm b}$ be the boiling point of solution. The increase in the boiling point $\Delta T_{\rm b} = T_{\rm b} - T_{\rm b}^0$ is known as **elevation of boiling point**.

Experiments have shown that for **dilute solutions** the elevation of boiling point (ΔT_b) is directly proportional to the molal concentration of the solute in a solution. Thus

$$\Delta T_{\rm b} \propto {\rm m}$$
 (2.29)

or
$$\Delta T_{\rm b} = K_{\rm b} \,\mathrm{m}$$
 (2.30)

Here *m* (molality) is the number of moles of solute dissolved in 1 kg of solvent and the constant of proportionality, $K_{\rm b}$ is called **Boiling Point Elevation Constant or Molal Elevation Constant (Ebullioscopic Constant)**. The unit of $K_{\rm b}$ is K kg mol⁻¹. Values of $K_{\rm b}$ for some common solvents are given in Table 2.3. If w₂ gram of solute of molar mass M_2 is dissolved in w₁ gram of solvent, then molality, m of the solution is given by the expression:

m =
$$\frac{w_2/M_2}{w_1/1000} = \frac{1000 \times w_2}{M_2 \times w_1}$$
 (2.31)

Substituting the value of molality in equation (2.30) we get

$$\Delta T_{\rm b} = \frac{K_{\rm b} \times 1000 \times w_2}{M_2 \times w_1} \tag{2.32}$$

$$M_2 = \frac{1000 \times w_2 \times K_b}{\Delta T_b \times w_1} \tag{2.33}$$

Thus, in order to determine M_2 , molar mass of the solute, known mass of solute in a known mass of the solvent is taken and $\Delta T_{\rm b}$ is determined experimentally for a known solvent whose $K_{\rm b}$ value is known.

 $\Delta T_{\rm b} = K_{\rm b} \times m = 0.52 \text{ K kg mol}^{-1} \times 0.1 \text{ mol kg}^{-1} = 0.052 \text{ K}$ Since water boils at 373.15 K at 1.013 bar pressure, therefore, the boiling point of solution will be 373.15 + 0.052 = 373.202 K. *Example* 2.8 The boiling point of benzene is 353.23 K. When 1.80 g of a non-volatile solute was dissolved in 90 g of benzene, the boiling point is raised to 354.11 K. Calculate the molar mass of the solute. $K_{\rm b}$ for benzene is 2.53 K kg mol⁻¹ <u>Solution</u> The elevation ($\Delta T_{\rm b}$) in the boiling point = 354.11 K – 353. 23 K = 0.88 K Substituting these values in expression (2.33) we get $M_2 = \frac{2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.88 \text{ K} \times 90 \text{ g}} = 58 \text{ g mol}^{-1}$ Therefore, molar mass of the solute, $M_2 = 58 \text{ g mol}^{-1}$

Point

2.6.3 Depression The lowering of vapour pressure of a solution causes a lowering of the of Freezing freezing point compared to that of the pure solvent (Fig. 2 8). We know that at the freezing point of a substance, the solid phase is in

dynamic equilibrium with the liquid phase. Thus, the freezing point of a substance may be defined as the temperature at which the vapour pressure of the substance in its liquid phase is equal to its vapour pressure in the solid phase. A solution will freeze when its vapour pressure equals the vapour pressure of the pure solid solvent as is clear from Fig. 2.8. According to Raoult's law, when a non-volatile solid is added to the solvent its vapour pressure decreases and now it would become equal to that of solid solvent at lower temperature. Thus, the freezing point of the solvent decreases.

Let $T_{\rm f}^0$ be the freezing point of pure solvent

and $T_{\rm f}$ be its freezing point when non-volatile solute is dissolved in it. The decrease in freezing point.

 $\Delta T_{\rm f} = T_{\rm f}^0 - T_{\rm f}\,$ is known as depression in freezing point.

Similar to elevation of boiling point, depression of freezing point (ΔT_i) for **dilute solution** (ideal solution) is directly proportional to molality, m of the solution. Thus,

or
$$\Delta T_{\rm f} \propto {\rm m}$$

(2.34)

The proportionality constant, K_{f} , which depends on the nature of the solvent is known as Freezing Point Depression Constant or Molal

Depression Constant or Cryoscopic Constant. The unit of K_f is K kg mol⁻¹. Values of K_f for some common solvents are listed in Table 2.3.

If w_2 gram of the solute having molar mass as M_2 , present in w_1 gram of solvent, produces the depression in freezing point ΔT_f of the solvent then molality of the solute is given by the equation (2.31).

$$m = \frac{w_2 / M_2}{w_1 / 1000}$$
(2.31)

Substituting this value of molality in equation (2.34) we get:

$$\Delta T_{\rm f} = \frac{K_{\rm f} \times w_2 / M_2}{w_1 / 1000}$$

$$\Delta T_{\rm f} = \frac{K_{\rm f} \times w_2 \times 1000}{M_2 \times w_1}$$
(2.35)

$$M_2 = \frac{K_{\rm f} \times w_2 \times 1000}{\Delta T_{\rm f} \times w_1} \tag{2.36}$$

Thus for determining the molar mass of the solute we should know the quantities w_1 , w_2 , ΔT_f , along with the molal freezing point depression constant.

The values of $K_{\rm f}$ and $K_{\rm b}$, which depend upon the nature of the solvent, can be ascertained from the following relations.

$$K_{\rm f} = \frac{R \times M_1 \times T_{\rm f}^2}{1000 \times \Delta_{\rm fus} H}$$
(2.37)

$$K_{\rm b} = \frac{R \times M_1 \times T_{\rm b}^2}{1000 \times \Delta_{\rm vap} H}$$
(2.38)

Here the symbols *R* and *M*₁ stand for the gas constant and molar mass of the solvent, respectively and *T*_f and *T*_b denote the freezing point and the boiling point of the pure solvent respectively in kelvin. Further, $\Delta_{\text{fus}}H$ and $\Delta_{\text{vap}}H$ represent the enthalpies for the fusion and vapourisation of the solvent, respectively.

Table 2.3: Molal Boiling Point Elevation and Freezing PointDepression Constants for Some Solvents

Solvent	b. p./K	K _b /K kg mol ⁻¹	f. p./K	K _f /K kg mol ⁻¹
Water	373.15	0.52	273.0	1.86
Ethanol	351.5	1.20	155.7	1.99
Cyclohexane	353.74	2.79	279.55	20.00
Benzene	353.3	2.53	278.6	5.12
Chloroform	334.4	3.63	209.6	4.79
Carbon tetrachloride	350.0	5.03	250.5	31.8
Carbon disulphide	319.4	2.34	164.2	3.83
Diethyl ether	307.8	2.02	156.9	1.79
Acetic acid	391.1	2.93	290.0	3.90

	Example 2.9	45 g of ethylene glycol ($C_2H_6O_2$) is mixed with 600 g of water. Calculate (a) the freezing point depression and (b) the freezing point of the solution.
	<u>Solution</u>	Depression in freezing point is related to the molality, therefore, the molality
		of the solution with respect to ethylene glycol = $\frac{\text{moles of ethylene glycol}}{\text{mass of water in kilogram}}$
		Moles of ethylene glycol = $\frac{45 \text{ g}}{62 \text{ g mol}^{-1}} = 0.73 \text{ mol}$
		Mass of water in kg = $\frac{600g}{1000g \text{ kg}^{-1}} = 0.6 \text{ kg}$
		Hence molality of ethylene glycol = $\frac{0.73 \text{ mol}}{0.60 \text{ kg}}$ = 1.2 mol kg ⁻¹
		Therefore freezing point depression,
		$\ddot{A}T_{f}$ = 1.86 K kg mol ⁻¹ × 1.2 mol kg ⁻¹ = 2.2 K
		Freezing point of the aqueous solution = $273.15 \text{ K} - 2.2 \text{ K} = 270.95 \text{ K}$
-	Example 2.10	1.00 g of a non-electrolyte solute dissolved in 50 g of benzene lowered the freezing point of benzene by 0.40 K. The freezing point depression constant of benzene is $5.12 \text{ K kg mol}^{-1}$. Find the molar mass of the solute.
	<u>Solution</u>	Substituting the values of various terms involved in equation (2.36) we get,
		$M_2 = \frac{5.12 \text{ K kg mol}^{-1} \times 1.00 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.40 \times 50 \text{ g}} = 256 \text{ g mol}^{-1}$
		Thus, molar mass of the solute = 256 g mol^{-1}

2.6.4 Osmosis and Osmotic Pressure

There are many phenomena which we observe in nature or at home. For example, raw mangoes shrivel when pickled in brine (salt water); wilted flowers revive when placed in fresh water, blood cells collapse when suspended in saline water, etc. If we look into these processes we

find one thing common in all, that is, all these substances are bound by membranes. These membranes can be of animal or vegetable origin and these occur naturally such as pig's bladder or parchment or can be synthetic such as cellophane. These membranes appear to be continuous sheets or films, yet they contain a network of submicroscopic holes or pores. Small solvent

Fig. 2.9 Level of solution rises in the thistle funnel due to osmosis of solvent.

molecules, like water, can pass through these holes but the passage of bigger molecules like solute is hindered. Membranes having this kind of properties are known as *semipermeable membranes* (SPM).

Assume that only solvent molecules can pass through these semipermeable membranes. If this membrane is placed between the solvent and solution as shown in Fig. 2.9, the solvent molecules will flow through the membrane from pure solvent to the solution. **This process of flow of the solvent is called** *osmosis*.

The flow will continue till the equilibrium is attained. The flow of the solvent from its side to solution side across a semipermeable membrane can be stopped if some extra pressure is applied on the solution. **This pressure that just stops the flow of solvent is called** *osmotic pressure* of the solution. The flow of solvent from dilute solution to the concentrated solution across a semipermeable membrane is due to osmosis. The important point to be kept in mind is that solvent molecules always flow from lower concentration to higher concentration of solution. The osmotic pressure has been found to depend on the concentration of the solution.

$$\Pi = C R T \tag{2.39}$$

Here Π is the osmotic pressure and R is the gas constant.

$$\Pi = (n_2 / V) R T$$
 (2.40)

Here *V* is volume of a solution in litres containing n_2 moles of solute. If w_2 grams of solute, of molar mass, M_2 is present in the solution, then $n_2 = w_2 / M_2$ and we can write,

$$\Pi V = \frac{W_2 RT}{M_2} \tag{2.41}$$

or
$$M_2 = \frac{W_2 R T}{\prod V}$$
 (2.42)

Thus, knowing the quantities w_2 , T, Π and V we can calculate the molar mass of the solute.

Measurement of osmotic pressure provides another method of determining molar masses of solutes. This method is widely used to determine molar masses of proteins, polymers and other

macromolecules. The osmotic pressure method has the advantage over other methods as pressure measurement is around the room temperature and the molarity of the solution is used instead of molality. As compared to other colligative properties, its magnitude is large even for very dilute solutions. The technique of osmotic pressure for determination of molar mass of solutes is particularly useful for biomolecules as they are generally not stable at higher temperatures and polymers have poor solubility.

Two solutions having same osmotic pressure at a given temperature are called isotonic solutions. When such solutions are separated by semipermeable membrane no osmosis occurs between them. For example, the osmotic pressure associated with the fluid inside the blood cell is equivalent to that of 0.9% (mass/volume) sodium chloride solution, called normal saline solution and it is safe to inject intravenously. On the other hand, if we place the cells in a solution containing more than 0.9% (mass/volume) sodium chloride, water will flow out of the cells and they would shrink. Such a solution is called **hypertonic**. If the salt concentration is less than 0.9% (mass/volume), the solution is said to be **hypotonic**. In this case, water will flow into the cells if placed in this solution and they would swell.

Example 2.11	200 cm^3 of an aqueous solution of a protein contains 1.26 g of the protein. The osmotic pressure of such a solution at 300 K is found to be 2.57×10^{-3} bar. Calculate the molar mass of the protein.
<u>Solution</u>	The various quantities known to us are as follows: Π = 2.57 × 10 ⁻³ bar,
	$V = 200 \text{ cm}^3 = 0.200 \text{ litre}$
	T = 300 K
	$R = 0.083 L bar mol^{-1} K^{-1}$
	Substituting these values in equation (2.42) we get
	$M_2 = \frac{1.26 \text{ g} \times 0.083 \text{ L} \text{ bar } \text{K}^{-1} \text{ mol}^{-1} \times 300 \text{ K}}{2.57 \times 10^{-3} \text{ bar} \times 0.200 \text{ L}} = 61,022 \text{ g mol}^{-1}$

The phenomena mentioned in the beginning of this section can be explained on the basis of osmosis. A raw mango placed in concentrated salt solution loses water via osmosis and shrivel into pickle. Wilted flowers revive when placed in fresh water. A carrot that has become limp because of water loss into the atmosphere can be placed into the water making it firm once again. Water will move into its cells through osmosis. When placed in water containing less than 0.9% (mass/ volume) salt, blood cells swell due to flow of water in them by osmosis. People taking a lot of salt or salty food experience water retention in tissue cells and intercellular spaces because of osmosis. The resulting

puffiness or swelling is called **edema**. Water movement from soil into plant roots and subsequently into upper portion of the plant is partly due to osmosis. The preservation of meat by salting and of fruits by adding sugar protects against bacterial action. Through the process of osmosis, a bacterium on salted meat or candid fruit loses water, shrivels and dies.

2.6.5 Reverse Osmosis and Water Purification

The direction of osmosis can be reversed if a pressure larger than the osmotic pressure is applied to the solution side. That is, now the pure solvent flows out of the solution through the semi permeable membrane. This phenomenon is called **reverse osmosis** and is of great practical utility. Reverse osmosis is used in desalination of sea water. A schematic set up for the process is shown in Fig. 2.11.

Fig. 2.11: Reverse osmosis occurs when a pressure larger than the osmotic pressure is applied to the solution.

When pressure more than osmotic pressure is applied, pure water is squeezed out of the sea water through the membrane. A variety of polymer membranes are available for this purpose.

The pressure required for the reverse osmosis is quite high. A workable porous membrane is a film of cellulose acetate placed over a suitable support. Cellulose acetate is permeable to water but impermeable to impurities and ions present in sea water. These days many countries use desalination plants to meet their potable water requirements.

t	\cap	
Intext	Ques	stions

- **2.9** Vapour pressure of pure water at 298 K is 23.8 mm Hg. 50 g of urea (NH_2CONH_2) is dissolved in 850 g of water. Calculate the vapour pressure of water for this solution and its relative lowering.
- **2.10** Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose is to be added to 500 g of water such that it boils at 100°C.
- **2.11** Calculate the mass of ascorbic acid (Vitamin C, $C_6H_8O_6$) to be dissolved in 75 g of acetic acid to lower its melting point by 1.5°C. $K_f = 3.9 \text{ K kg mol}^{-1}$.
- **2.12** Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass 185,000 in 450 mL of water at 37°C.
- 2.7 Abnormal Molar Masses We know that ionic compounds when dissolved in water dissociate into cations and anions. For example, if we dissolve one mole of KCl (74.5 g) in water, we expect one mole each of K⁺ and Cl⁻ ions to be released in the solution. If this happens, there would be two moles of particles in the solution. If we ignore interionic attractions, one mole of KCl in one kg of water would be expected to increase the boiling point by 2×0.52 K = 1.04 K. Now if we did not know about the degree of

dissociation, we could be led to conclude that the mass of 2 mol particles is 74.5 g and the mass of one mole of KCl would be 37.25 g. This brings into light the rule that, when there is dissociation of solute into ions, the experimentally determined molar mass is always lower than the true value.

 Molecules of ethanoic acid (acetic acid) dimerise in benzene due to hydrogen bonding. This normally happens in solvents of low dielectric constant. In this case the number of particles is reduced due to dimerisation. Association of molecules is depicted as follows:

It can be undoubtedly stated here that if all the molecules of ethanoic acid associate in benzene, then $\Delta T_{\rm b}$ or $\Delta T_{\rm f}$ for ethanoic acid will be half of the normal value. The molar mass calculated on the basis of this $\Delta T_{\rm b}$ or $\Delta T_{\rm f}$ will, therefore, be twice the expected value. Such a molar mass that is either lower or higher than the expected or normal value is called as **abnormal molar mass**.

In 1880 van't Hoff introduced a factor i, known as the van't Hoff factor, to account for the extent of dissociation or association. This factor i is defined as:

- *i* = <u>Normal molar mass</u>
 - Abnormal molar mass
 - Observed colligative property
 - Calculated colligative property
- $i = \frac{\text{Total number of moles of particles after association/dissociation}}{N_{\text{total number of moles of particles after association/dissociation}}$

Number of moles of particles before association/dissociation

Here abnormal molar mass is the experimentally determined molar mass and calculated **colligative properties** are obtained by assuming that the non-volatile solute is neither associated nor dissociated. In case of association, value of i is less than unity while for dissociation it is greater than unity. For example, the value of i for aqueous KCl solution is close to 2, while the value for ethanoic acid in benzene is nearly 0.5.

Inclusion of van't Hoff factor modifies the equations for colligative properties as follows:

Relative lowering of vapour pressure of solvent,

$$\frac{p_1^{\circ} - p_1}{p_1^{\circ}} = i \cdot \frac{n_2}{n_1}$$

Elevation of Boiling point, $\Delta T_b = i K_b \text{ m}$ Depression of Freezing point, $\Delta T_f = i K_f \text{ m}$ Osmotic pressure of solution, $\Pi = i n_2 R T / V$

Table 2.4 depicts values of the factor, *i* for several strong electrolytes. For KCl, NaCl and MgSO₄, *i* values approach 2 as the solution becomes very dilute. As expected, the value of *i* gets close to 3 for K_2SO_4 .

		*Values of	i	van't Hoff Factor <i>i</i> for complete			
Salt	0.1 m	0.01 m	0.001 m	dissociation of solute			
NaCl	1.87	1.94	1.97	2.00			
KC1	1.85	1.94	1.98	2.00			
$MgSO_4$	1.21	1.53	1.82	2.00			
K ₂ SO ₄	2.32	2.70	2.84	3.00			

Table 2.4: Values of van't Hoff factor, *i*, at Various Concentrations for NaCl, KCl, MgSO₄ and K_2SO_4 .

* represent i values for incomplete dissociation.

2 g of benzoic acid (C_6H_5COOH) dissolved in 25 g of benzene shows a depression in freezing point equal to 1.62 K. Molal depression constant for benzene is 4.9 K kg mol⁻¹. What is the percentage association of acid if it forms dimer in solution?

The given quantities are: $w_2 = 2$ g; $K_f = 4.9$ K kg mol⁻¹; $w_1 = 25$ g, $\Delta T_f = 1.62$ K

Substituting these values in equation (2.36) we get:

$$M_2 = \frac{4.9 \text{ K kg mol}^{-1} \times 2 \text{ g} \times 1000 \text{ g kg}^{-1}}{25 \text{ g} \times 1.62 \text{ K}} = 241.98 \text{ g mol}^{-1}$$

Thus, experimental molar mass of benzoic acid in benzene is

 $= 241.98 \text{ g mol}^{-1}$

Now consider the following equilibrium for the acid:

 $2 C_6 H_5 COOH \rightleftharpoons (C_6 H_5 COOH)_2$

If *x* represents the degree of association of the solute then we would have (1 - x) mol of benzoic acid left in unassociated form and correspondingly $\frac{x}{2}$ as associated moles of benzoic acid at equilibrium. Therefore, total number of moles of particles at equilibrium is:

$$1 - x + \frac{x}{2} = 1 - \frac{x}{2}$$

Thus, total number of moles of particles at equilibrium equals van't Hoff factor *i*.

But $i = \frac{\text{Normal molar mass}}{\text{Abnormal molar mass}}$

$$=\frac{122\,\mathrm{g\,mol^{-1}}}{241.98\,\mathrm{g\,mol^{-1}}}$$

or
$$\frac{x}{2} = 1 - \frac{122}{241.98} = 1 - 0.504 = 0.496$$

or $x = 2 \times 0.496 = 0.992$

Therefore, degree of association of benzoic acid in benzene is 99.2 %.

 $\underbrace{\text{Example 2.13}}_{\text{O}_{3}} 0.6 \text{ mL of acetic acid (CH}_{3}\text{COOH}), \text{ having density 1.06 g mL}^{-1}, \text{ is dissolved in 1 litre of water. The depression in freezing point observed for this strength of acid was 0.0205°C. Calculate the van't Hoff factor and the dissociation constant of acid.}$

Solution Number of moles of acetic acid = $\frac{0.6 \text{ mL} \times 1.06 \text{ g mL}^{-1}}{60 \text{ g mol}^{-1}}$ = 0.0106 mol = n

Molality =
$$\frac{0.0106 \text{ mol}}{1000 \text{ mL} \times 1 \text{ g mL}^{-1}}$$
 = 0.0106 mol kg⁻¹

Using equation (2.35)

 $\Delta T_{\rm f}$ = 1.86 K kg mol⁻¹ × 0.0106 mol kg⁻¹ = 0.0197 K

van't Hoff Factor (i) = $\frac{\text{Observed freezing point}}{\text{Calculated freezing point}} = \frac{0.0205 \text{ K}}{0.0197 \text{ K}} = 1.041$

Acetic acid is a weak electrolyte and will dissociate into two ions: acetate and hydrogen ions per molecule of acetic acid. If *x* is the degree of dissociation of acetic acid, then we would have n(1 - x) moles of undissociated acetic acid, nx moles of CH₃COO⁻ and nx moles of H⁺ ions,

 $\begin{array}{rcl} CH_3COOH \rightleftharpoons & H^+ + CH_3COO^-\\ n \mod & 0 & 0\\ n(1-x) & nx \mod & nx \mod \end{array}$

Thus total moles of particles are: n(1 - x + x + x) = n(1 + x)

$$i = \frac{n(1+x)}{n} = 1 + x = 1.041$$

Thus degree of dissociation of acetic acid = x = 1.041 - 1.000 = 0.041Then [CH₃COOH] = n(1 - x) = 0.0106 (1 - 0.041),

$$[CH_3COO^-] = nx = 0.0106 \times 0.041, [H^+] = nx = 0.0106 \times 0.041.$$

$$K_{a} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} = \frac{0.0106 \times 0.041 \times 0.0106 \times 0.041}{0.0106 (1.00 - 0.041)}$$
$$= 1.86 \times 10^{-5}$$

<u>Summary</u>

A solution is a homogeneous mixture of two or more substances. Solutions are classified as solid, liquid and gaseous solutions. The concentration of a solution is expressed in terms of mole fraction, molarity, molality and in percentages. The dissolution of a gas in a liquid is governed by Henry's law, according to which, at a given temperature, the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas. The vapour pressure of the solvent is lowered by the presence of a non-volatile solute in the solution and this lowering of vapour pressure of the solvent is governed by Raoult's law, according to which the **relative** lowering of vapour pressure of the solvent over a solution is equal to the mole fraction of a non-volatile solute present in the solution. However, in a binary liquid solution, if both the components of the solution are volatile then another form of Raoult's law is used. Mathematically, this form of the Raoult's law is stated as: $p_{\text{total}} = p_1^0 x_1 + p_2^0 x_2$. Solutions which obey Raoult's law over the entire range of concentration are called ideal solutions. Two types of deviations from Raoult's law, called positive and negative deviations are observed. Azeotropes arise due to very large deviations from Raoult's law.

The properties of solutions which depend on the number of solute particles and are independent of their chemical identity are called colligative properties. These are lowering of vapour pressure, elevation of boiling point, depression of freezing point and osmotic pressure. The process of osmosis can be reversed if a pressure higher than the osmotic pressure is applied to the solution. Colligative properties have been used to determine the molar mass of solutes. Solutes which dissociate in solution exhibit molar mass lower than the actual molar mass and those which associate show higher molar mass than their actual values.

Quantitatively, the extent to which a solute is dissociated or associated can be expressed by van't Hoff factor *i*. This factor has been defined as ratio of normal molar mass to experimentally determined molar mass or as the ratio of observed colligative property to the calculated colligative property.

Exercises

- **2.1** Define the term solution. How many types of solutions are formed? Write briefly about each type with an example.
- **2.2** Give an example of a solid solution in which the solute is a gas.
- **2.3** Define the following terms:

(i) Mole fraction (ii) Molality (iii) Molarity (iv) Mass percentage.

2.4 Concentrated nitric acid used in laboratory work is 68% nitric acid by mass in aqueous solution. What should be the molarity of such a sample of the acid if the density of the solution is 1.504 g mL^{-1} ?

- **2.5** A solution of glucose in water is labelled as 10% w/w, what would be the molality and mole fraction of each component in the solution? If the density of solution is 1.2 g mL^{-1} , then what shall be the molarity of the solution?
- **2.6** How many mL of 0.1 M HCl are required to react completely with 1 g mixture of Na₂CO₃ and NaHCO₃ containing equimolar amounts of both?
- **2.7** A solution is obtained by mixing 300 g of 25% solution and 400 g of 40% solution by mass. Calculate the mass percentage of the resulting solution.
- **2.8** An antifreeze solution is prepared from 222.6 g of ethylene glycol ($C_2H_6O_2$) and 200 g of water. Calculate the molality of the solution. If the density of the solution is 1.072 g mL⁻¹, then what shall be the molarity of the solution?
- **2.9** A sample of drinking water was found to be severely contaminated with chloroform (CHCl₃) supposed to be a carcinogen. The level of contamination was 15 ppm (by mass):
 - (i) express this in percent by mass
 - (ii) determine the molality of chloroform in the water sample.
- 2.10 What role does the molecular interaction play in a solution of alcohol and water?
- **2.11** Why do gases always tend to be less soluble in liquids as the temperature is raised?
- 2.12 State Henry's law and mention some important applications.
- **2.13** The partial pressure of ethane over a solution containing 6.56×10^{-3} g of ethane is 1 bar. If the solution contains 5.00×10^{-2} g of ethane, then what shall be the partial pressure of the gas?
- **2.14** What is meant by positive and negative deviations from Raoult's law and how is the sign of Δ_{mix} H related to positive and negative deviations from Raoult's law?
- **2.15** An aqueous solution of 2% non-volatile solute exerts a pressure of 1.004 bar at the normal boiling point of the solvent. What is the molar mass of the solute?
- **2.16** Heptane and octane form an ideal solution. At 373 *K*, the vapour pressures of the two liquid components are 105.2 kPa and 46.8 kPa respectively. What will be the vapour pressure of a mixture of 26.0 g of heptane and 35 g of octane?
- **2.17** The vapour pressure of water is 12.3 kPa at 300 *K*. Calculate vapour pressure of 1 molal solution of a non-volatile solute in it.
- **2.18** Calculate the mass of a non-volatile solute (molar mass 40 g mol⁻¹) which should be dissolved in 114 g octane to reduce its vapour pressure to 80%.
- 2.19 A solution containing 30 g of non-volatile solute exactly in 90 g of water has a vapour pressure of 2.8 kPa at 298 K. Further, 18 g of water is then added to the solution and the new vapour pressure becomes 2.9 kPa at 298 K. Calculate:
 (i) molar mass of the solute (ii) vapour pressure of water at 298 K.
- **2.20** A 5% solution (by mass) of cane sugar in water has freezing point of 271*K*. Calculate the freezing point of 5% glucose in water if freezing point of pure water is 273.15 *K*.
- **2.21** Two elements A and B form compounds having formula AB_2 and AB_4 . When dissolved in 20 g of benzene (C_6H_6), 1 g of AB_2 lowers the freezing point by 2.3 K whereas 1.0 g of AB_4 lowers it by 1.3 K. The molar depression constant for benzene is 5.1 K kg mol⁻¹. Calculate atomic masses of A and B.

- **2.22** At 300 K, 36 g of glucose present in a litre of its solution has an osmotic pressure of 4.98 bar. If the osmotic pressure of the solution is 1.52 bars at the same temperature, what would be its concentration?
- **2.23** Suggest the most important type of intermolecular attractive interaction in the following pairs.
 - (i) n-hexane and n-octane
 - (ii) I_2 and CCl_4
 - (iii) $NaClO_4$ and water
 - (iv) methanol and acetone
 - (v) acetonitrile (CH $_3$ CN) and acetone (C $_3$ H $_6$ O).
- **2.24** Based on solute-solvent interactions, arrange the following in order of increasing solubility in n-octane and explain. Cyclohexane, KCl, CH₃OH, CH₃CN.
- **2.25** Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water?

(i)	phenol	(ii)	toluene	(iii)	formic acid
(iv)	ethylene glycol	(v)	chloroform	(vi)	pentanol.

- **2.26** If the density of some lake water is 1.25g mL⁻¹ and contains 92 g of Na⁺ ions per kg of water, calculate the molality of Na⁺ ions in the lake.
- **2.27** If the solubility product of CuS is 6×10^{-16} , calculate the maximum molarity of CuS in aqueous solution.
- **2.28** Calculate the mass percentage of aspirin $(C_9H_8O_4)$ in acetonitrile (CH_3CN) when 6.5 g of $C_9H_8O_4$ is dissolved in 450 g of CH_3CN .
- **2.29** Nalorphene ($C_{19}H_{21}NO_3$), similar to morphine, is used to combat withdrawal symptoms in narcotic users. Dose of nalorphene generally given is 1.5 mg. Calculate the mass of $1.5 10^{-3}$ m aqueous solution required for the above dose.
- **2.30** Calculate the amount of benzoic acid (C_6H_5COOH) required for preparing 250 mL of 0.15 M solution in methanol.
- **2.31** The depression in freezing point of water observed for the same amount of acetic acid, trichloroacetic acid and trifluoroacetic acid increases in the order given above. Explain briefly.
- **2.32** Calculate the depression in the freezing point of water when 10 g of $CH_3CH_2CHClCOOH$ is added to 250 g of water. $K_a = 1.4 \times 10^{-3}$, $K_f = 1.86$ K kg mol⁻¹.
- **2.33** 19.5 g of CH_2FCOOH is dissolved in 500 g of water. The depression in the freezing point of water observed is 1.0° C. Calculate the van't Hoff factor and dissociation constant of fluoroacetic acid.
- **2.34** Vapour pressure of water at 293 *K* is 17.535 mm Hg. Calculate the vapour pressure of water at 293 *K* when 25 g of glucose is dissolved in 450 g of water.
- **2.35** Henry's law constant for the molality of methane in benzene at 298 K is 4.27×10^5 mm Hg. Calculate the solubility of methane in benzene at 298 K under 760 mm Hg.
- **2.36** 100 g of liquid A (molar mass 140 g mol⁻¹) was dissolved in 1000 g of liquid B (molar mass 180 g mol⁻¹). The vapour pressure of pure liquid B was found to be 500 torr. Calculate the vapour pressure of pure liquid A and its vapour pressure in the solution if the total vapour pressure of the solution is 475 Torr.

2.37 Vapour pressures of pure acetone and chloroform at 328 K are 741.8 mm Hg and 632.8 mm Hg respectively. Assuming that they form ideal solution over the entire range of composition, plot p_{total} , $p_{\text{chloroform}}$, and p_{acetone} as a function of x_{acetone} . The experimental data observed for different compositions of mixture is:

$100 \ge x_{acetone}$	0	11.8	23.4	36.0	50.8	58.2	64.5	72.1
p _{acetone} /mm Hg	0	54.9	110.1	202.4	322.7	405.9	454.1	521.1
$p_{chloroform}$ /mm Hg	632.8	548.1	469.4	359.7	257.7	193.6	161.2	120.7

Plot this data also on the same graph paper. Indicate whether it has positive deviation or negative deviation from the ideal solution.

- **2.38** Benzene and toluene form ideal solution over the entire range of composition. The vapour pressure of pure benzene and toluene at 300 *K* are 50.71 mm Hg and 32.06 mm Hg respectively. Calculate the mole fraction of benzene in vapour phase if 80 g of benzene is mixed with 100 g of toluene.
- **2.39** The air is a mixture of a number of gases. The major components are oxygen and nitrogen with approximate proportion of 20% is to 79% by volume at 298 *K*. The water is in equilibrium with air at a pressure of 10 atm. At 298 *K* if the Henry's law constants for oxygen and nitrogen at 298 *K* are 3.30×10^7 mm and 6.51×10^7 mm respectively, calculate the composition of these gases in water.
- **2.40** Determine the amount of $CaCl_2$ (*i* = 2.47) dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at 27° C.
- **2.41** Determine the osmotic pressure of a solution prepared by dissolving 25 mg of K_2SO_4 in 2 litre of water at 25° C, assuming that it is completely dissociated.

Answers to Some Intext Questions

- **2.1** $C_6H_6 = 15.28\%$, $CCl_4 = 84.72\%$
- **2.2** 0.459, 0.541
- **2.3** 0.024 M, 0.03 M
- **2.4** 36.946 g
- **2.5** 1.5 mol kg⁻¹, 1.45 mol L⁻¹ 0.0263
- **2.9** 23.4 mm Hg
- **2.10** 121.67 g
- **2.11** 5.077 g
- 2.12 30.96 Pa

<u>Objectives</u>

After studying this Unit, you will be able to

- describe an electrochemical cell and differentiate between galvanic and electrolytic cells;
- apply Nernst equation for calculating the emf of galvanic cell and define standard potential of the cell;
- derive relation between standard potential of the cell, Gibbs energy of cell reaction and its equilibrium constant;
- define resistivity (ρ), conductivity
 (κ) and molar conductivity (Λ_m) of ionic solutions;
- differentiate between ionic (electrolytic) and electronic conductivity:
- describe the method for measurement of conductivity of electrolytic solutions and calculation of their molar conductivity;
- justify the variation of conductivity and molar conductivity of solutions with change in their concentration and define Λ_m^{o} (molar conductivity at zero concentration or infinite dilution);
- enunciate Kohlrausch law and learn its applications;
- understand quantitative aspects of electrolysis;
- describe the construction of some primary and secondary batteries and fuel cells;
- explain corrosion as an electrochemical process.

Chemical reactions can be used to produce electrical energy, conversely, electrical energy can be used to carry out chemical reactions that do not proceed spontaneously.

Electrochemistry is the study of production of electricity from energy released during spontaneous chemical reactions and the use of electrical energy to bring about non-spontaneous chemical transformations. The subject is of importance both for theoretical and practical considerations. A large number of metals, sodium hydroxide, chlorine, fluorine and many other chemicals are produced by electrochemical methods. Batteries and fuel cells convert chemical energy into electrical energy and are used on a large scale in various instruments and devices. The reactions carried out electrochemically can be energy efficient and less polluting. Therefore, study of electrochemistry is important for creating new technologies that are ecofriendly. The transmission of sensory signals through cells to brain and vice versa and communication between the cells are known to have electrochemical origin. Electrochemistry, is therefore, a very vast and interdisciplinary subject. In this Unit, we will cover only some of its important elementary aspects.

3.1 Electrochemical Cells In Class XI, Unit 8, we had studied the construction and functioning of **Daniell cell** (Fig. 3.1). This cell converts the chemical energy liberated during the redox reaction

Solution containing salt of Zinc

salt of Copper

Fig. 3.1: Daniell cell having electrodes of zinc and copper dipping in the solutions of their respective salts.

[†](aq) + Cu(s) (3.1) to electrical energy and has an electrical potential equal to 1.1 V when concentration of Zn^{2+} and Cu^{2+} ions is unity (1 mol dm⁻³)^{*}. Such a device is called a **galvanic** or a **voltaic** cell.

If an external opposite potential is applied in the galvanic cell [Fig. 3.2(a)] and increased slowly, we find that the reaction continues to take place till the opposing voltage reaches the value 1.1 V [Fig. 3.2(b)] when, the reaction stops altogether and no current flows through the cell. Any further increase in the external potential again starts the reaction but in the opposite direction [Fig. 3.2(c)]. It now functions as an **electrolytic cell**, a device for using electrical energy to carry non-spontaneous chemical reactions. Both types of cells are quite important and we shall study some of their salient features in the following pages.

* Strictly speaking activity should be used instead of concentration. It is directly proportional to concentration. In dilute solutions, it is equal to concentration. You will study more about it in higher classes.

As mentioned earlier (Class XI, Unit 8) a galvanic cell is an electrochemical cell that converts the chemical energy of a spontaneous redox reaction into electrical energy. In this device the **Gibbs energy** of the spontaneous redox reaction is converted into electrical work which may be used for running a motor or other electrical gadgets like heater, fan, geyser, etc.

Daniell cell discussed earlier is one such cell in which the following redox reaction occurs.

 $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

This reaction is a combination of two half reactions whose addition gives the overall cell reaction:

(i)	Cu ²⁺	+ 2e ⁻	\rightarrow Cu(s)	(reduction half reaction)	(3.2)
(ii)	Zn(s)	$\rightarrow Zn^{2+}$	+ 2e ⁻	(oxidation half reaction)	(3.3)

These reactions occur in two different portions of the Daniell cell. The reduction half reaction occurs on the copper electrode while the oxidation half reaction occurs on the zinc electrode. These two portions of the cell are also called **half-cells** or **redox couples**. The copper electrode may be called the reduction half cell and the zinc electrode, the oxidation half-cell.

We can construct innumerable number of galvanic cells on the pattern of Daniell cell by taking combinations of different half-cells. Each halfcell consists of a metallic electrode dipped into an electrolyte. The two half-cells are connected by a metallic wire through a voltmeter and a switch externally. The electrolytes of the two half-cells are connected internally through a salt bridge as shown in Fig. 3.1. Sometimes, both the electrodes dip in the same electrolyte solution and in such cases we do not require a salt bridge.

At each electrode-electrolyte interface there is a tendency of metal ions from the solution to deposit on the metal electrode trying to make it positively charged. At the same time, metal atoms of the electrode have a tendency to go into the solution as ions and leave behind the electrons at the electrode trying to make it negatively charged. At equilibrium, there is a separation of charges and depending on the tendencies of the two opposing reactions, the electrode may be positively or negatively charged with respect to the solution. A potential difference develops between the electrode and the electrolyte which is called **electrode potential**. When the concentrations of all the species involved in a half-cell is unity then the electrode potential is known as standard electrode potential. According to IUPAC convention, standard reduction potentials are now called standard electrode potentials. In a galvanic cell, the half-cell in which oxidation takes place is called anode and it has a negative potential with respect to the solution. The other half-cell in which reduction takes place is called **cathode** and it has a positive potential with respect to the solution. Thus, there exists a potential difference between the two electrodes and as soon as the switch is in the *on* position the electrons flow from negative electrode to positive electrode. The direction of current flow is opposite to that of electron flow.

67 Electrochemistry

The potential difference between the two electrodes of a galvanic cell is called the *cell potential* and is measured in volts. The **cell potential** is the difference between the electrode potentials (reduction potentials) of the cathode and anode. It is called the **cell electromotive force (emf)** of the cell when no current is drawn through the cell. It is now an accepted convention that we keep the anode on the left and the cathode on the right while representing the galvanic cell. A galvanic cell is generally represented by putting a vertical line between metal and electrolyte solution and putting a double vertical line between the two electrolytes connected by a salt bridge. Under this convention the emf of the cell is positive and is given by the potential of the half-cell on the right hand side minus the potential of the half-cell on the left and side i.e.,

$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}}$$

This is illustrated by the following example:

Cell reaction:

$$Cu(s) + 2Ag^{+}(aq) \longrightarrow Cu^{2+}(aq) + 2 Ag(s)$$
(3.4)

Half-cell reactions:

Cathode (*reduction*): $2Ag^{+}(aq) + 2e^{-} \rightarrow 2Ag(s)$ (3.5)

Anode (*oxidation*):
$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$
 (3.6)

It can be seen that the sum of (3.5) and (3.6) leads to overall reaction (3.4) in the cell and that silver electrode acts as a cathode and copper electrode acts as an anode. The cell can be represented as:

Cu(s) | Cu²⁺(aq) || Ag⁺(aq) | Ag(s)
and we have
$$E_{cell} = E_{right} - E_{left} = E_{Ag^+|Ag} - E_{Cu^{2+}|Cu}$$
 (3.7)

3.2.1 Measurement of Electrode Potential

Fig. 3.3: Standard Hydrogen Electrode (SHE).

Chemistry 68

The potential of individual half-cell cannot be measured. We can measure only the difference between the two half-cell potentials that gives the emf of the cell. If we arbitrarily choose the potential of one electrode (half-cell) then that of the other can be determined with respect

to this. According to convention, a half-cell called standard hydrogen electrode (Fig.3.3) represented by $Pt(s) | H_2(g) | H^+(aq)$, is assigned a zero potential at all temperatures corresponding to the reaction

$$H^{+}$$
 (aq) + $e^{-} \rightarrow \frac{1}{2} H_{2}(g)$

The standard hydrogen electrode consists of a platinum electrode coated with platinum black. The electrode is dipped in an acidic solution and pure hydrogen gas is bubbled through it. The concentration of both the reduced and oxidised forms of hydrogen is maintained at unity (Fig. 3.3). This implies that the pressure of hydrogen gas is one bar and the concentration of hydrogen ion in the solution is one molar. At 298 K the emf of the cell, standard hydrogen electrode || second half-cell constructed by taking standard hydrogen electrode as anode (reference half-cell) and the other half-cell as cathode, gives the reduction potential of the other half-cell. If the concentrations of the oxidised and the reduced forms of the species in the right hand half-cell are unity, then the cell potential is equal to standard electrode potential, $E_{\rm R}^{\circ}$ of the given half-cell.

 $E^{\ominus} = E^{\ominus}_{R} - E^{\ominus}_{L}$

As E_{L}° for standard hydrogen electrode is zero.

 $E^{\ominus} = E^{\ominus}_{R} - 0 = E^{\ominus}_{R}$

The measured emf of the cell:

Pt(s) | $H_2(g, 1 \text{ bar})$ | $H^+(aq, 1 \text{ M})$ || $Cu^{2+}(aq, 1 \text{ M})$ | Cu

is 0.34 V and it is also the value for the standard electrode potential of the half-cell corresponding to the reaction:

 Cu^{2+} (aq, 1M) + 2 $e^- \rightarrow Cu(s)$

Similarly, the measured emf of the cell:

Pt(s) | $H_2(g, 1 \text{ bar})$ | H^+ (aq, 1 M) || Zn^{2+} (aq, 1M) | Zn

is -0.76 V corresponding to the standard electrode potential of the half-cell reaction:

 Zn^{2+} (aq, 1 M) + $2e^- \rightarrow Zn(s)$

The positive value of the standard electrode potential in the first case indicates that Cu^{2+} ions get reduced more easily than H^+ ions. The reverse process cannot occur, that is, hydrogen ions cannot oxidise Cu (or alternatively we can say that hydrogen gas can reduce copper ion) under the standard conditions described above. Thus, Cu does not dissolve in HCl. In nitric acid it is oxidised by nitrate ion and not by hydrogen ion. The negative value of the standard electrode potential in the second case indicates that hydrogen ions can oxidise zinc (or zinc can reduce hydrogen ions).

In view of this convention, the half reaction for the Daniell cell in Fig. 3.1 can be written as:

Left electrode: Zn(s) \rightarrow Zn²⁺ (aq, 1 M) + 2 e⁻

Right electrode: Cu^{2+} (aq, 1 M) + 2 $e^- \rightarrow Cu(s)$

The overall reaction of the cell is the sum of above two reactions and we obtain the equation:

Zn(s) + Cu²⁺ (aq) →Zn²⁺ (aq) + Cu(s)
emf of the cell =
$$E_{cell}^{0} = E_{R}^{0} - E_{L}^{0}$$

= 0.34V - (-0.76)V = 1.10 V

Sometimes metals like platinum or gold are used as inert electrodes. They do not participate in the reaction but provide their surface for oxidation or reduction reactions and for the conduction of electrons. For example, Pt is used in the following half-cells:

Hydrogen electrode: $Pt(s) \mid H_2(g) \mid H^{+}(aq)$

With half-cell reaction: $H^+(aq) + e^- \rightarrow \frac{1}{2} H_2(g)$ Bromine electrode: $Pt(s) | Br_2(aq) | Br^-(aq)$

69 Electrochemistry

With half-cell reaction: $\frac{1}{2}$ Br₂(aq) + e⁻ \rightarrow Br⁻(aq)

The standard electrode potentials are very important and we can extract a lot of useful information from them. The values of standard electrode potentials for some selected half-cell reduction reactions are given in Table 3.1. If the standard electrode potential of an electrode is greater than zero then its reduced form is more stable compared to hydrogen gas. Similarly, if the standard electrode potential is negative then hydrogen gas is more stable than the reduced form of the species. It can be seen that the standard electrode potential for fluorine is the highest in the Table indicating that fluorine gas (F_{2}) has the maximum tendency to get reduced to fluoride ions (F) and therefore fluorine gas is the strongest oxidising agent and fluoride ion is the weakest reducing agent. Lithium has the lowest electrode potential indicating that lithium ion is the weakest oxidising agent while lithium metal is the most powerful reducing agent in an aqueous solution. It may be seen that as we go from top to bottom in Table 3.1 the standard electrode potential decreases and with this, decreases the oxidising power of the species on the left and increases the reducing power of the species on the right hand side of the reaction. Electrochemical cells are extensively used for determining the pH of solutions, solubility product, equilibrium constant and other thermodynamic properties and for potentiometric titrations.

Intext Questions

- **3.1** How would you determine the standard electrode potential of the system $Mg^{2+} | Mg?$
- 3.2 Can you store copper sulphate solutions in a zinc pot?
- **3.3** Consult the table of standard electrode potentials and suggest three substances that can oxidise ferrous ions under suitable conditions.

3.3 Nernst Equation

We have assumed in the previous section that the concentration of all the species involved in the electrode reaction is unity. This need not be always true. Nernst showed that for the electrode reaction:

 $M^{n+}(aq) + ne^{-} \rightarrow M(s)$

the electrode potential at any concentration measured with respect to standard hydrogen electrode can be represented by:

$$E_{(M^{n+}/M)} = E_{(M^{n+}/M)}^{\ominus} - \frac{RT}{nF} \ln \frac{[M]}{[M^{n+}]}$$

but concentration of solid M is taken as unity and we have

$$E_{(M^{n+}/M)} = E_{(M^{n+}/M)}^{\odot} - \frac{RT}{nF} \ln \frac{1}{[M^{n+}]}$$
(3.8)

 $E_{(M^{n+}/M)}^{\ominus}$ has already been defined, *R* is gas constant (8.314 JK⁻¹ mol⁻¹), *F* is Faraday constant (96487 C mol⁻¹), *T* is temperature in kelvin and $[M^{n+}]$ is the concentration of the species, M^{n+} .
Table 3.1: Standard Electrode Potentials at 298	Κ
---	---

Ions are present as aqueous species and $\rm H_2O$ as liquid; gases and solids are shown by g and s.

Rea	action (Oxidised form + ne ⁻	\rightarrow Reduced form)		E ^e /V
	$F_2(g) + 2e^-$	$\rightarrow 2F^{-}$	1	2.87
	$Co^{3+} + e^{-}$	\rightarrow Co ²⁺		1.81
	$H_2O_2 + 2H^+ + 2e^-$	$\rightarrow 2H_2O$		1.78
	$MnO_4^- + 8H^+ + 5e^-$	\rightarrow Mn ²⁺ + 4H ₂ O		1.51
	Au ³⁺ + 3e ⁻	$\rightarrow Au(s)$		1.40
	$Cl_2(g) + 2e^-$	$\rightarrow 2Cl^{-}$		1.36
	$Cr_2O_7^{2-}$ + 14H ⁺ + 6e ⁻	\rightarrow 2Cr ³⁺ + 7H ₂ O		1.33
	$O_2(g) + 4H^+ + 4e^-$	$\rightarrow 2H_2O$		1.23
	$MnO_2(s) + 4H^+ + 2e^-$	\rightarrow Mn ²⁺ + 2H ₂ O		1.23
	$Br_2 + 2e^-$	$\rightarrow 2 Br^{-}$		1.09
	$NO_3^- + 4H^+ + 3e^-$	\rightarrow NO(g) + 2H ₂ O		0.97
Jt -	$2 Hg^{2+} + 2e^{-}$	\rightarrow Hg ₂ ²⁺	r t	0.92
ageı	$Ag^+ + e^-$	$\rightarrow Ag(s)$	lger	0.80
1g	Fe^{3+} + e^{-}	\rightarrow Fe ²⁺	gg	0.77
lisil	$O_2(g) + 2H^+ + 2e^-$	\rightarrow H ₂ O ₂	Jcir	0.68
oxic	$I_2 + 2e^-$	$\rightarrow 2I^{-}$	redı	0.54
of	$Cu^+ + e^-$	\rightarrow Cu(s)	of 1	0.52
gth	$Cu^{2+} + 2e^{-}$	\rightarrow Cu(s)	ĵth	0.34
eng	$AgCl(s) + e^{-}$	$\rightarrow Ag(s) + Cl^{-}$	eng	0.22
sti	$AgBr(s) + e^{-}$	$\rightarrow Ag(s) + Br^{-}$	str	0.10
ing	2H ⁺ + 2e [−]	$ ightarrow$ H $_2(g)$	ing	0.00
eas	$Pb^{2+} + 2e^{-}$	$\rightarrow Pb(s)$	eas	-0.13
Incr	$Sn^{2+} + 2e^{-}$	\rightarrow Sn(s)	ncr	-0.14
	$Ni^{2+} + 2e^{-}$	$\rightarrow Ni(s)$		-0.25
	$Fe^{2+} + 2e^{-}$	\rightarrow Fe(s)		-0.44
	$Cr^{3+} + 3e^{-}$	\rightarrow Cr(s)		-0.74
	$Zn^{2+} + 2e^{-}$	\rightarrow Zn(s)		-0.76
	$2H_2O + 2e^-$	\rightarrow H ₂ (g) + 2OH ⁻ (aq)		-0.83
	$Al^{3+} + 3e^{-}$	$\rightarrow Al(s)$		-1.66
	$Mg^{2+} + 2e^-$	\rightarrow Mg(s)		-2.36
	$Na^+ + e^-$	\rightarrow Na(s)		-2.71
	$Ca^{2+} + 2e^{-}$	\rightarrow Ca(s)		-2.87
	$K^+ + e^-$	\rightarrow K(s)		-2.93
	$Li^+ + e^-$	\rightarrow Li(s)	+	-3.05

1. A negative E° means that the redox couple is a stronger reducing agent than the H⁺/H₂ couple. 2. A positive E° means that the redox couple is a weaker reducing agent than the H⁺/H₂ couple.

In Daniell cell, the electrode potential for any given concentration of $\text{Cu}^{2\text{+}}$ and $\text{Zn}^{2\text{+}}$ ions, we write

For Cathode:

$$E_{(Cu^{2+}/Cu)} = E_{(Cu^{2+}/Cu)}^{\odot} - \frac{RT}{2F} \ln \frac{1}{\left[Cu^{2+}(aq)\right]}$$
(3.9)

For Anode:

$$E_{(Zn^{2+}/Zn)} = E_{(Zn^{2+}/Zn)}^{\odot} - \frac{RT}{2F} \ln \frac{1}{\left[Zn^{2+}(aq)\right]}$$
(3.10)

The cell potential, $E_{\text{(cell)}} = E_{(Cu^{2+}/Cu)} - E_{(Zn^{2+}/Zn)}$

$$= E_{(Cu^{2+}/Cu)}^{\Theta} - \frac{RT}{2F} \ln \frac{1}{\left[Cu^{2+}(aq)\right]} - E_{(Zn^{2+}/Zn)}^{\Theta} + \frac{RT}{2F} \ln \frac{1}{\left[Zn^{2+}(aq)\right]}$$

$$= E_{(Cu^{2+}/Cu)}^{\Theta} - E_{(Zn^{2+}/Zn)}^{\Theta} - \frac{RT}{2F} \ln \frac{1}{\left[Cu^{2+}(aq)\right]} - \ln \frac{1}{\left[Zn^{2+}(aq)\right]}$$
$$E_{(cell)} = E_{(cell)}^{\Theta} - \frac{RT}{2F} \ln \frac{[Zn^{2+}]}{[Cu^{2+}]}$$
(3.11)

It can be seen that $E_{\text{(cell)}}$ depends on the concentration of both Cu²⁺ and Zn²⁺ ions. It increases with increase in the concentration of Cu²⁺ ions and decrease in the concentration of Zn²⁺ ions.

By converting the natural logarithm in Eq. (3.11) to the base 10 and substituting the values of R, F and T = 298 K, it reduces to

$$E_{\text{(cell)}} = E_{\text{(cell)}}^{\Theta} - \frac{0.059}{2} \log \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]}$$
(3.12)

We should use the same number of electrons (*n*) for both the electrodes and thus for the following cell

Ni(s) | Ni²⁺(aq) || Ag⁺(aq) | Ag

The cell reaction is Ni(s) + $2Ag^{+}(aq) \rightarrow Ni^{2+}(aq) + 2Ag(s)$ The **Nernst equation** can be written as

$$E_{\text{(cell)}} = E_{\text{(cell)}}^{\ominus} - \frac{RT}{2F} \ln \frac{[\text{Ni}^{2+}]}{[\text{Ag}^{+}]^2}$$

and for a general electrochemical reaction of the type:

a A + bB $__{ne^-}$ cC + dD

Nernst equation can be written as:

$$E_{\text{(cell)}} = E_{\text{(cell)}}^{\odot} - \frac{RI}{nF} \ln Q$$
$$= E_{\text{(cell)}}^{\odot} - \frac{RT}{nF} \ln \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$
(3.13)

Represent the cell in which the following reaction takes place Mg(s) + 2Ag⁺(0.0001M) \rightarrow Mg²⁺(0.130M) + 2Ag(s) Calculate its $E_{\text{(cell)}}$ if $E_{\text{(cell)}}^{\odot} = 3.17 \text{ V}.$ The cell can be written as Mg | Mg²⁺(0.130M) || Ag⁺(0.0001M) | Ag Solution $E_{\text{(cell)}} = E_{\text{(cell)}}^{\odot} - \frac{\text{RT}}{2\text{F}} \ln \frac{\left[\text{Mg}^{2+}\right]}{\left[\text{Ag}^{+}\right]^{2}}$ $= 3.17 \text{ V} - \frac{0.059V}{2} \log \frac{0.130}{(0.0001)^{2}} = 3.17 \text{ V} - 0.21 \text{ V} = 2.96 \text{ V}.$

3.3.1 Equilibrium Constant from Nernst Equation If the circuit in Daniell cell (Fig. 3.1) is closed then we note that the reaction

 $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$ (3.1) takes place and as time passes, the concentration of Zn^{2+} keeps on increasing while the concentration of Cu^{2+} keeps on decreasing. At the same time voltage of the cell as read on the voltmeter keeps on decreasing. After some time, we shall note that there is no change in the concentration of Cu^{2+} and Zn^{2+} ions and at the same time, voltmeter gives zero reading. This indicates that equilibrium has been attained. In this situation the Nernst equation may be written as:

$$E_{\text{(cell)}} = 0 = E_{\text{(cell)}}^{\ominus} - \frac{2.303RT}{2F} \log \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]}$$

or $E_{\text{(cell)}}^{\ominus} = \frac{2.303RT}{2F} \log \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]}$

But at equilibrium,

 $\frac{[Zn^{2+}]}{[Cu^{2+}]} = K_c \text{ for the reaction } 3.1$

and at T = 298K the above equation can be written as

$$E_{\text{(cell)}}^{\odot} = \frac{0.059 \text{ V}}{2} \log K_{C} = 1.1 \text{ V} \qquad (E_{\text{(cell)}}^{\odot} = 1.1 \text{ V})$$
$$\log K_{C} = \frac{(1.1 \text{ V} \times 2)}{0.059 \text{ V}} = 37.288$$
$$K_{C} = 2 \times 10^{37} \text{ at } 298 \text{K}.$$

In general,

$$E_{\text{(cell)}}^{\ominus} = \frac{2.303RT}{nF} \log K_C \tag{3.14}$$

Thus, Eq. (3.14) gives a relationship between equilibrium constant of the reaction and standard potential of the cell in which that reaction takes place. Thus, equilibrium constants of the reaction, difficult to measure otherwise, can be calculated from the corresponding E° value of the cell.

3.3.2 Electrochemical Cell and Gibbs Energy of the Reaction

Electrical work done in one second is equal to electrical potential multiplied by total charge passed. If we want to obtain maximum work from a galvanic cell then charge has to be passed reversibly. The reversible work done by a galvanic cell is equal to decrease in its Gibbs energy and therefore, if the emf of the cell is *E* and *nF* is the amount of charge passed and $\Delta_r G$ is the Gibbs energy of the reaction, then

$$\Delta_r G = - nFE_{\text{(cell)}} \tag{3.15}$$

It may be remembered that $E_{\text{(cell)}}$ is an intensive parameter but $\Delta_r G$ is an extensive thermodynamic property and the value depends on n. Thus, if we write the reaction

$$Zn(s) + Cu2+(aq) \longrightarrow Zn2+(aq) + Cu(s)$$

$$\Delta_r G = -2FE_{(cell)}$$
(3.1)

but when we write the reaction

2 Zn (s) + 2 Cu²⁺(aq) \rightarrow 2 Zn²⁺(aq) + 2Cu(s)

$$\Delta_{\rm r}G = -4FE_{\rm (cell)}$$

If the concentration of all the reacting species is unity, then $E_{(cell)} = E_{(cell)}^{\ominus}$ and we have

$$\Delta_{\rm r}G^{\rm \ominus} = -nFE_{\rm (cell)}^{\rm \ominus} \tag{3.16}$$

Thus, from the measurement of $E_{(cell)}^{\ominus}$ we can obtain an important thermodynamic quantity, $\Delta_r G^{\ominus}$, standard Gibbs energy of the reaction. From the latter we can calculate equilibrium constant by the equation: $\Delta_r G^{\ominus} = -RT \ln K.$

Intext Questions

- **3.4** Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10.
- **3.5** Calculate the emf of the cell in which the following reaction takes place: Ni(s) + $2Ag^+$ (0.002 M) \rightarrow Ni²⁺ (0.160 M) + 2Ag(s)

Given that $E_{(cell)}^{\ominus}$ = 1.05 V

3.6 The cell in which the following reaction occurs:

 $2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(s)$ has $E_{cell}^0 = 0.236$ V at 298 K. Calculate the standard Gibbs energy and the equilibrium constant of the cell reaction.

3.4 Conductance of Electrolytic Solutions

It is necessary to define a few terms before we consider the subject of conductance of electricity through electrolytic solutions. The electrical resistance is represented by the symbol '*R*' and it is measured in ohm (Ω) which in terms of SI base units is equal to (kg m²)/(S³ A²). It can be measured with the help of a **Wheatstone bridge** with which you are familiar from your study of physics. The electrical resistance of any object is directly proportional to its length, *l*, and inversely proportional to its area of cross section, *A*. That is,

$$R \propto \frac{l}{A}$$
 or $R = \rho \frac{l}{A}$ (3.17)

The constant of proportionality, ρ (Greek, rho), is called **resistivity** (specific resistance). Its SI units are ohm metre (Ω m) and quite often its submultiple, ohm centimetre (Ω cm) is also used. IUPAC recommends the use of the term resistivity over specific resistance and hence in the rest of the book we shall use the term resistivity. Physically, the resistivity for a substance is its resistance when it is one metre long and its area of cross section is one m². It can be seen that:

 $1 \Omega m = 100 \Omega cm or 1 \Omega cm = 0.01 \Omega m$

The inverse of resistance, R, is called **conductance**, G, and we have the relation:

$$G = \frac{1}{R} = \frac{A}{\rho l} = \kappa \frac{A}{l}$$
(3.18)

The SI unit of conductance is siemens, represented by the symbol 'S' and is equal to ohm⁻¹ (also known as mho) or Ω^{-1} . The inverse of resistivity, called **conductivity** (specific conductance) is represented by the symbol, κ (Greek, kappa). IUPAC has recommended the use of term conductivity over specific conductance and hence we shall use the term conductivity in the rest of the book. The SI units of conductivity are S m⁻¹ but quite often, κ is expressed in S cm⁻¹. Conductivity of a material in S m⁻¹ is its conductance when it is 1 m long and its area of cross section is 1 m². It may be noted that 1 S cm⁻¹ = 100 S m⁻¹.

Material	Conductivity/ S m ⁻¹	Material	Conductivity/ S m ⁻¹
Conductors		Aqueous Solutions	
Sodium	2.1×10^{3}	Pure water	3.5×10^{-5}
Copper	5.9×10^{3}	0.1 M HCl	3.91
Silver	6.2×10^{3}	0.01M KCl	0.14
Gold	4.5×10^{3}	0.01M NaCl	0.12
Iron	1.0×10^{3}	0.1 M HAc	0.047
Graphite	1.2×10	0.01M HAc	0.016
Insulators		Semiconductors	
Glass	1.0×10^{-16}	CuO	1×10 ⁻⁷
Teflon	1.0×10^{-18}	Si	1.5×10^{-2}
		Ge	2.0

Table 3.2: The values of Conductivity of some SelectedMaterials at 298.15 K

It can be seen from Table 3.2 that the magnitude of conductivity varies a great deal and depends on the nature of the material. It also depends on the temperature and pressure at which the measurements are made. Materials are classified into conductors, insulators and semiconductors depending on the magnitude of their conductivity. Metals and their alloys have very large conductivity and are known as conductors. Certain non-metals like carbon-black, graphite and some organic polymers^{*} are also electronically conducting. Substances like glass, ceramics, etc., having very low conductivity are known as insulators. Substances like silicon, doped silicon and gallium arsenide having conductivity between conductors and insulators are called semiconductors and are important electronic materials. Certain materials called superconductors by definition have zero resistivity or infinite conductivity. Earlier, only metals and their alloys at very low temperatures (0 to 15 K) were known to behave as superconductors, but nowadays a number of ceramic materials and mixed oxides are also known to show superconductivity at temperatures as high as 150 K.

Electrical conductance through metals is called metallic or electronic conductance and is due to the movement of electrons. The electronic conductance depends on

- (i) the nature and structure of the metal
- (ii) the number of valence electrons per atom
- (iii) temperature (it decreases with increase of temperature).

^k Electronically conducting polymers – In 1977 MacDiarmid, Heeger and Shirakawa discovered that acetylene gas can be polymerised to produce a polymer, polyacetylene when exposed to vapours of iodine acquires metallic lustre and conductivity. Since then several organic conducting polymers have been made such as polyaniline, polypyrrole and polythiophene. These organic polymers which have properties like metals, being composed wholly of elements like carbon, hydrogen and occasionally nitrogen, oxygen or sulphur, are much lighter than normal metals and can be used for making light-weight batteries. Besides, they have the mechanical properties of polymers such as flexibility so that one can make electronic devices such as transistors that can bend like a sheet of plastic. For the discovery of conducting polymers, MacDiarmid, Heeger and Shirakawa were awarded the Nobel Prize in Chemistry for the year 2000.

As the electrons enter at one end and go out through the other end, the composition of the metallic conductor remains unchanged. The mechanism of conductance through semiconductors is more complex.

We already know (Class XI, Unit 7) that even very pure water has small amounts of hydrogen and hydroxyl ions ($\sim 10^{-7}$ M) which lend it very low conductivity (3.5×10^{-5} S m⁻¹). When electrolytes are dissolved in water, they furnish their own ions in the solution hence its conductivity also increases. The conductance of electricity by ions present in the solutions is called electrolytic or **ionic conductance**. The conductivity of electrolytic (ionic) solutions depends on:

- (i) the nature of the electrolyte added
- (ii) size of the ions produced and their solvation
- (iii) the nature of the solvent and its viscosity
- (iv) concentration of the electrolyte
- (v) temperature (it increases with the increase of temperature).

Passage of direct current through ionic solution over a prolonged period can lead to change in its composition due to electrochemical reactions (Section 3.4.1).

3.4.1 Measurement of the Conductivity of Ionic Solutions We know that accurate measurement of an unknown resistance can be performed on a Wheatstone bridge. However, for measuring the resistance of an ionic solution we face two problems. Firstly, passing direct current (DC) changes the composition of the solution. Secondly, a solution cannot be connected to the bridge like a metallic wire or other solid conductor. The first difficulty is resolved by using an alternating current (AC) source of power. The second problem is solved by using a specially designed vessel called **conductivity cell**. It is available in several designs and two simple ones are shown in Fig. 3.4.

Fig. 3.4 Two different types of conductivity cells.

Basically it consists of two platinum electrodes coated with platinum black (finely divided metallic Pt is deposited on the electrodes electrochemically). These have area of cross section equal to 'A' and are separated by distance 'l'. Therefore, solution confined between these electrodes is a column of length l and area of cross section A. The resistance of such a column of solution is then given by the equation:

$$R = \rho \ \frac{l}{A} = \frac{l}{\kappa A} \tag{3.17}$$

The quantity l/A is called cell constant denoted by the symbol, G^* . It depends on the distance between the electrodes and their area of cross-section and has the dimension of length⁻¹ and can be calculated if we know l and A. Measurement of l and A is not only inconvenient but also unreliable. The cell constant is usually determined by measuring the resistance of the cell containing a solution whose conductivity is already known. For this purpose, we generally use KCl solutions whose conductivity is known accurately at various concentrations (Table 3.3) and at different temperatures. The cell constant, G^* , is then given by the equation:

$$G^* = \frac{l}{A} = \mathcal{R} \ \mathcal{K} \tag{3.18}$$

Table 3.3 :	Conductivity	and Molar	conductivity	of KCl	solutions
	at 298.15K				

Concentration/Molarity Conductivity Molar Conductivity				ductivity	
mol L ⁻¹	mol m ⁻³	S cm ⁻¹	S m^{-1}	S cm ² mol ⁻¹	S m ² mol ⁻¹
1.000	1000	0.1113	11.13	111.3	111.3×10^{-4}
0.100	100.0	0.0129	1.29	129.0	129.0×10^{-4}
0.010	10.00	0.00141	0.141	141.0	141.0×10^{-4}
l					

Once the cell constant is determined, we can use it for measuring the resistance or conductivity of any solution. The set up for the measurement of the resistance is shown in Fig. 3.5.

It consists of two resistances R_3 and R_4 , a variable resistance R_1 and the conductivity cell having the unknown resistance R_2 . The **Wheatstone bridge** is fed by an oscillator O (a source of a.c. power in the audio frequency range 550 to 5000 cycles per second). P is a suitable detector (a headphone or other electronic device) and the bridge is balanced when no current passes through the detector. Under these conditions:

Unknown resistance
$$R_2 = \frac{R_1 R_4}{R_3}$$
 (3.19)

These days, inexpensive conductivity meters are available which can directly read the conductance or resistance of the solution in the conductivity cell. Once the cell constant and the resistance of the solution in the cell is determined, the conductivity of the solution is given by the equation:

$$\kappa = \frac{\text{cell constant}}{R} = \frac{G^*}{R} \tag{3.20}$$

The conductivity of solutions of different electrolytes in the same solvent and at a given temperature differs due to charge and size of the

ions in which they dissociate, the concentration of ions or ease with which the ions move under a potential gradient. It, therefore, becomes necessary to define a physically more meaningful quantity called **molar conductivity** denoted by the symbol Λ_m (Greek, lambda). It is related to the conductivity of the solution by the equation:

Molar conductivity =
$$\Lambda_m = \frac{\kappa}{c}$$
 (3.21)

In the above equation, if κ is expressed in S m⁻¹ and the concentration, c in mol m⁻³ then the units of Λ_m are in S m² mol⁻¹. It may be noted that:

1 mol $m^{-3} = 1000(L/m^3) \times molarity (mol/L)$, and hence

$$\Lambda_m(\text{S cm}^2 \text{ mol}^{-1}) = \frac{\kappa (\text{S cm}^{-1})}{1000 \text{ L m}^{-3} \times \text{molarity (mol L}^{-1})}$$

If we use S cm⁻¹ as the units for κ and mol cm⁻³, the units of concentration, then the units for Λ_m are S cm² mol⁻¹. It can be calculated by using the equation:

$$\Lambda_m(\mathrm{S \ cm^2 \ mol^{-1}}) = \frac{\kappa (\mathrm{S \ cm^{-1}}) \times 1000 \ (\mathrm{cm^3 / L})}{\mathrm{molarity} \ (\mathrm{mol / L})}$$

Both type of units are used in literature and are related to each other by the equations:

 $1 \text{ S } \text{m}^2 \text{mol}^{-1} = 10^4 \text{ S } \text{cm}^2 \text{mol}^{-1} \text{ or} \\ 1 \text{ S } \text{cm}^2 \text{mol}^{-1} = 10^{-4} \text{ S } \text{m}^2 \text{mol}^{-1}.$

Resistance of a conductivity cell filled with 0.1 mol L^{-1} KCl solution is Example 3.4 100 Ω . If the resistance of the same cell when filled with 0.02 mol L⁻¹ KCl solution is 520 Ω , calculate the conductivity and molar conductivity of 0.02 mol L^{-1} KCl solution. The conductivity of 0.1 mol L^{-1} KCl solution is 1.29 S/m. Solution The cell constant is given by the equation: Cell constant = G^* = conductivity × resistance = 1.29 S/m × 100 Ω = 129 m⁻¹ = 1.29 cm⁻¹ Conductivity of 0.02 mol L^{-1} KCl solution = cell constant / resistance $=\frac{G^*}{R}=\frac{129 \text{ m}^{-1}}{520 \Omega}=0.248 \text{ S m}^{-1}$ $= 0.02 \text{ mol } L^{-1}$ Concentration $= 1000 \times 0.02 \text{ mol m}^{-3} = 20 \text{ mol m}^{-3}$ Molar conductivity = $A_m = \frac{\kappa}{c}$ $= \frac{248 \times 10^{-3} \text{ S m}^{-1}}{20 \text{ mol m}^{-3}} = 124 \times 10^{-4} \text{ S m}^2 \text{mol}^{-1}$ $\kappa = \frac{1.29 \text{ cm}^{-1}}{520 \Omega} = 0.248 \times 10^{-2} \text{ S cm}^{-1}$ Alternatively,

and
$$A_{m} = \kappa \times 1000 \text{ cm}^{3} \text{ L}^{-1} \text{ molarity}^{-1}$$
$$= \frac{0.248 \times 10^{-2} \text{ S cm}^{-1} \times 1000 \text{ cm}^{3} \text{ L}^{-1}}{0.02 \text{ mol } \text{L}^{-1}}$$
$$= 124 \text{ S cm}^{2} \text{ mol}^{-1}$$
Example 3.5 The electrical resistance of a column of 0.05 mol L⁻¹ NaOH solution of diameter 1 cm and length 50 cm is 5.55 × 10³ ohm. Calculate its resistivity, conductivity and molar conductivity.
Solution $A = \pi r^{2} = 3.14 \times 0.5^{2} \text{ cm}^{2} = 0.785 \text{ cm}^{2} = 0.785 \times 10^{-4} \text{ m}^{2}$ $l = 50 \text{ cm} = 0.5 \text{ m}$
 $R = \frac{\rho l}{A} \text{ or } \rho = \frac{RA}{l} = \frac{5.55 \times 10^{3} \Omega \times 0.785 \text{ cm}^{2}}{50 \text{ cm}} = 87.135 \Omega \text{ cm}$
Conductivity $\kappa = \frac{1}{\rho} = \left(\frac{1}{87.135}\right) \text{ S cm}^{-1}$ $= 0.01148 \text{ S cm}^{-1}$
Molar conductivity, $A_{m} = \frac{\kappa \times 1000}{c} \text{ cm}^{3} \text{ L}^{-1}$
 $R = \frac{\rho (1000 \text{ cm}^{3} \text{ L}^{-1})}{\rho (188 \text{ S cm}^{-1})}$
How want to calculate the values of different quantities in terms of 'm' instead of 'cm',
 $\rho = \frac{RA}{l}$ $= \frac{5.55 \times 10^{3} \Omega \times 0.785 \times 10^{-4} \text{ m}^{2}}{0.5 \text{ m}} = 87.135 \times 10^{-2} \Omega \text{ m}$
 $\kappa = \frac{1}{\rho} = \frac{100}{87.135} \Omega \text{ m} = 1.148 \text{ S m}^{-1}$
and $A_{m} = \frac{\kappa}{c} = \frac{1.148 \text{ S m}^{-1}}{50 \text{ cm}^{-3}} = 229.6 \times 10^{-4} \text{ S m}^{2} \text{ mol}^{-1}.$

3.4.2 Variation of Conductivity and Molar Conductivity with Concentration Both conductivity and molar conductivity change with the concentration of the electrolyte. Conductivity always decreases with decrease in concentration both, for weak and strong electrolytes. This can be explained by the fact that the number of ions per unit volume that carry the current in a solution decreases on dilution. The conductivity of a solution at any given concentration is the conductance of one unit volume of solution kept between two

platinum electrodes with unit area of cross section and at a distance of unit length. This is clear from the equation:

 $G = \frac{\kappa A}{l} = \kappa$ (both *A* and *l* are unity in their appropriate units in m or cm)

Molar conductivity of a solution at a given concentration is the conductance of the volume *V* of solution containing one mole of electrolyte kept between two electrodes with area of cross section *A* and distance of unit length. Therefore,

$$\Lambda_{m} = \frac{\kappa A}{l} = \kappa$$

Since l = 1 and A = V (volume containing 1 mole of electrolyte)

Strong Electrolytes

 $\Lambda_m = \kappa \ V \tag{3.22}$

Molar conductivity increases with decrease in concentration. This is because the total volume, V, of solution containing one mole of electrolyte also increases. It has been found that decrease in κ on dilution of a solution is more than compensated by increase in its volume. Physically, it means that at a given concentration, Λ_m can be defined as the conductance of the electrolytic solution kept between the electrodes of a conductivity cell at unit distance but having area of cross section large enough to accommodate sufficient volume of solution that contains one mole of the electrolyte. When concentration approaches zero, the molar conductivity known as limiting molar is conductivity and is represented by the symbol Λ_m° . The variation in Λ_m with concentration is different (Fig. 3.6) for strong and weak electrolytes.

For strong electrolytes, Λ_m increases slowly with dilution and can be represented by the equation:

$$\Lambda_m = \Lambda_m^{\circ} - A \ c^{\frac{1}{2}} \tag{3.23}$$

It can be seen that if we plot (Fig. 3.12) Λ_m against $c^{1/2}$, we obtain a straight line with intercept equal to Λ_m° and slope equal to '-A'. The value of the constant 'A' for a given solvent and temperature depends on the type of electrolyte i.e., the charges on the cation and anion produced on the dissociation of the electrolyte in the solution. Thus, NaCl, CaCl₂, MgSO₄ are known as 1-1, 2-1 and 2-2 electrolytes respectively. All electrolytes of a particular type have the same value for 'A'.

Example 3.6 The molar conductivity of KCl solutions at different concentrations at 298 K are given below:

$c/mol L^{-1}$	$\Lambda_m/S \text{ cm}^2 \text{ mol}^{-1}$
0.000198	148.61
0.000309	148.29
0.000521	147.81
0.000989	147.09

Show that a plot between Λ_m and $c^{1/2}$ is a straight line. Determine the values of Λ_m° and A for KCl.

Solution Taking the square root of concentration we obtain:

$c^{1/2}/(\text{mol } L^{-1})^{1/2}$	$\Lambda m/S \text{ cm}^2 \text{mol}^{-1}$
0.01407	148.61
0.01758	148.29
0.02283	147.81
0.03145	147.09

A plot of Λ_m (y-axis) and $c^{1/2}$ (x-axis) is shown in (Fig. 3.7).

It can be seen that it is nearly a straight line. From the intercept $(c^{1/2} = 0)$, we find that

 Λ_m° = 150.0 S cm² mol⁻¹ and

A = - slope = 87.46 S cm² mol⁻¹/(mol/L⁻¹)^{1/2}.

Kohlrausch examined Λ_m° values for a number of strong electrolytes and observed certain regularities. He noted that the difference in Λ_m° of the electrolytes NaX and KX for any X is nearly constant. For example at 298 K:

$$\Lambda_{m \text{ (KCI)}}^{\circ} - \Lambda_{m \text{ (NaCI)}}^{\circ} = \Lambda_{m \text{ (KBr)}}^{\circ} - \Lambda_{m \text{ (NaBr)}}^{\circ}$$
$$= \Lambda_{m \text{ (KI)}}^{\circ} - \Lambda_{m \text{ (NaI)}}^{\circ} \simeq 23.4 \text{ S cm}^{2} \text{ mol}^{-1}$$

and similarly it was found that

$$\Lambda^{\circ}_{m \text{ (NaBr)}} - \Lambda^{\circ}_{m \text{ (NaCl)}} = \Lambda^{\circ}_{m \text{ (KBr)}} - \Lambda^{\circ}_{m \text{ (KCl)}} \simeq 1.8 \text{ S } \text{cm}^2 \text{ mol}^{-1}$$

On the basis of the above observations he enunciated **Kohlrausch law of independent migration of ions**. The law states that *limiting* molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte. Thus, if λ_{Na}^{+} and λ_{Cl}^{-} are limiting molar conductivity of the sodium and chloride ions respectively, then the limiting molar conductivity for sodium chloride is given by the equation:

$$\Lambda_{m (\text{NaCl})}^{\circ} = \lambda_{\text{Na}}^{\circ} + \lambda_{\text{Cl}}^{\circ}$$
(3.24)

In general, if an electrolyte on dissociation gives ν_+ cations and ν_- anions then its limiting molar conductivity is given by:

$$\Lambda_m^\circ = \nu_+ \lambda_+^\circ + \nu_- \lambda_-^\circ \tag{3.25}$$

Here, λ_{+}° and λ_{-}° are the limiting molar conductivities of the cation and anion respectively. The values of λ° for some cations and anions at 298 K are given in Table 3.4.

Table 3.4:Limiting Molar Conductivity for someIons in Water at 298 K

Ion	λ ⁰ /(S cm ² mol ⁻¹)	Ion	λ ⁰ /(S cm ² mol ⁻¹)
H⁺	349.6	OH⁻	199.1
Na⁺	50.1	Cl-	76.3
K+	73.5	Br⁻	78.1
Ca ²⁺	119.0	CH₃COO⁻	40.9
Mg ²⁺	106.0	SO_4^{2-}	160.0

Weak Electrolytes

Weak electrolytes like acetic acid have lower degree of dissociation at higher concentrations and hence for such electrolytes, the change in Λ_m with dilution is due to increase in the degree of dissociation and consequently the number of ions in total volume of solution that contains 1 mol of electrolyte. In such cases Λ_m increases steeply (Fig. 3.12) on dilution, especially near lower concentrations. Therefore, Λ_m° cannot be obtained by extrapolation of Λ_m to zero concentration. At infinite dilution (i.e., concentration $c \rightarrow$ zero) electrolyte dissociates completely ($\alpha = 1$), but at such low concentration the conductivity of the solution is so low that it cannot be measured accurately. Therefore, Λ_m° for weak electrolytes is obtained by using Kohlrausch law of independent migration of ions (Example 3.8). At any concentration c, if α is the degree of dissociation

then it can be approximated to the ratio of molar conductivity Λ_m at the concentration c to limiting molar conductivity, Λ_m^0 . Thus we have:

$$\alpha = \frac{\Lambda_m}{\Lambda_m^\circ} \tag{3.26}$$

But we know that for a weak electrolyte like acetic acid (Class XI, Unit 7),

$$K_{a} = \frac{c\alpha^{2}}{(1-\alpha)} = \frac{cA_{m}^{2}}{A_{m}^{o^{2}}\left(1-\frac{A_{m}}{A_{m}^{o}}\right)} = \frac{cA_{m}^{2}}{A_{m}^{o}\left(A_{m}^{o}-A_{m}\right)}$$
(3.27)

Applications of Kohlrausch law

Using Kohlrausch law of independent migration of ions, it is possible to calculate $\Lambda^{_0}_m$ for any electrolyte from the $\lambda^{_0}$ of individual ions. Moreover, for weak electrolytes like acetic acid it is possible to determine the value of its dissociation constant once we know the $\Lambda^{_0}_m$ and Λ_m at a given concentration *c*.

Example 3.7	Calculate Λ_m^{0} for CaCl ₂ and MgSO ₄ from the data given in Table 3.4.
<u>Solution</u>	We know from Kohlrausch law that
	$\Lambda_{m(CaCl_2)}^{o} = \lambda_{Ca^{2*}}^{o} + 2\lambda_{Cl^{-}}^{o} = 119.0 \text{ S cm}^2 \text{ mol}^{-1} + 2(76.3) \text{ S cm}^2 \text{ mol}^{-1}$ = (119.0 + 152.6) S cm ² mol ⁻¹
	$= 271.6 \text{ S cm}^2 \text{ mol}^{-1}$
	$\Lambda_{m(MgSO_4)}^{o} = \lambda_{Mg^{2*}}^{o} + \lambda_{SO_4^{2-}}^{o} = 106.0 \text{ S cm}^2 \text{ mol}^{-1} + 160.0 \text{ S cm}^2 \text{ mol}^{-1}$
	$= 266 \text{ S cm}^2 \text{ mol}^{-1}$.
Example 3.8	Λ_m° for NaCl, HCl and NaAc are 126.4, 425.9 and 91.0 S cm ² mol ⁻¹ respectively. Calculate Λ° for HAc.
<u>Solution</u>	$\Lambda^{o}_{m(\rm HAc)} = \lambda^{o}_{\rm H^{*}} + \lambda^{o}_{\rm Ac^{-}} = \lambda^{o}_{\rm H^{*}} + \lambda^{o}_{\rm Cl^{-}} + \lambda^{o}_{\rm Ac^{-}} + \lambda^{o}_{\rm Na^{*}} - \lambda^{o}_{\rm Cl^{-}} - \lambda^{o}_{\rm Na^{*}}$
	$= \Lambda_{m(\text{HCl})}^{\text{o}} + \Lambda_{m(\text{NaAc})}^{\text{o}} - \Lambda_{m(\text{NaCl})}^{\text{o}}$
	= $(425.9 + 91.0 - 126.4)$ S cm ² mol ⁻¹
	$= 390.5 \text{ S cm}^2 \text{ mol}^{-1}$.
Example 3.9	The conductivity of 0.001028 mol L ⁻¹ acetic acid is 4.95×10^{-5} S cm ⁻¹ . Calculate its dissociation constant if Λ_m^0 for acetic acid is 390.5 S cm ² mol ⁻¹ .
<u>Solution</u>	$A_m = \frac{\kappa}{c} = \frac{4.95 \times 10^{-5} \mathrm{S cm^{-1}}}{0.001028 \mathrm{mol L^{-1}}} \times \frac{1000 \mathrm{cm^3}}{\mathrm{L}} = 48.15 \mathrm{S cm^3 mol^{-1}}$
	$\alpha = \frac{\Lambda_m}{\Lambda_m^{\circ}} = \frac{48.15 \text{ S} \text{ cm}^2 \text{mol}^{-1}}{390.5 \text{ S} \text{ cm}^2 \text{ mol}^{-1}} = 0.1233$
	k = $\frac{c\alpha^2}{(1-\alpha)} = \frac{0.001028 \text{mol}\text{L}^{-1} \times (0.1233)^2}{1-0.1233} = 1.78 \times 10^{-5} \text{mol}\text{L}^{-1}$

Intext Questions

3.7 Why does the conductivity of a solution decrease with dilution?

- **3.8** Suggest a way to determine the Λ_m° value of water.
- **3.9** The molar conductivity of 0.025 mol L⁻¹ methanoic acid is 46.1 S cm² mol⁻¹. Calculate its degree of dissociation and dissociation constant. Given $\lambda^0(H^+)$ = 349.6 S cm² mol⁻¹ and λ^0 (HCOO⁻) = 54.6 S cm² mol⁻¹.

3.5 Electrolytic Cells and Electrolysis In an **electrolytic cell** external source of voltage is used to bring about a chemical reaction. The electrochemical processes are of great importance in the laboratory and the chemical industry. One of the simplest electrolytic cell consists of two copper strips dipping in an aqueous solution of copper sulphate. If a DC voltage is applied to the two electrodes, then Cu^{2+} ions discharge at the cathode (negatively charged) and the following reaction takes place:

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu \ (s)$$
 (3.28)

Copper metal is deposited on the cathode. At the anode, copper is converted into Cu^{2+} ions by the reaction:

$$Cu(s) \to Cu^{2+}(s) + 2e^{-}$$
 (3.29)

Thus copper is dissolved (oxidised) at anode and deposited (reduced) at cathode. This is the basis for an industrial process in which impure copper is converted into copper of high purity. The impure copper is made an anode that dissolves on passing current and pure copper is deposited at the cathode. Many metals like Na, Mg, Al, etc. are produced on large scale by electrochemical reduction of their respective cations where no suitable chemical reducing agents are available for this purpose.

Sodium and magnesium metals are produced by the electrolysis of their fused chlorides and aluminium is produced (Class XII, Unit 6) by electrolysis of aluminium oxide in presence of cryolite.

Quantitative Aspects of Electrolysis

Michael Faraday was the first scientist who described the quantitative aspects of electrolysis. Now Faraday's laws also flow from what has been discussed earlier.

Faraday's Laws of Electrolysis

After his extensive investigations on electrolysis of solutions and melts of electrolytes, Faraday published his results during 1833-34 in the form of the following well known Faraday's two laws of electrolysis:

- (i) *First Law*: The amount of chemical reaction which occurs at any electrode during electrolysis by a current is proportional to the quantity of electricity passed through the electrolyte (solution or melt).
- (ii) Second Law: The amounts of different substances liberated by the same quantity of electricity passing through the electrolytic solution are proportional to their chemical equivalent weights (Atomic Mass of Metal ÷ Number of electrons required to reduce the cation).

There were no constant current sources available during Faraday's times. The general practice was to put a coulometer (a standard electrolytic cell) for determining the quantity of electricity passed from the amount of metal (generally silver or copper) deposited or consumed. However, coulometers are now obsolete and we now have constant current (*I*) sources available and the quantity of electricity *Q*, passed is given by

$$Q = It$$

Q is in coloumbs when I is in ampere and t is in second.

The amount of electricity (or charge) required for oxidation or reduction depends on the stoichiometry of the electrode reaction. For example, in the reaction:

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s) \tag{3.30}$$

One mole of the electron is required for the reduction of one mole of silver ions.

We know that charge on one electron is equal to 1.6021×10^{-19} C. Therefore, the charge on one mole of electrons is equal to:

$$N_A \times 1.6021 \times 10^{-19}$$
 C = 6.02×10^{23} mol⁻¹ × 1.6021×10^{-19}
C = 96487 C mol⁻¹

This quantity of electricity is called $\mathbf{Faraday}$ and is represented by the symbol \mathbf{F} .

For approximate calculations we use $1F \simeq 96500 \text{ C mol}^{-1}$.

For the electrode reactions:

$$Mg^{2^+}(l) + 2e^- \longrightarrow Mg(s)$$
 (3.31)

$$Al^{3+}(l) + 3e^{-} \longrightarrow Al(s)$$
(3.32)

It is obvious that one mole of Mg^{2+} and Al^{3+} require 2 mol of electrons (2F) and 3 mol of electrons (3F) respectively. The charge passed through the electrolytic cell during electrolysis is equal to the product of current in amperes and time in seconds. In commercial production of metals, current as high as 50,000 amperes are used that amounts to about 0.518 F per second.

Example 3.10	A solution of $CuSO_4$ is electrolysed for 10 minutes with a current of 1.5 amperes. What is the mass of copper deposited at the cathode?
<u>Solution</u>	t = 600 s charge = current × time = 1.5 A × 600 s = 900 C
	According to the reaction:
	$Cu^{2+}(aq) + 2e^{-} = Cu(s)$
	We require 2F or 2×96487 C to deposit 1 mol or 63 g of Cu.
	For 900 C, the mass of Cu deposited
	= $(63 \text{ g mol}^{-1} \times 900 \text{ C})/(2 \times 96487 \text{ C mol}^{-1}) = 0.2938 \text{ g}.$

3.5.1 Products of Electrolysis Products of electrolysis depend on the nature of material being electrolysed and the type of electrodes being used. If the electrode is inert (e.g., platinum or gold), it does not participate in the chemical reaction and acts only as source or sink for electrons. On the other hand, if the electrode is reactive, it participates in the electrode reaction. Thus, the products of electrolysis may be different for reactive and inert

electrodes. The products of electrolysis depend on the different oxidising and reducing species present in the electrolytic cell and their standard electrode potentials. Moreover, some of the electrochemical processes although feasible, are so slow kinetically that at lower voltages these do not seem to take place and extra potential (called *overpotential*) has to be applied, which makes such process more difficult to occur.

For example, if we use molten NaCl, the products of electrolysis are sodium metal and Cl_2 gas. Here we have only one cation (Na⁺) which is reduced at the cathode (Na⁺ + e⁻ \rightarrow Na) and one anion (Cl⁻) which is oxidised at the anode (Cl⁻ \rightarrow /₂Cl₂ + e⁻). During the electrolysis of aqueous sodium chloride solution, the products are NaOH, Cl₂ and H₂. In this case besides Na⁺ and Cl⁻ ions we also have H⁺ and OH⁻ ions along with the solvent molecules, H₂O.

At the cathode there is competition between the following reduction reactions:

Na^+ (aq) + $e^- \rightarrow Na$ (s)	$E_{(\text{cell})}^{\ominus} = -2.71 \text{ V}$
$\text{H}^{\scriptscriptstyle +}$ (aq) + $\text{e}^{\scriptscriptstyle -} \rightarrow ^{1\!\!/_{\!\!2}} \text{H}_2$ (g)	$E_{(\text{cell})}^{\ominus}$ = 0.00 V

The reaction with higher value of E^{\ominus} is preferred and therefore, the reaction at the cathode during electrolysis is:

$$H^{+}$$
 (aq) + $e^{-} \rightarrow \frac{1}{2} H_{2}$ (g) (3.33)

but H^{+} (aq) is produced by the dissociation of $H_{2}O$, i.e.,

$$H_2O(l) \rightarrow H^+(aq) + OH^-(aq)$$
 (3.34)

Therefore, the net reaction at the cathode may be written as the sum of (3.33) and (3.34) and we have

$$H_{2}O(l) + e^{-} \rightarrow \frac{1}{2}H_{2}(g) + OH^{-}$$
 (3.35)

At the anode the following oxidation reactions are possible:

$$Cl^{-}(aq) \rightarrow \frac{1}{2} Cl_{2} (g) + e^{-} \qquad E_{(cell)}^{\odot} = 1.36 V$$
 (3.36)

$$2H_2O(l) \rightarrow O_2(g) + 4H^+(aq) + 4e^- E_{(cell)}^{\ominus} = 1.23 V$$
 (3.37)

The reaction at anode with lower value of E° is preferred and therefore, water should get oxidised in preference to Cl⁻ (aq). However, on account of overpotential of oxygen, reaction (3.36) is preferred. Thus, the net reactions may be summarised as:

NaCl (aq)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)
Cathode: $H_2O(l) + e^- \rightarrow \frac{1}{2} H_2(g) + OH^-$ (aq)
Anode: Cl^- (aq) $\rightarrow \frac{1}{2} Cl_2(g) + e^-$
Net reaction:
NaCl(aq) + $H_2O(l) \rightarrow Na^+(aq) + OH^-(aq) + \frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g)$

The standard electrode potentials are replaced by electrode potentials given by Nernst equation (Eq. 3.8) to take into account the concentration effects. During the electrolysis of sulphuric acid, the following processes are possible at the anode:

$$2H_2O(l) \rightarrow O_2(g) + 4H^+(aq) + 4e^- \qquad E_{(cell)}^{\ominus} = +1.23 \text{ V}$$
 (3.38)

87 Electrochemistry

ΠO

 $2SO_4^{2-}$ (aq) $\rightarrow S_2O_8^{2-}$ (aq) + $2e^- E_{(cell)}^{\ominus} = 1.96 V$ (3.39)

For dilute sulphuric acid, reaction (3.38) is preferred but at higher concentrations of H_2SO_4 , reaction (3.39) is preferred.

3.6 Batteries

Any battery (actually it may have one or more than one cell connected in series) or cell that we use as a source of electrical energy is basically a galvanic cell where the chemical energy of the redox reaction is converted into electrical energy. However, for a battery to be of practical use it should be reasonably light, compact and its voltage should not vary appreciably during its use. There are mainly two types of batteries.

3.6.1 Primary Batteries

In the primary batteries, the reaction occurs only once and after use over a period of time battery becomes dead and cannot be reused

Zinc cup MnO_2 + (anode) carbon black + NH_4Cl paste

Fig. 3.8: A commercial dry cell consists of a graphite (carbon) cathode in a zinc container; the latter acts as the anode.

Chemistry 88

again. The most familiar example of this type is the dry cell (known as Leclanche cell after its discoverer) which is used commonly in our transistors and clocks. The cell consists of a zinc container that also acts as anode and the cathode is a carbon (graphite) rod surrounded by powdered manganese dioxide and carbon (Fig.3.8). The space between the electrodes is filled by a moist paste of ammonium chloride (NH₄Cl) and zinc chloride (ZnCl₂). The electrode reactions are complex, but they can be written approximately as follows :

Anode: $Zn(s) \rightarrow Zn^{2+} + 2e^{-}$

Cathode: MnO_2 + NH_4^+ + $e^- \rightarrow MnO(OH)$ + NH_3

In the reaction at cathode, manganese is reduced from the + 4 oxidation state to the +3 state. Ammonia produced in the reaction forms a complex with Zn^{2+} to give $[Zn (NH_3)_4]^{2+}$. The cell has a potential of nearly 1.5 V.

Mercury cell, (Fig. 3.9) suitable for low current devices like hearing aids, watches, etc. consists of zinc – mercury amalgam as anode and a paste of HgO and carbon as the cathode. The electrolyte is a paste of KOH and ZnO. The electrode reactions for the cell are given below:

Anode:	$Zn(Hg) + 2OH^{-} \rightarrow ZnO(s) + H_2O + 2e^{-}$
Cathode:	$HgO + H_2O + 2e^- \rightarrow Hg(l) + 2OH^-$

The overall reaction is represented by $Zn(Hg) + HgO(s) \rightarrow ZnO(s) + Hg(l)$

The cell potential is approximately 1.35 V and remains constant during its life as the overall reaction does not involve any ion in solution whose concentration can change during its life time.

Fig. 3.9 Commonly used mercury cell. The reducing agent is zinc and the oxidising agent is mercury (II) oxide.

3.6.2 Secondary Batteries

A secondary cell after use can be recharged by passing current through it in the opposite direction so that it can be used again. A good secondary cell can undergo a large number of discharging and charging cycles. The most important secondary cell is the lead storage battery (Fig. 3.10) commonly used in automobiles and invertors. It consists of a lead anode and a grid of lead packed with lead dioxide (PbO₂) as cathode. A 38% solution of sulphuric acid is used as an electrolyte.

The cell reactions when the battery is in use are given below: Anode: $Pb(s) + SO_4^{2-}(aq) \rightarrow PbSO_4(s) + 2e^-$ Cathode: $PbO_2(s) + SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightarrow PbSO_4(s) + 2H_2O(1)$

i.e., overall cell reaction consisting of cathode and anode reactions is:

 $Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) + 2H_2O(l)$

On charging the battery the reaction is reversed and $PbSO_4(s)$ on anode and cathode is converted into Pb and PbO_2 , respectively.

Fig. 3.10: The Lead storage battery.

Another important secondary cell is the nickel-cadmium cell (Fig. 3.11) which has longer life than the lead storage cell but more expensive to manufacture. We shall not go into details of working of the cell and the electrode reactions during charging and discharging. The overall reaction during discharge is:

3.7 Fuel Cells

Fig. 3.11

A rechargeable

in a jelly roll

hydroxide.

nickel-cadmium cell

separated by a layer

sodium or potassium

arrangement and

soaked in moist

Production of electricity by thermal plants is not a very efficient method and is a major source of pollution. In such plants, the chemical energy (heat of combustion) of fossil fuels (coal, gas or oil) is first used for converting water into high pressure steam. This is then used to run a turbine to produce electricity. We know that a galvanic cell directly converts chemical energy into electricity and is highly efficient. It is now possible to make such cells in which reactants are fed continuously to the electrodes and products are removed continuously from the electrolyte compartment. **Galvanic cells** that are designed to convert the energy of combustion of fuels like hydrogen, methane, methanol, etc. directly into electrical energy are called **fuel cells**.

Cd (s) + 2Ni(OH)₃ (s) \rightarrow CdO (s) + 2Ni(OH)₂ (s) + H₂O (1)

One of the most successful fuel cells uses the reaction of hydrogen with oxygen to form water (Fig. 3.12). The cell was used for providing electrical power in the Apollo space programme. The water vapours produced during the reaction were condensed and added to the drinking water supply for the astronauts. In the cell, hydrogen and oxygen are bubbled through porous carbon electrodes into concentrated aqueous sodium hydroxide solution. Catalysts like finely divided platinum or palladium metal are incorporated into the electrodes for increasing the rate of electrode reactions. The electrode reactions are given below:

Fig. 3.12: *Fuel cell using* H_2 *and* O_2 *produces electricity.*

Cathode: $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$ Anode: $2H_2(g) + 4OH^-(aq) \rightarrow 4H_2O(l) + 4e^-$ Overall reaction being: $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$

The cell runs continuously as long as the reactants are supplied. Fuel cells produce electricity with an efficiency of about 70 % compared

to thermal plants whose efficiency is about 40%. There has been tremendous progress in the development of new electrode materials, better catalysts and electrolytes for increasing the efficiency of fuel cells. These have been used in automobiles on an experimental basis. Fuel cells are pollution free and in view of their future importance, a variety of fuel cells have been fabricated and tried.

3.8 Corrosion

Corrosion slowly coats the surfaces of metallic objects with oxides or other salts of the metal. The rusting of iron, tarnishing of silver, development of green coating on copper and bronze are some of the

> examples of corrosion. It causes enormous damage to buildings, bridges, ships and to all objects made of metals especially that of iron. We lose crores of

> In corrosion, a metal is oxidised by loss of electrons to oxygen and formation of oxides. Corrosion of iron (commonly known as rusting) occurs in presence of

rupees every year on account of corrosion.

Oxidation: Fe (s) \rightarrow Fe²⁺ (aq) +2e⁻ Reduction: O₂ (g) + 4H⁺(aq) +4e⁻ \rightarrow 2H₂O(l) Atomospheric

oxidation: $2Fe^{2+}(aq) + 2H_2O(l) + \frac{1}{2}O_2(g) \rightarrow Fe_2O_3(s) + 4H^+(aq)$

Fig. 3.13: Corrosion of iron in atmosphere

water and air. The chemistry of corrosion is quite complex but it may be considered essentially as an electrochemical phenomenon. At a particular spot (Fig. 3.13) of an object made of iron, oxidation takes place and that spot behaves as anode and we can write the reaction

Anode: 2 Fe (s)
$$\longrightarrow$$
 2 Fe²⁺ + 4 e⁻ $E_{(Fe^{2+}/Fe)}^{\ominus}$ = - 0.44 V

Electrons released at anodic spot move through the metal and go to another spot on the metal and reduce oxygen in the presence of H^+ (which is believed to be available from H_2CO_3 formed due to dissolution of carbon dioxide from air into water. Hydrogen ion in water may also be available due to dissolution of other acidic oxides from the atmosphere). This spot behaves as cathode with the reaction

Cathode: O₂(g) + 4 H⁺(aq) + 4 e⁻ \longrightarrow 2 H₂O (l) $E^{\odot}_{\text{H}^{+}|\text{O}_{2}|\text{H}_{2}\text{O}}$ =1.23 V

The overall reaction being:

 $2Fe(s) + O_2(g) + 4H^+(aq) \longrightarrow 2Fe^{2+}(aq) + 2H_2O(l)$ $E_{(cell)}^{\ominus} = 1.67 V$ The ferrous ions are further oxidised by atmospheric oxygen to

ferric ions which come out as rust in the form of hydrated ferric oxide (Fe₂O₃. x H₂O) and with further production of hydrogen ions.

Prevention of corrosion is of prime importance. It not only saves money but also helps in preventing accidents such as a bridge collapse or failure of a key component due to corrosion. One of the simplest methods of preventing corrosion is to prevent the surface of the metallic object to come in contact with atmosphere. This can be done by covering the surface with paint or by some chemicals (e.g. bisphenol). Another simple method is to cover the surface by other metals (Sn, Zn, etc.) that are inert or react to save the object. An electrochemical method is to provide a sacrificial electrode of another metal (like Mg, Zn, etc.) which corrodes itself but saves the object.

Intext Questions

- **3.13** Write the chemistry of recharging the lead storage battery, highlighting all the materials that are involved during recharging.
- **3.14** Suggest two materials other than hydrogen that can be used as fuels in fuel cells.
- **3.15** Explain how rusting of iron is envisaged as setting up of an electrochemical cell.

The Hydrogen Economy

At present the main source of energy that is driving our economy is fossil fuels such as coal, oil and gas. As more people on the planet aspire to improve their standard of living, their energy requirement will increase. In fact, the per capita consumption of energy used is a measure of development. Of course, it is assumed that energy is used for productive purpose and not merely wasted. We are already aware that carbon dioxide produced by the combustion of fossil fuels is resulting in the 'Greenhouse Effect'. This is leading to a rise in the temperature of the Earth's surface, causing polar ice to melt and ocean levels to rise. This will flood low-lying areas along the coast and some island nations such as Maldives face total submergence. In order to avoid such a catastrope, we need to limit our use of carbonaceous fuels. Hydrogen provides an ideal alternative as its combustion results in water only. Hydrogen production must come from splitting water using solar energy. Therefore, hydrogen can be used as a renewable and non polluting source of energy. This is the vision of the Hydrogen Economy. Both the production of hydrogen by electrolysis of water and hydrogen combustion in a fuel cell will be important in the future. And both these technologies are based on electrochemical principles.

Summary

An **electrochemical cell** consists of two metallic electrodes dipping in electrolytic solution(s). Thus an important component of the electrochemical cell is the ionic conductor or electrolyte. Electrochemical cells are of two types. In **galvanic cell**, the **chemical energy** of a **spontaneous redox reaction** is converted into electrical work, whereas in an electrolytic cell, electrical energy is used to carry out a **non-spontaneous redox reaction**. The **standard electrode potential** for any electrode dipping in an appropriate solution is defined with respect to standard electrode potential of **hydrogen electrode** taken as zero. The standard potential of the cell can be obtained by taking the difference of the standard potential of the cells are related to standard Gibbs energy ($\Delta_T G^{\ominus} = -nFE^{\ominus}_{(cell)}$) and **equilibrium constant** ($\Delta_T G^{\ominus} = -RT \ln K$) of the reaction taking place in the cell. Concentration dependence of the potentials of the electrodes and the cells are given by Nernst equation.

The **conductivity**, κ , of an electrolytic solution depends on the concentration of the electrolyte, nature of solvent and temperature. **Molar conductivity**, Λ_m , is defined by = κ/c where *c* is the concentration. Conductivity decreases but molar conductivity increases with decrease in concentration. It increases slowly with decrease in concentration for strong electrolytes while the increase is very steep for weak electrolytes in very dilute solutions. Kohlrausch found that molar conductivity at infinite dilution, for an electrolyte is sum of the contribution of the molar conductivity of the ions in which it dissociates. It is known as **law of independent migration of ions** and has many applications. Ions conduct electricity through the solution but oxidation and reduction of the ions take place at the electrodes in an electrochemical cell. **Batteries** and **fuel cells** are very useful forms of galvanic cell. **Corrosion** of metals is essentially an **electrochemical phenomenon**. Electrochemical principles are relevant to the **Hydrogen Economy**.

3.1 Arrange the following metals in the order in which they displace each other from the solution of their salts. Al, Cu, Fe, Mg and Zn. **3.2** Given the standard electrode potentials, $K^{+}/K = -2.93V, Ag^{+}/Ag = 0.80V,$ $Hg^{2+}/Hg = 0.79V$ $Mg^{2+}/Mg = -2.37 V, Cr^{3+}/Cr = -0.74V$ Arrange these metals in their increasing order of reducing power. **3.3** Depict the galvanic cell in which the reaction $Zn(s)+2Ag^{+}(aq) \rightarrow Zn^{2+}(aq)+2Ag(s)$ takes place. Further show: (i) Which of the electrode is negatively charged? (ii) The carriers of the current in the cell. (iii) Individual reaction at each electrode. Calculate the standard cell potentials of galvanic cell in which the following 3.4 reactions take place: (i) $2Cr(s) + 3Cd^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Cd^{3+}(aq)$ (ii) $\operatorname{Fe}^{2+}(\operatorname{aq}) + \operatorname{Ag}^{+}(\operatorname{aq}) \rightarrow \operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{Ag}(\operatorname{s})$ Calculate the $\Delta_r G^{\ominus}$ and equilibrium constant of the reactions. 3.5 Write the Nernst equation and emf of the following cells at 298 K: (i) Mg(s) $|Mg^{2+}(0.001M)||Cu^{2+}(0.0001 M)|Cu(s)$ (ii) $Fe(s) | Fe^{2+}(0.001M) || H^{+}(1M) | H_{2}(g)(1bar) |$ Pt(s) (iii) $Sn(s) | Sn^{2+}(0.050 \text{ M}) || H^{+}(0.020 \text{ M}) || H_{2}(g) (1 \text{ bar}) | Pt(s)$ (iv) $Pt(s) | Br^{-}(0.010 \text{ M}) | Br_{2}(1) || H^{+}(0.030 \text{ M}) | H_{2}(g) (1 \text{ bar}) | Pt(s).$ 3.6 In the button cells widely used in watches and other devices the following reaction takes place: $Zn(s) + Ag_2O(s) + H_2O(l) \rightarrow Zn^{2+}(aq) + 2Ag(s) + 2OH^{-}(aq)$ Determine $\Delta_r G^{\ominus}$ and E^{\ominus} for the reaction. 3.7 Define conductivity and molar conductivity for the solution of an electrolyte. Discuss their variation with concentration. 3.8 The conductivity of 0.20 M solution of KCl at 298 K is 0.0248 S cm⁻¹. Calculate its molar conductivity. 3.9 The resistance of a conductivity cell containing 0.001M KCl solution at 298 K is 1500 Ω . What is the cell constant if conductivity of 0.001M KCl solution at 298 K is 0.146×10^{-3} S cm⁻¹. 93 Electrochemistry

- **3.10** The conductivity of sodium chloride at 298 K has been determined at different concentrations and the results are given below: Concentration/M 0.001 0.010 0.020 0.050 0.100 $10^2 \times \kappa/S \text{ m}^{-1}$ 1.237 11.85 23.15 55.53 106.74 Calculate Λ_m for all concentrations and draw a plot between Λ_m and $c^{\frac{1}{2}}$. Find the value of Λ_m^0 .
- **3.11** Conductivity of 0.00241 M acetic acid is 7.896 × 10⁻⁵ S cm⁻¹. Calculate its molar conductivity. If Λ_m^0 for acetic acid is 390.5 S cm² mol⁻¹, what is its dissociation constant?
- 3.12 How much charge is required for the following reductions:
 - (i) 1 mol of Al^{3+} to Al?
 - (ii) 1 mol of Cu^{2+} to Cu?
 - (iii) 1 mol of MnO_4^- to Mn^{2+} ?
- 3.13 How much electricity in terms of Faraday is required to produce
 (i) 20.0 g of Ca from molten CaCl₂?
 (ii) 40.0 g of Al from molten Al₂O₃?
- **3.14** How much electricity is required in coulomb for the oxidation of (i) 1 mol of H_2O to O_2 ?
 - (ii) 1 mol of FeO to Fe_2O_3 ?
- **3.15** A solution of $Ni(NO_3)_2$ is electrolysed between platinum electrodes using a current of 5 amperes for 20 minutes. What mass of Ni is deposited at the cathode?
- **3.16** Three electrolytic cells A,B,C containing solutions of $ZnSO_4$, AgNO₃ and CuSO₄, respectively are connected in series. A steady current of 1.5 amperes was passed through them until 1.45 g of silver deposited at the cathode of cell B. How long did the current flow? What mass of copper and zinc were deposited?
- **3.17** Using the standard electrode potentials given in Table 3.1, predict if the reaction between the following is feasible:
 - (i) $Fe^{3+}(aq)$ and $I^{-}(aq)$
 - (ii) Ag^+ (aq) and Cu(s)
 - (iii) Fe^{3+} (aq) and Br^- (aq)
 - (iv) Ag(s) and Fe $^{3+}$ (aq)
 - (v) Br_2 (aq) and Fe^{2+} (aq).
- **3.18** Predict the products of electrolysis in each of the following:
 - (i) An aqueous solution of $AgNO_3$ with silver electrodes.
 - (ii) An aqueous solution of AgNO_3 with platinum electrodes.
 - (iii) A dilute solution of $\mathrm{H}_2\mathrm{SO}_4$ with platinum electrodes.
 - (iv) An aqueous solution of $CuCl_2$ with platinum electrodes.

Answers to Some Intext Questions

3.5
$$E_{(cell)} = 0.91 V$$

- **3.6** $\Delta_{\rm r} {\rm G}^{\odot} = -45.54 \, {\rm kJ \, mol^{-1}}$, $K_{\rm c} = 9.62 \times 10^7$
- **3.9** 0.114, 3.67 $\times 10^{-4}$ mol L⁻¹

<u>Objectives</u>

After studying this Unit, you will be able to

- define the average and instantaneous rate of a reaction;
- express the rate of a reaction in terms of change in concentration of either of the reactants or products with time;
- distinguish between elementary and complex reactions;
- differentiate between the molecularity and order of a reaction;
- define rate constant;
- discuss the dependence of rate of reactions on concentration, temperature and catalyst;
- derive integrated rate equations for the zero and first order reactions;
- determine the rate constants for zeroth and first order reactions;
- describe collision theory.

Chemical Kinetics helps us to understand how chemical reactions occur,

Chemistry, by its very nature, is concerned with change. Substances with well defined properties are converted by chemical reactions into other substances with different properties. For any chemical reaction, chemists try to find out

- (a) the feasibility of a chemical reaction which can be predicted by thermodynamics (as you know that a reaction with $\Delta G < 0$, at constant temperature and pressure is feasible);
- (b) extent to which a reaction will proceed can be determined from chemical equilibrium;
- (c) speed of a reaction i.e. time taken by a reaction to reach equilibrium.

Along with feasibility and extent, it is equally important to know the rate and the factors controlling the rate of a chemical reaction for its complete understanding. For example, which parameters determine as to how rapidly food gets spoiled? How to design a rapidly setting material for dental filling? Or what controls the rate at which fuel burns in an auto engine? All these questions can be answered by the branch of chemistry, which deals with the study of reaction rates and their mechanisms, called chemical kinetics. The word kinetics is derived from the Greek word 'kinesis' meaning movement. Thermodynamics tells only about the feasibility of a reaction whereas chemical kinetics tells about the rate of a reaction. For example, thermodynamic data indicate that diamond shall convert to graphite but in reality the conversion rate is so slow that the change is not perceptible at all. Therefore, most people think

that diamond is forever. Kinetic studies not only help us to determine the speed or rate of a chemical reaction but also describe the conditions by which the reaction rates can be altered. The factors such as concentration, temperature, pressure and catalyst affect the rate of a reaction. At the macroscopic level, we are interested in amounts reacted or formed and the rates of their consumption or formation. At the molecular level, the reaction mechanisms involving orientation and energy of molecules undergoing collisions, are discussed.

In this Unit, we shall be dealing with average and instantaneous rate of reaction and the factors affecting these. Some elementary ideas about the collision theory of reaction rates are also given. However, in order to understand all these, let us first learn about the reaction rate.

4.1 Rate of a Chemical Reaction

Some reactions such as ionic reactions occur very fast, for example, precipitation of silver chloride occurs instantaneously by mixing of aqueous solutions of silver nitrate and sodium chloride. On the other hand, some reactions are very slow, for example, rusting of iron in the presence of air and moisture. Also there are reactions like inversion of cane sugar and hydrolysis of starch, which proceed with a moderate speed. Can you think of more examples from each category?

You must be knowing that speed of an automobile is expressed in terms of change in the position or distance covered by it in a certain period of time. Similarly, the speed of a reaction or the rate of a reaction can be defined as the change in concentration of a reactant or product in unit time. To be more specific, it can be expressed in terms of:

- (i) the rate of decrease in concentration of any one of the reactants, or
- (ii) the rate of increase in concentration of any one of the products.

Consider a hypothetical reaction, assuming that the volume of the system remains constant.

 $R \rightarrow P$

One mole of the reactant R produces one mole of the product P. If $[R]_1$ and $[P]_1$ are the concentrations of R and P respectively at time t_1 and $[R]_2$ and $[P]_2$ are their concentrations at time t_2 then,

$$\begin{split} \Delta t &= t_2 - t_1 \\ \Delta [\mathrm{R}] &= [\mathrm{R}]_2 - [\mathrm{R}]_1 \\ \Delta \ [\mathrm{P}] &= [\mathrm{P}]_2 - [\mathrm{P}]_1 \end{split}$$

The square brackets in the above expressions are used to express molar concentration.

Rate of disappearance of R

$$=\frac{\text{Decrease in concentration of R}}{\text{Time taken}} = -\frac{\Delta[R]}{\Delta t}$$
(4.1)

Rate of appearance of P

$$=\frac{\text{Increase in concentration of P}}{\text{Time taken}} = +\frac{\Delta[P]}{\Delta t}$$
(4.2)

Since, $\Delta[R]$ is a negative quantity (as concentration of reactants is decreasing), it is multiplied with -1 to make the rate of the reaction a positive quantity.

Equations (4.1) and (4.2) given above represent the **average rate of a reaction**, r_{av} .

Average rate depends upon the change in concentration of reactants or products and the time taken for that change to occur (Fig. 4.1).

Fig. 4.1: Instantaneous and average rate of a reaction

Units of rate of a reaction

From equations (4.1) and (4.2), it is clear that units of rate are concentration time⁻¹. For example, if concentration is in mol L^{-1} and time is in seconds then the units will be mol $L^{-1}s^{-1}$. However, in gaseous reactions, when the concentration of gases is expressed in terms of their partial pressures, then the units of the rate equation will be atm s^{-1} .

From the concentrations of C_4H_9Cl (butyl chloride) at different times given Example 4.1 below, calculate the average rate of the reaction:

 $C_4H_9Cl + H_2O \rightarrow C_4H_9OH + HCl$

during different intervals of time.

97 Chemical Kinetics

[C ₄ H ₉ CI] _{t1} / mol L ⁻¹	$[C_4H_9CI]_{t_2}$ / mol L ⁻¹	<i>t</i> ₁ /s	t_2^{\prime}/s	$r_{av} \times 10^{4} / \text{mol } \mathbf{L}^{-1} \mathbf{s}^{-1}$ = - \{ \[\mathbf{C}_{4} \mathbf{H}_{9} \mathbf{Cl} \]_{t_{2}} - \[\mathbf{C}_{4} \mathbf{H}_{9} \mathbf{Cl} \]_{t_{1}} / (\mathbf{t}_{2} - \mathbf{t}_{1}) \} \times 10^{4}
0.100	0.0905	0	50	1.90
0.0905	0.0820	50	100	1.70
0.0820	0.0741	100	150	1.58
0.0741	0.0671	150	200	1.40
0.0671	0.0549	200	300	1.22
0.0549	0.0439	300	400	1.10
0.0439	0.0335	400	500	1.04
0.0210	0.017	700	800	0.4

Table 4.1: Average rates of hydrolysis of butyl chloride

It can be seen (Table 4.1) that the average rate falls from $1.90 \times 0^{-4} \text{ mol } L^{-1}\text{s}^{-1}$ to $0.4 \times 10^{-4} \text{ mol } L^{-1}\text{s}^{-1}$. However, average rate cannot be used to predict the rate of a reaction at a particular instant as it would be constant for the time interval for which it is calculated. So, to express the rate at a particular moment of time we determine the **instantaneous rate**. It is obtained when we consider the average rate at the smallest time interval say dt (i.e. when Δt approaches zero). Hence, mathematically for an infinitesimally small dt instantaneous rate is given by

Fig 4.2 Instantaneous rate of hydrolysis of butyl $chloride(C_{A}H_{o}Cl)$

It can be determined graphically by drawing a tangent at time t on either of the curves for concentration of R and P vs time t and calculating its slope (Fig. 4.1). So in problem 4.1, r_{inst} at 600s for example, can be calculated by plotting concentration of butyl chloride as a function of time. A tangent is drawn that touches the curve at t = 600 s (Fig. 4.2).

The slope of this tangent gives the instantaneous rate.

So,
$$r_{\text{inst}}$$
 at 600 s = $-\left(\frac{0.0165 \quad 0.037}{(800 \quad 400)\text{ s}}\right) \text{ mol } \text{L}^{-1} = 5.12 \times 10^{-5} \text{ mol } \text{L}^{-1}\text{s}^{-1}$
At $t = 250 \text{ s}$ $r_{\text{inst}} = 1.22 \times 10^{-4} \text{ mol } \text{L}^{-1}\text{s}^{-1}$
 $t = 350 \text{ s}$ $r_{\text{inst}} = 1.0 \times 10^{-4} \text{ mol } \text{L}^{-1}\text{s}^{-1}$
 $t = 450 \text{ s}$ $r_{\text{inst}} = 6.4 \times 10^{-5} \text{ mol } \text{L}^{-1}\text{s}^{-1}$

Now consider a reaction

$$Hg(l) + Cl_2(g) \rightarrow HgCl_2(s)$$

Where stoichiometric coefficients of the reactants and products are same, then rate of the reaction is given as

Rate of reaction =
$$-\frac{\Delta[Hg]}{\Delta t} = -\frac{\Delta[Cl_2]}{\Delta t} = \frac{\Delta[HgCl_2]}{\Delta t}$$

i.e., rate of disappearance of any of the reactants is same as the rate of appearance of the products. But in the following reaction, two moles of HI decompose to produce one mole each of H_2 and I_2

$$2HI(g) \rightarrow H_2(g) + I_2(g)$$

For expressing the rate of such a reaction where stoichiometric coefficients of reactants or products are not equal to one, rate of disappearance of any of the reactants or the rate of appearance of products is divided by their respective stoichiometric coefficients. Since rate of consumption of HI is twice the rate of formation of H₂ or I₂, to make them equal, the term Δ [HI] is divided by 2. The rate of this reaction is given by

Rate of reaction
$$= -\frac{1}{2} \frac{\Delta[\text{HI}]}{\Delta t} = \frac{\Delta[\text{H}_2]}{\Delta t} = \frac{\Delta[\text{I}_2]}{\Delta t}$$

Similarly, for the reaction

 $5 \text{ Br}^{-}(\text{aq}) + \text{BrO}_{3}^{-}(\text{aq}) + 6 \text{ H}^{+}(\text{aq}) \rightarrow 3 \text{ Br}_{2}(\text{aq}) + 3 \text{ H}_{2}\text{O}(\text{l})$

$$\operatorname{Rate} = -\frac{1}{5} \frac{\Delta[\operatorname{Br}^{-}]}{\Delta t} = -\frac{\Delta[\operatorname{Br}O_{3}^{-}]}{\Delta t} = -\frac{1}{6} \frac{\Delta[\operatorname{H}^{+}]}{\Delta t} = \frac{1}{3} \frac{\Delta[\operatorname{Br}_{2}]}{\Delta t} = \frac{1}{3} \frac{\Delta[\operatorname{H}_{2}O]}{\Delta t}$$

For a gaseous reaction at constant temperature, concentration is directly proportional to the partial pressure of a species and hence, rate can also be expressed as rate of change in partial pressure of the reactant or the product.

99 Chemical Kinetics

Example 4.2	The decomposition of N_2O_5 in CCl ₄ at 318K has been studied by monitoring the concentration of N_2O_5 in the solution. Initially the concentration of N_2O_5 is 2.33 mol L ⁻¹ and after 184 minutes, it is reduced to 2.08 mol L ⁻¹ . The reaction takes place according to the equation
	$2 N_2O_5 (g) \rightarrow 4 NO_2 (g) + O_2 (g)$ Calculate the average rate of this reaction in terms of hours, minutes and seconds. What is the rate of production of NO ₂ during this period?
<u>Solution</u>	Average Rate $=\frac{1}{2}\left\{-\frac{\Delta[N_2O_5]}{\Delta t}\right\} = -\frac{1}{2}\left[\frac{(2.08 - 2.33) \operatorname{mol} L^{-1}}{184 \operatorname{min}}\right]$ $= 6.79 \times 10^{-4} \operatorname{mol} L^{-1}/\operatorname{min} = (6.79 \times 10^{-4} \operatorname{mol} L^{-1} \operatorname{min}^{-1}) \times (60 \operatorname{min}/1\mathrm{h})$ $= 4.07 \times 10^{-2} \operatorname{mol} L^{-1}/\mathrm{h}$ $= 6.79 \times 10^{-4} \operatorname{mol} L^{-1} \times 1\operatorname{min}/60\mathrm{s}$ $= 1.13 \times 10^{-5} \operatorname{mol} L^{-1}\mathrm{s}^{-1}$ It may be remembered that
	Rate = $\frac{1}{4} \left\{ \frac{\Delta [\text{NO}_2]}{\Delta t} \right\}$ $\frac{\Delta [\text{NO}_2]}{\Delta t} = 6.79 \times 10^{-4} \times 4 \text{ mol } \text{L}^{-1} \text{min}^{-1} = 2.72 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{min}^{-1}$

Intext Questions

- **4.1** For the reaction $R \rightarrow P$, the concentration of a reactant changes from 0.03M to 0.02M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.
- **4.2** In a reaction, $2A \rightarrow$ Products, the concentration of A decreases from 0.5 mol L⁻¹ to 0.4 mol L⁻¹ in 10 minutes. Calculate the rate during this interval?

4.2 factors Influencing Rate of re Rate of a Reaction as conce

Rate of reaction depends upon the experimental conditions such as concentration of reactants (pressure in case of gases), temperature and catalyst.

- **4.2.1 Dependence** of Rate on Concentration Concentration
- 4.2.2 RateThe results in Table 4.1 clearly show that rate of a reaction decreases with
the passage of time as the concentration of reactants decrease. Conversely,
rates generally increase when reactant concentrations increase. So, rate of
a reaction depends upon the concentration of reactants.

Consider a general reaction

$$aA + bB \rightarrow cC + dD$$

where a, b, c and d are the stoichiometric coefficients of reactants and products.

The rate expression for this reaction is

Rate
$$\propto [A]^{x} [B]^{y}$$
 (4.4)

where exponents x and y may or may not be equal to the stoichiometric coefficients (a and b) of the reactants. Above equation can also be written as

$$Rate = k [A]^{x} [B]^{y}$$
(4.4a)

$$-\frac{\mathrm{d}[\mathrm{R}]}{\mathrm{d}t} = k[\mathrm{A}]^{\mathrm{x}}[\mathrm{B}]^{\mathrm{y}}$$
(4.4b)

This form of equation (4.4 b) is known as differential rate equation, where k is a proportionality constant called **rate constant**. The equation like (4.4), which relates the rate of a reaction to concentration of reactants is called rate law or rate expression. Thus, **rate law is the expression in which reaction rate is given in terms of molar concentration of reactants with each term raised to some power, which may or may not be same as the stoichiometric coefficient of the reacting species in a balanced chemical equation**. For example:

 $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$

We can measure the rate of this reaction as a function of initial concentrations either by keeping the concentration of one of the reactants constant and changing the concentration of the other reactant or by changing the concentration of both the reactants. The following results are obtained (Table 4.2).

Table 4.2: Initial rate of formation of NO,

Experiment	Initial [NO]/ mol L^{-1}	Initial $[O_2]/ \text{ mol } L^{\cdot 1}$	Initial rate of formation of $NO_2/mol L^{-1}s^{-1}$
1.	0.30	0.30	0.096
2.	0.60	0.30	0.384
3.	0.30	0.60	0.192
4.	0.60	0.60	0.768

It is obvious, after looking at the results, that when the concentration of NO is doubled and that of O_2 is kept constant then the initial rate increases by a factor of four from 0.096 to 0.384 mol $L^{-1}s^{-1}$. This indicates that the rate depends upon the square of the concentration of NO. When concentration of NO is kept constant and concentration of O_2 is doubled the rate also gets doubled indicating that rate depends on concentration of O_2 to the first power. Hence, the rate equation for this reaction will be

Rate = $k[NO]^2[O_2]$

101 Chemical Kinetics

The differential form of this rate expression is given as

$$-\frac{\mathrm{d}[\mathrm{R}]}{\mathrm{d}t} = k[\mathrm{NO}]^2 [\mathrm{O}_2]$$

Now, we observe that for this reaction in the rate equation derived from the experimental data, the exponents of the concentration terms are the same as their stoichiometric coefficients in the balanced chemical equation.

Some other examples are given below:

Reaction

Experimental rate expression Rate = k [CHCl₂] [Cl₂]^{1/2} **1.** $CHCl_3 + Cl_2 \rightarrow CCl_4 + HCl$ 2. $CH_3COOC_2H_5 + H_2O \rightarrow CH_3COOH + C_2H_5OH$ Rate = $k [CH_3COOC_2H_5]^1 [H_2O]^0$

In these reactions, the exponents of the concentration terms are not the same as their stoichiometric coefficients. Thus, we can say that:

Rate law for any reaction cannot be predicted by merely looking at the balanced chemical equation, i.e., theoretically but must be determined experimentally.

4.2.3 Order of a Reaction

In the rate equation (4.4)Rate = $k [A]^{x} [B]^{y}$

x and y indicate how sensitive the rate is to the change in concentration of A and B. Sum of these exponents, i.e., x + y in (4.4) gives the overall order of a reaction whereas x and y represent the order with respect to the reactants A and B respectively.

Hence, the sum of powers of the concentration of the reactants in the rate law expression is called the order of that chemical reaction.

Order of a reaction can be 0, 1, 2, 3 and even a fraction. A zero order reaction means that the rate of reaction is independent of the concentration of reactants.

-	Example 4.3	Calculate the overall order of a reaction which has the rate expression (a) Rate = $k [A]^{1/2} [B]^{3/2}$
	Solution	(b) Rate = $k [A]^{3/2} [B]^{-1}$
	Solution	(a) Rate = $k [A]^x [B]^y$ order = $x + y$
		So order = $1/2 + 3/2 = 2$, i.e., second order
		(b) order = $3/2 + (-1) = 1/2$, i.e., half order.

A balanced chemical equation never gives us a true picture of how a reaction takes place since rarely a reaction gets completed in one step. The reactions taking place in one step are called **elementary** reactions. When a sequence of elementary reactions (called mechanism) gives us the products, the reactions are called complex reactions.

These may be consecutive reactions (e.g., oxidation of ethane to CO_2 and H_2O passes through a series of intermediate steps in which alcohol, aldehyde and acid are formed), reverse reactions and side reactions (e.g., nitration of phenol yields *o*-nitrophenol and *p*-nitrophenol).

Units of rate constant

For a general reaction

 $aA + bB \rightarrow cC + dD$ Rate = $k [A]^{x} [B]^{y}$ Where x + y = n = order of the reaction $k = \frac{\text{Rate}}{[A]^{x}[B]^{y}}$ $= \frac{\text{concentration}}{\text{time}} \times \frac{1}{(\text{concentration})^{n}} \qquad (\text{where } [A]=[B])$

Taking SI units of concentration, mol L^{-1} and time, s, the units of *k* for different reaction order are listed in Table 4.3

Reaction	Order	Units of rate constant
Zero order reaction	0	$\frac{\text{mol } L^{-1}}{\text{s}} \times \frac{1}{(\text{mol } L^{-1})^{0}} = \text{mol } L^{-1} \text{s}^{-1}$
First order reaction	1	$\frac{\text{mol } L^{-1}}{\text{s}} \times \frac{1}{(\text{mol } L^{-1})^{1}} = \text{s}^{-1}$
Second order reaction	2	$\frac{\text{mol } L^{-1}}{\text{s}} \times \frac{1}{(\text{mol } L^{-1})^2} = \text{mol}^{-1} L \text{s}^{-1}$

Table 4.3: Units of rate constant

Identify the reaction order from each of the following rate constants. (i) $k = 2.3 \times 10^{-5} \text{ L mol}^{-1} \text{ s}^{-1}$

(ii)
$$k = 3 \times 10^{-4} \text{ s}^{-1}$$

- (i) The unit of second order rate constant is $L \mod^{-1} s^{-1}$, therefore <u>Solution</u> $k = 2.3 \times 10^{-5} L \mod^{-1} s^{-1}$ represents a second order reaction.
- (ii) The unit of a first order rate constant is $\ensuremath{\mathrm{s}}^{\ensuremath{^-1}}$ therefore
 - $k = 3 \times 10^{-4} \text{ s}^{-1}$ represents a first order reaction.
- 4.2.4 Molecularity

 of a reaction
 Reaction
 Another property of a reaction called molecularity helps in understanding its mechanism. The number of reacting species (atoms, ions or molecules) taking part in an elementary reaction, which must collide simultaneously in order to bring about a chemical reaction is called molecularity of a reaction. The reaction can be unimolecular when one reacting species is involved, for example, decomposition of ammonium nitrite.

103 Chemical Kinetics

 $NH_4NO_2 \rightarrow N_2 + 2H_2O$

Bimolecular reactions involve simultaneous collision between two species, for example, dissociation of hydrogen iodide.

 $2\text{HI} \rightarrow \text{H}_2 + \text{I}_2$

Trimolecular or termolecular reactions involve simultaneous collision between three reacting species, for example,

 $2NO + O_2 \rightarrow 2NO_2$

The probability that more than three molecules can collide and react simultaneously is very small. Hence, reactions with the molecularity three are very rare and slow to proceed.

It is, therefore, evident that complex reactions involving more than three molecules in the stoichiometric equation must take place in more than one step.

$$\text{KClO}_3$$
 + 6FeSO₄ + 3H₂SO₄ \rightarrow KCl + 3Fe₂(SO₄)₃ + 3H₂O

This reaction which apparently seems to be of tenth order is actually a second order reaction. This shows that this reaction takes place in several steps. Which step controls the rate of the overall reaction? The question can be answered if we go through the mechanism of reaction, for example, chances to win the relay race competition by a team depend upon the slowest person in the team. Similarly, the overall rate of the reaction is controlled by the slowest step in a reaction called the **rate determining step**. Consider the decomposition of hydrogen peroxide which is catalysed by iodide ion in an alkaline medium.

$$2H_2O_2 \xrightarrow{I^-} 2H_2O + O_2$$

The rate equation for this reaction is found to be

Rate =
$$\frac{-d[H_2O_2]}{dt} = k[H_2O_2][I^-]$$

This reaction is first order with respect to both H_2O_2 and Γ . Evidences suggest that this reaction takes place in two steps

(1)
$$H_2O_2 + I^- \rightarrow H_2O + IO^-$$

(2) $H_2O_2 + IO^- \rightarrow H_2O + I^- + O_2$

Both the steps are bimolecular elementary reactions. Species IO⁻ is called as an intermediate since it is formed during the course of the reaction but not in the overall balanced equation. The first step, being slow, is the rate determining step. Thus, the rate of formation of intermediate will determine the rate of this reaction.

Thus, from the discussion, till now, we conclude the following:

- (i) Order of a reaction is an experimental quantity. It can be zero and even a fraction but molecularity cannot be zero or a non integer.
- (ii) Order is applicable to elementary as well as complex reactions whereas molecularity is applicable only for elementary reactions. For complex reaction molecularity has no meaning.

(iii) For complex reaction, order is given by the slowest step and molecularity of the slowest step is same as the order of the overall reaction.

Intext Questions

- **4.3** For a reaction, $A + B \rightarrow$ Product; the rate law is given by, $r = k [A]^{1/2} [B]^2$. What is the order of the reaction?
- **4.4** The conversion of molecules X to Y follows second order kinetics. If concentration of X is increased to three times how will it affect the rate of formation of Y ?

4.3 Integrated Rate Equations We have already noted that the concentration dependence of rate is called differential rate equation. It is not always convenient to determine the instantaneous rate, as it is measured by determination of slope of the tangent at point 't' in concentration vs time plot (Fig. 4.1). This makes it difficult to determine the rate law and hence the order of the reaction. In order to avoid this difficulty, we can integrate the differential rate equation to give a relation between directly measured experimental data, i.e., concentrations at different times and rate constant.

The integrated rate equations are different for the reactions of different reaction orders. We shall determine these equations only for zero and first order chemical reactions.

4.3.1 Zero Order Reactions Zero order reaction means that the rate of the reaction is proportional to zero power of the concentration of reactants. Consider the reaction, $R \rightarrow P$

Rate =
$$-\frac{d[R]}{dt} = k[R]^0$$

As any quantity raised to power zero is unity

Rate =
$$-\frac{d[R]}{dt} = k \times 1$$

d[R] = $-k dt$

Integrating both sides

[R]
$$= -kt + I$$

where, I is the constant of integration.

At t = 0, the concentration of the reactant R = [R]₀, where [R]₀ is initial concentration of the reactant.

Substituting in equation (4.5)

 $[R]_{0} = -k \times 0 + I$ $[R]_{0} = I$ Substituting the value of I in the equation (4.5) $[R] = -kt + [R]_{0}$ (4.6)

105 Chemical Kinetics

(4.5)

Fig. 4.3: Variation in the concentration vs

time plot for a zero order reaction

Comparing (4.6) with equation of a straight line, y = mx + c, if we plot [R] against t, we get a straight line (Fig. 4.3) with slope = -k and intercept equal to [R]₀.

Further simplifying equation (4.6), we get the rate constant, k as

$$k = \frac{[R]_0 - [R]}{t}$$
(4.7)

Zero order reactions are relatively uncommon but they occur under special conditions. Some enzyme catalysed reactions and reactions which occur on metal surfaces are a few examples of zero order reactions. The decomposition of gaseous ammonia on a hot platinum surface is a zero order reaction at high pressure.

$$2NH_{3}\left(g\right) \xrightarrow[Pt \ catalyst \]{} N_{2}\left(g\right) + 3H_{2}\left(g\right)$$

Rate = $k [NH_3]^0 = k$

In this reaction, platinum metal acts as a catalyst. At high pressure, the metal surface gets saturated with gas molecules. So, a further change in reaction conditions is unable to alter the amount of ammonia on the surface of the catalyst making rate of the reaction independent of its concentration. The thermal decomposition of HI on gold surface is another example of zero order reaction.

4.3.2 First Order In this class of reactions, the rate of the reaction is proportional to the first power of the concentration of the reactant R. For example,

$$R \rightarrow P$$

$$Rate = -\frac{d[R]}{dt} = k[R]$$

or
$$\frac{\mathrm{d}[\mathrm{R}]}{[\mathrm{R}]} = -k\mathrm{d}t$$

Integrating this equation, we get

$$\ln \left[R \right] = -kt + I \tag{4.8}$$

Again, I is the constant of integration and its value can be determined easily.

When t = 0, $R = [R]_0$, where $[R]_0$ is the initial concentration of the reactant.

Therefore, equation (4.8) can be written as

 $\ln [R]_0 = -k \times 0 + I$ $\ln [R] = I$

 $\ln[R] = -kt + \ln[R]_0$

$$\operatorname{Im}\left[\mathrm{R}\right]_{0} = 1$$

Substituting the value of I in equation (4.8)

(4.9)
Rearranging this equation

$$\ln \frac{\left[\mathbf{R} \right]}{\left[\mathbf{R} \right]_{0}} = -kt$$

or $k = \frac{1}{t} \ln \frac{\left[\mathbf{R} \right]_{0}}{\left[\mathbf{R} \right]}$ (4.10)

At time t_1 from equation (4.8)

 $*\ln[R]_{1} = -kt_{1} + *\ln[R]_{0}$ (4.11)

At time t_2

$$\ln[R]_2 = -kt_2 + \ln[R]_0 \tag{4.12}$$

where, $[R]_1$ and $[R]_2$ are the concentrations of the reactants at time t_1 and t_2 respectively.

Subtracting (4.12) from (4.11)

$$\ln[\mathbf{R}]_{1} - \ln[\mathbf{R}]_{2} = -kt_{1} - (-kt_{2})$$

$$\ln\frac{[\mathbf{R}]_{1}}{[\mathbf{R}]_{2}} = k(t_{2} - t_{1})$$

$$k = \frac{1}{(t_{2} - t_{1})} \ln\frac{[\mathbf{R}]_{1}}{[\mathbf{R}]_{2}}$$
(4.13)

Equation (4.9) can also be written as

. .

$$\ln \frac{[R]}{[R]_0} = -kt$$

Taking antilog of both sides

$$[R] = [R]_0 e^{-kt}$$
(4.14)

Comparing equation (4.9) with y = mx + c, if we plot ln [R] against *t* (Fig. 4.4) we get a straight line with slope = -k and intercept equal to ln [R]₀

The first order rate equation (4.10) can also be written in the form

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$
(4.15)
* $\log \frac{[R]_0}{[R]} = \frac{kt}{2.303}$

If we plot a graph between log $[{\rm R}]_0/[{\rm R}]$ vs t, (Fig. 4.5), the slope = k/2.303

Hydrogenation of ethene is an example of first order reaction.

 $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$

Rate = $k [C_2H_4]$

All natural and artificial radioactive decay of unstable nuclei take place by first order kinetics.

* Refer to Appendix-IV for ln and log (logarithms).

107 Chemical Kinetics

Fig. 4.4: A plot between ln[R] and t for a first order reaction

Fig. 4.5: Plot of $\log [R]_0/[R]$ vs time for a first order reaction

$$^{226}_{88}$$
Ra $\rightarrow ^{4}_{2}$ He + $^{222}_{86}$ Rn

 $\label{eq:stample 4.5} \begin{array}{l} \mbox{The initial concentration of N_2O_5 in the following first order reaction $N_2O_5(g) \rightarrow 2$ $NO_2(g) + 1/2O_2$ (g) was 1.24×10^{-2} mol L^{-1} at 318 K. The concentration of N_2O_5 after 60 minutes was 0.20×10^{-2} mol L^{-1}. Calculate the rate constant of the reaction at 318 K. \end{array}$

Solution For a first order reaction

$$\log \frac{[R]_{1}}{[R]_{2}} = \frac{k(t_{2} - t_{1})}{2.303}$$

$$k = \frac{2.303}{(t_{2} - t_{1})} \log \frac{[R]_{1}}{[R]_{2}}$$

$$= \frac{2.303}{(60 \text{ min} - 0 \text{ min})} \log \frac{1.24 \times 10^{-2} \text{ mol } \text{L}^{-1}}{0.20 \times 10^{-2} \text{ mol } \text{L}^{-1}}$$

$$= \frac{2.303}{60} \log 6.2 \text{ min}^{-1}$$

$$k = 0.0304 \text{ min}^{-1}$$

Let us consider a typical first order gas phase reaction

 $A(g) \rightarrow B(g) + C(g)$

Let p_i be the initial pressure of A and p_t the total pressure at time 't'. Integrated rate equation for such a reaction can be derived as Total pressure $p_t = p_A + p_B + p_C$ (pressure units)

 $p_{\rm A},\,p_{\rm B}$ and $p_{\rm C}$ are the partial pressures of A, B and C, respectively.

If x atm be the decrease in pressure of A at time *t* and one mole each of B and C is being formed, the increase in pressure of B and C will also be x atm each.

	A(g)	\rightarrow	B(g)	+	C(g)
At $t = 0$	$p_{_{ m i}}{ m atm}$		0 atm		0 atm
At time t	(p _i –x) atm		x atm		x atm
where, $p_{\rm i}$ is the initia	al pressure a	at time	e <i>t</i> = 0.		
$p_{\rm t} = (p_{\rm i} - {\rm x}) + {\rm x} +$	$-\mathbf{x} = p_{i} + \mathbf{x}$				
$\mathbf{x} = (p_{\mathrm{t}} - p_{\mathrm{i}})$					
where, $p_A = p_i - x =$	$p_{\rm i}$ - ($p_{\rm t}$ - $p_{\rm i}$)			
$= 2p_{i} - p_{t}$					
$k = \left(\frac{2.303}{t}\right) \left(\log \frac{1}{t}\right)$	$\left(\frac{p_{\mathrm{i}}}{p_{\mathrm{A}}}\right)$				(4.16)
$=\frac{2.303}{t}\log\frac{1}{t}$	$rac{p_{\mathrm{i}}}{2p_{\mathrm{i}}-p_{\mathrm{t}}})$				

The following data were obtained during the first order thermal $\frac{E_{xample}}{4.6}$ decomposition of N_2O_5 (g) at constant volume:

0.5

0.512

 $2N_{2}O_{5}\left(g\right)\rightarrow2N_{2}O_{4}\left(g\right)+O_{2}\left(g\right)$ S.No. Time/s Total Pressure/(atm) 0 1. 100 2.

Calculate the rate constant.

Let the pressure of $N_2O_5(g)$ decrease by 2x atm. As two moles of <u>Solution</u> N_2O_5 decompose to give two moles of $N_2O_4(g)$ and one mole of $O_2(g)$, the pressure of N_2O_4 (g) increases by 2x atm and that of O_2 (g) increases by x atm.

	$2N_{2}O_{5}(g)$	\rightarrow	$2N_{2}O_{4}(g)$	+	$O_2(g)$	
Start $t = 0$	0.5 atm		0 atm		0 atm	
At time t	(0.5 – 2x) atm		2x atm		x atm	
$p_t = p_{N_2O_5} + p_t$ = (0.5 - 2)	$p_{N_2O_4} + p_{O_2}$ (x) + 2x + x = 0 ¹	5 + x				
$x = p_t - 0.5$	A = 2A + A = 0.0					
1 L						
$p_{\rm N_2O_5}$ = 0.5	– 2x					
= 0.5	$-2(p_t - 0.5) = 1$	$1.5 - 2p_t$				
At $t = 100$	s; $p_{t} = 0.512$ at	m				

109 Cnemical Kinetics

$$p_{N_2O_5} = 1.5 - 2 \times 0.512 = 0.476$$
 atm

Using equation (4.16)

$$k = \frac{2.303}{t} \log \frac{p_{\rm i}}{p_{\rm A}} = \frac{2.303}{100 \,\rm s} \log \frac{0.5 \,\rm atm}{0.476 \,\rm atm}$$
$$= \frac{2.303}{100 \,\rm s} \times 0.0216 = 4.98 \times 10^{-4} \,\rm s^{-1}$$

4.3.3 Half-Life of a Reaction

The half-life of a reaction is the time in which the concentration of a reactant is reduced to one half of its initial concentration. It is represented as $t_{1/2}$.

For a zero order reaction, rate constant is given by equation 4.7.

$$k = \frac{[R]_0 - [R]}{t}$$

At $t = t_{1/2}$, $[R] = \frac{1}{2}[R]_0$

The rate constant at $t_{1/2}$ becomes

$$k = \frac{[R]_0 - 1/2[R]_0}{t_{1/2}}$$
$$t_{1/2} = \frac{[R]_0}{2k}$$

It is clear that $t_{1/2}$ for a zero order reaction is directly proportional to the initial concentration of the reactants and inversely proportional to the rate constant.

For the first order reaction,

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$
(4.15)

at
$$t_{1/2}$$
 [R] = $\frac{[R]_0}{2}$ (4.16)

So, the above equation becomes

$$k = \frac{2.303}{t_{1/2}} \log \frac{[R]_0}{[R]/2}$$

or
$$t_{1/2} = \frac{2.303}{k} \log 2$$
$$t_{1/2} = \frac{2.303}{k} \times 0.301$$
$$t_{1/2} = \frac{0.693}{k}$$
(4.17)

It can be seen that for a first order reaction, half-life period is constant, i.e., it is independent of initial concentration of the reacting species. The half-life of a first order equation is readily calculated from the rate constant and vice versa.

For zero order reaction $t_{1/2} \propto [R]_0$. For first order reaction $t_{1/2}$ is independent of $[R]_0$.

A first order reaction is found to have a rate constant, $k = 5.5 \times 10^{-14} \text{ s}^{-1}$. Example 4.7 Find the half-life of the reaction.

Half-life for a first order reaction is

$$t_{1/2} = \frac{0.693}{k}$$

$$t_{1/2} = \frac{0.693}{5.5 \times 10^{-14} \text{s}^{-1}} = 1.26 \times 10^{13} \text{s}^{-1}$$

Show that in a first order reaction, time required for completion of 99.9% is 10 times of half-life $(t_{1/2})$ of the reaction.

When reaction is completed 99.9%, $[R]_n = [R]_0 - 0.999[R]_0$

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$

$$= \frac{2.303}{t} \log \frac{[R]_0}{[R]_0 - 0.999[R]_0} = \frac{2.303}{t} \log 10^3$$

$$t = 6.909/k$$
For half-life of the reaction
$$t_{1/2} = 0.693/k$$

$$\frac{t}{t_{1/2}} = \frac{6.909}{k} \times \frac{k}{0.693} = 10$$

Table 4.4 summarises the mathematical features of integrated laws of zero and first order reactions.

Table 4.4: Integrated Rate Laws for the Reactions of Zero and First Order

Order	Reaction type	Differential rate law	Integrated rate law	Straight line plot	Half- life	Units of k
0	$R \rightarrow P$	d[R]/dt = -k	$kt = [R]_0 - [R]$	[R] vs <i>t</i>	[R] ₀ /2k	conc time ⁻¹ or mol $L^{-1}s^{-1}$
1	R→P	d[R]/d <i>t</i> = <i>-k</i> [R]	$[R] = [R]_0 e^{-kt}$ or $kt =$ $\ln\{[R]_0/[R]\}$	ln[R] vs <i>t</i>	$\ln 2/k$	time ⁻¹ or s^{-1}

111 Chemical Kinetics

Example 4.8

Solution

4.4 Pseudo First Order Reaction The order of a reaction is sometimes altered by conditions. Consider a chemical reaction between two substances when one reactant is present in large excess. During the hydrolysis of 0.01 mol of ethyl acetate with 10 mol of water, amounts of the various constituents at the beginning (t = 0) and completion (t) of the reaction are given as under.

	$\mathrm{CH}_3\mathrm{COOC}_2\mathrm{H}_5$	+ H ₂ O	$\xrightarrow{H^+}$	CH ₃ COOH	+	C_2H_5OH
<i>t</i> = 0	0.01 mol	10 mol		0 mol		0 mol
t	0 mol	9.9 mol		0.01 mol		0.01 mol

The concentration of water does not get altered much during the course of the reaction. So, in the rate equation

Rate = k' [CH₃COOC₂H₅] [H₂O]

the term $\,[{\rm H_2O}]$ can be taken as constant. The equation, thus, becomes

Rate = $k [CH_3COOC_2H_5]$ where $k = k' [H_2O]$

and the reaction behaves as first order reaction. Such reactions are called pseudo first order reactions.

Inversion of cane sugar is another pseudo first order reaction.

Rate = $k [C_{12}H_{22}O_{11}]$

Example 4.9 Hydrolysis of methyl acetate in aqueous solution has been studied by titrating the liberated acetic acid against sodium hydroxide. The concentration of the ester at different times is given below.

t/min	0	30	60	90	
$C/\text{mol } L^{-1}$	0.8500	0.8004	0.7538	0.7096	

Show that it follows a pseudo first order reaction, as the concentration of water remains nearly constant (55 mol L⁻¹), during the course of the reaction. What is the value of k' in this equation?

Rate = k' [CH₃COOCH₃][H₂O]

Solution For pseudo first order reaction, the reaction should be first order with respect to ester when $[H_2O]$ is constant. The rate constant *k* for pseudo first order reaction is

 $k = \frac{2.303}{t} \log \frac{C_0}{C} \qquad \text{where} \quad k = k' [H_2 O]$

From the above data we note

t/min	C/ mol L^{-1}	\hat{k}/\min^{-1}
0	0.8500	_
30	0.8004	2.004×10^{-3}
60	0.7538	2.002×10^{-3}
90	0.7096	2.005×10^{-3}

It can be seen that k [H₂O] is constant and equal to 2.004 × 10⁻³ min⁻¹ and hence, it is pseudo first order reaction. We can now determine *k* from

k [H₂O] = 2.004 × 10⁻³ min⁻¹

k [55 mol L⁻¹] = 2.004 × 10⁻³ min⁻¹

 $k' = 3.64 \times 10^{-5} \text{ mol}^{-1} \text{ L min}^{-1}$

Intext Questions

- **4.5** A first order reaction has a rate constant 1.15×10^{-3} s⁻¹. How long will 5 g of this reactant take to reduce to 3 g?
- **4.6** Time required to decompose SO_2Cl_2 to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.
- 4.5 Temperature Dependence of the Rate of a Reaction

Most of the chemical reactions are accelerated by increase in temperature. For example, in decomposition of N_2O_5 , the time taken for half of the original amount of material to decompose is 12 min at 50°C, 5 h at 25°C and 10 days at 0°C. You also know that in a mixture of potassium permanganate (KMnO₄) and oxalic acid (H₂C₂O₄), potassium permanganate gets decolourised faster at a higher temperature than that at a lower temperature.

It has been found that for a chemical reaction with rise in temperature by 10° , the rate constant is nearly doubled.

The temperature dependence of the rate of a chemical reaction can be accurately explained by **Arrhenius equation** (4.18). It was first proposed by Dutch chemist, J.H. van't Hoff but Swedish chemist, Arrhenius provided its physical justification and interpretation.

 $k = A e^{-Ea / RT}$ (4.18)

where *A* is the Arrhenius factor or the **frequency factor**. It is also called pre-exponential factor. It is a constant specific to a particular reaction. *R* is gas constant and E_a is activation energy measured in joules/mole (J mol⁻¹).

113 Chemical Kinetics

 $\begin{array}{c|c} H & I & H & I \\ | + | \rightarrow & \vdots & \vdots & + \\ H & I & H & I \\ & & H & H & H & H \\ & & & Intermediate \end{array}$

Fig. 4.6: Formation of HI through the intermediate

Fig. 4.7: Diagram showing plot of potential energy vs reaction coordinate.

Fig. 4.8: Distribution curve showing energies among gaseous molecules

Fig. 4.9: Distribution curve showing temperature dependence of rate of a reaction

Chemistry 114

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

According to Arrhenius, this reaction can take place only when a molecule of hydrogen and a molecule of iodine collide to form an unstable intermediate (Fig. 4.6). It exists for a very short time and then breaks up to form two molecules of hydrogen iodide.

It can be understood clearly using the following simple reaction

The energy required to form this intermediate, called **activated complex** (C), is known as **activation energy** (E_a). Fig. 4.7 is obtained by plotting potential energy vs reaction coordinate. Reaction coordinate represents the profile of energy change when reactants change into products.

Some energy is released when the complex decomposes to form products. So, the final enthalpy of the reaction depends upon the nature of reactants and products.

All the molecules in the reacting species do not have the same kinetic energy. Since it is difficult to predict the behaviour of any one molecule with precision, Ludwig Boltzmann and James Clark Maxwell used statistics to predict the behaviour of large number of molecules. According to them, the distribution of kinetic energy may be described by plotting the fraction of molecules ($N_{\rm E}/N_{\rm T}$) with a given kinetic energy (E) vs kinetic energy (Fig. 4.8). Here, $N_{\rm E}$ is the number of molecules with energy *E* and $N_{\rm T}$ is total number of molecules.

The peak of the curve corresponds to the **most probable kinetic energy**, i.e., kinetic energy of maximum fraction of molecules. There are decreasing number of molecules with energies higher or lower than this value. When the temperature is raised, the maximum of the curve moves to the higher energy value (Fig. 4.9) and the curve broadens out, i.e., spreads to the right such that there is a greater proportion of molecules with much higher energies. The area under the curve must be constant since total probability must be one at all times. We can mark the position of $E_{\rm a}$ on Maxwell Boltzmann distribution curve (Fig. 4.9).

Increasing the temperature of the substance increases the fraction of molecules, which collide with energies greater than $E_{\rm a}$. It is clear from the diagram that in the curve at (t + 10), the area showing the fraction of molecules having energy equal to or greater than activation energy gets doubled leading to doubling the rate of a reaction.

In the Arrhenius equation (4.18) the factor $e^{-Ea/RT}$ corresponds to the fraction of molecules that have kinetic energy greater than E_a . Taking natural logarithm of both sides of equation (4.18)

$$\ln k = -\frac{E_a}{RT} + \ln A \tag{4.19}$$

The plot of $\ln k \text{ vs } 1/\text{T}$ gives a straight line according to the equation (4.19) as shown in Fig. 4.10.

Thus, it has been found from Arrhenius equation (4.18) that increasing the temperature or decreasing the activation energy will result in an increase in the rate of the reaction and an exponential increase in the rate constant.

In Fig. 4.10, slope = $-\frac{E_a}{R}$ and intercept = ln A. So we can calculate E_a and A using these values.

At temperature T_1 , equation (4.19) is

$$\ln k_1 = -\frac{E_a}{RT_1} + \ln A$$
 (4.20)

At temperature T_2 , equation (4.19) is

$$\ln k_2 = -\frac{E_a}{RT_2} + \ln A$$
 (4.21)

(since *A* is constant for a given reaction)

 k_1 and k_2 are the values of rate constants at temperatures T_1 and T_2 respectively.

Subtracting equation (4.20) from (4.21), we obtain

$$\ln k_{2} - \ln k_{1} = \frac{E_{a}}{RT_{1}} - \frac{E_{a}}{RT_{2}}$$

$$\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left[\frac{1}{T_{1}} - \frac{1}{T_{2}} \right]$$

$$\log \frac{k_{2}}{k_{1}} = \frac{E_{a}}{2.303R} \left[\frac{1}{T_{1}} - \frac{1}{T_{2}} \right]$$

$$\log \frac{k_{2}}{k_{1}} = \frac{E_{a}}{2.303R} \left[\frac{T_{2} - T_{1}}{T_{1}T_{2}} \right]$$
(4.22)

115 Chemical Kinetics

Fig. 4.10: A plot between $\ln k$ and 1/T

$$\begin{split} \underline{\textit{Example 4.10}} & \text{The rate constants of a reaction at 500K and 700K are $0.02\text{s}^{-1} \text{ and } 0.07\text{s}^{-1} \text{ respectively. Calculate the values of } E_a \text{ and } A. \\ \hline & \text{Solution} & \log \frac{k_2}{k_1} = \frac{E_a}{2.303\text{R}} \Big[\frac{T_2 - T_1}{T_1 T_2} \Big] \\ & \log \frac{0.07}{0.02} = \Big(\frac{E_a}{2.303 \times 8.314 \text{ JK}^{-1} \text{mol}^{-1}} \Big) \Big[\frac{700 - 500}{700 \times 500} \Big] \\ & 0.544 = E_a \times 5.714 \times 10^{-4} / 19.15 \\ & E_a = 0.544 \times 19.15 / 5.714 \times 10^{-4} = 18230.8 \text{ J} \\ \text{Since} & k = Ae^{\frac{E_a/RT}} \\ & 0.02 = Ae^{-18230.8/8.314 \times 500} \\ & A = 0.02 / 0.012 = 1.61 \end{split}$$$

4.5.1 Effect of Catalyst

A catalyst is a substance which increases the rate of a reaction without itself undergoing any permanent chemical change. For example, MnO_2 catalyses the following reaction so as to increase its rate considerably.

 $2\text{KClO}_3 \xrightarrow{\text{MnO}_2} 2 \text{ KCl} + 3\text{O}_2$

The word catalyst should not be used when the added substance reduces the rate of raction. The substance is then called inhibitor. The action of the catalyst can be explained by intermediate complex theory. According to this theory, a catalyst participates in a chemical reaction by forming temporary bonds with the reactants resulting in an intermediate complex. This has a transitory existence and decomposes to yield products and the catalyst.

Fig. 4.11: Effect of catalyst on activation energy

It is believed that the catalyst provides an alternate pathway or reaction mechanism by reducing the activation energy between reactants and products and hence lowering the potential energy barrier as shown in Fig. 4.11.

It is clear from Arrhenius equation (4.18) that lower the value of activation energy faster will be the rate of a reaction.

A small amount of the catalyst can catalyse a large amount of reactants. A catalyst does not alter **Gibbs energy**, ΔG of a reaction. It

catalyses the spontaneous reactions but does not catalyse nonspontaneous reactions. It is also found that a catalyst does not change the equilibrium constant of a reaction rather, it helps in attaining the equilibrium faster, that is, it catalyses the forward as well as the backward reactions to the same extent so that the equilibrium state remains same but is reached earlier.

4.6 Collision Theory of Chemical Reactions

Though Arrhenius equation is applicable under a wide range of circumstances, collision theory, which was developed by Max Trautz and William Lewis in 1916 -18, provides a greater insight into the energetic and mechanistic aspects of reactions. It is based on kinetic theory of gases. According to this theory, the reactant molecules are assumed to be hard spheres and reaction is postulated to occur when molecules collide with each other. **The number of collisions per second per unit volume of the reaction mixture is known as collision frequency (Z)**. Another factor which affects the rate of chemical reactions is activation energy (as we have already studied). For a bimolecular elementary reaction

 $A + B \rightarrow Products$

rate of reaction can be expressed as

$$Rate = Z_{AB} e^{-E_a/RT}$$
(4.23)

where Z_{AB} represents the collision frequency of reactants, A and B and $e^{-Ea/RT}$ represents the fraction of molecules with energies equal to or greater than E_a . Comparing (4.23) with Arrhenius equation, we can say that A is related to collision frequency.

Equation (4.23) predicts the value of rate constants fairly accurately for the reactions that involve atomic species or simple molecules but for complex molecules significant deviations are observed. The reason could be that all collisions do not lead to the formation of products. The collisions in which molecules collide with sufficient kinetic energy (called threshold energy*) and proper orientation, so as to facilitate breaking of bonds between reacting species and formation of new bonds to form products are called as **effective collisions**.

* Threshold energy = Activation Energy + energy possessed by reacting species.

117 Chemical Kinetics

 $\begin{array}{rcl} CH_{3}Br &+ & \bar{O}H &\longrightarrow & CH_{3}OH &+ & \bar{Br} \\ \\ H_{\downarrow+\delta} &-\delta &+ & \bar{O}H &- & \stackrel{Improper}{\longrightarrow} & H_{-C-Br} & \bar{O}H &\rightarrow & No \\ H_{-C-Br} &+ & \bar{O}H &- & H_{-C-Br} & \bar{O}H &\rightarrow & No \\ H_{-C-Br} &+ & \bar{O}H &- & H_{-C-Br} &- & \bar{O}H &\rightarrow & HO \\ H_{-C-Br} &+ & \bar{O}H &- & H_{-C-Br} &- & H_{-C-Br$

For example, formation of methanol from bromoethane depends upon the orientation of reactant molecules as shown in Fig. 4.12. The proper orientation of reactant molecules lead to bond formation whereas improper orientation makes them simply bounce back and no products are formed.

To account for effective collisions, another factor *P*, called the probability or steric factor is

introduced. It takes into account the fact that in a collision, molecules must be properly oriented i.e.,

Rate = $PZ_{AB}e^{-E_a/RT}$

Thus, in collision theory activation energy and proper orientation of the molecules together determine the criteria for an effective collision and hence the rate of a chemical reaction.

Collision theory also has certain drawbacks as it considers atoms/ molecules to be hard spheres and ignores their structural aspect. You will study details about this theory and more on other theories in your higher classes.

Intext Questions

- **4.7** What will be the effect of temperature on rate constant?
- **4.8** The rate of the chemical reaction doubles for an increase of 10K in absolute temperature from 298K. Calculate E_a .
- **4.9** The activation energy for the reaction

 $2 \operatorname{HI}(g) \rightarrow \operatorname{H}_2 + \operatorname{I}_2(g)$

is 209.5 kJ mol⁻¹ at 581K.Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?

Summary

Chemical kinetics is the study of chemical reactions with respect to reaction rates, effect of various variables, rearrangement of atoms and formation of intermediates. The rate of a reaction is concerned with decrease in concentration of reactants or increase in the concentration of products per unit time. It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time. A number of factors such as temperature, concentration of reactants, catalyst, affect the rate of a reaction. Mathematical representation of rate of a reaction is given by **rate law**. It has to be determined experimentally and cannot be predicted. **Order of a reaction** with respect to a

reactant is the power of its concentration which appears in the rate law equation. The order of a reaction is the sum of all such powers of concentration of terms for different reactants. **Rate constant** is the proportionality factor in the rate law. Rate constant and order of a reaction can be determined from rate law or its integrated rate equation. **Molecularity** is defined only for an elementary reaction. Its values are limited from 1 to 3 whereas order can be 0, 1, 2, 3 or even a fraction. Molecularity and order of an elementary reaction are same.

Temperature dependence of rate constants is described by Arrhenius equation $(k = Ae^{-Ea/RT})$. E_a corresponds to the **activation energy** and is given by the energy difference between activated complex and the reactant molecules, and A (Arrhenius factor or pre-exponential factor) corresponds to the collision frequency. The equation clearly shows that increase of temperature or lowering of E_a will lead to an increase in the rate of reaction and presence of a catalyst lowers the activation energy by providing an alternate path for the reaction. According to collision theory, another factor P called steric factor which refers to the orientation of molecules which collide, is important and contributes to effective collisions, thus, modifying the Arrhenius equation to $k = PZ_{AB}e^{-E_a/RT}$.

4.1 From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.
(i) 3NO(g) → N₂O (g) Rate = k[NO]²

(i) $SNO(g) \rightarrow N_2O(g)$ Rate - R(NO)

(ii) H_2O_2 (aq) + 3I⁻ (aq) + 2H⁺ \rightarrow 2H₂O (l) + I₃⁻ Rate = $k[H_2O_2][I^-]$ (iii) CH₃CHO (g) \rightarrow CH₄ (g) + CO(g) Rate = $k[CH_3CHO]^{3/2}$ (iv) C₂H₅Cl (g) \rightarrow C₂H₄ (g) + HCl (g) Rate = $k[C_2H_5Cl]$

4.2 For the reaction:

 $2A + B \rightarrow A_2B$

the rate = $k[A][B]^2$ with k = 2.0 × 10⁻⁶ mol⁻² L² s⁻¹. Calculate the initial rate of the reaction when [A] = 0.1 mol L⁻¹, [B] = 0.2 mol L⁻¹. Calculate the rate of reaction after [A] is reduced to 0.06 mol L⁻¹.

- **4.3** The decomposition of NH_3 on platinum surface is zero order reaction. What are the rates of production of N_2 and H_2 if $k = 2.5 \times 10^{-4} \text{ mol}^{-1} \text{ L s}^{-1}$?
- **4.4** The decomposition of dimethyl ether leads to the formation of CH_4 , H_2 and CO and the reaction rate is given by

Rate = $k [CH_3OCH_3]^{3/2}$

The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e.,

Rate = $k (p_{CH_3OCH_3})^{3/2}$

If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?

4.5 Mention the factors that affect the rate of a chemical reaction.

119 Chemical Kinetics

xercises

- 4.6 A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is(i) doubled(ii) reduced to half ?
- **4.7** What is the effect of temperature on the rate constant of a reaction? How can this effect of temperature on rate constant be represented quantitatively?

4.8 In a pseudo first order hydrolysis of ester in water, the following results were obtained:

t/s	0	30	60	90
[Ester]/mol L^{-1}	0.55	0.31	0.17	0.085

(i) Calculate the average rate of reaction between the time interval 30 to 60 seconds.

(ii) Calculate the pseudo first order rate constant for the hydrolysis of ester.

- **4.9** A reaction is first order in A and second order in B.
 - (i) Write the differential rate equation.
 - (ii) How is the rate affected on increasing the concentration of B three times?
 - (iii) How is the rate affected when the concentrations of both A and B are doubled?
- **4.10** In a reaction between A and B, the initial rate of reaction (r_0) was measured for different initial concentrations of A and B as given below:

A/ mol L^{-1}	0.20	0.20	0.40
B/ mol L^{-1}	0.30	0.10	0.05
$r_0/mol \ L^{-1}s^{-1}$	5.07×10^{-5}	5.07×10^{-5}	1.43×10^{-4}

What is the order of the reaction with respect to A and B?

4.11 The following results have been obtained during the kinetic studies of the reaction: $2A + B \rightarrow C + D$

Experiment	$[A]/mol L^{-1}$	$[B]/mol L^{-1}$	Initial rate of formation of D/mol L^{-1} min ⁻¹
Ι	0.1	0.1	6.0×10^{-3}
II	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.40×10^{-2}

Determine the rate law and the rate constant for the reaction.

4.12 The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:

Experiment	$[A]/ mol L^{-1}$	$[B]/ mol L^{-1}$	Initial rate/ mol L^{-1} min ⁻¹
Ι	0.1	0.1	2.0×10^{-2}
Π	_	0.2	4.0×10^{-2}
III	0.4	0.4	_
IV	_	0.2	2.0×10^{-2}

4.13 Calculate the half-life of a first order reaction from their rate constants given below: (iii) 4 years⁻¹

(ii) $2 \min^{-1}$ (i) 200 s^{-1}

- The half-life for radioactive decay of ${}^{14}C$ is 5730 years. An archaeological artifact containing wood had only 80% of the ${}^{14}C$ found in a living tree. 4.14 Estimate the age of the sample.
- The experimental data for decomposition of N_2O_5 4.15

 $[2N_2O_5 \rightarrow 4NO_2 + O_2]$

in gas phase at 318K are given below:

t/s	0	400	800	1200	1600	2000	2400	2800	3200
$\begin{array}{l} 10^2 \times [\mathrm{N_2O_5}] / \\ \mathrm{mol} \ \mathrm{L^{-1}} \end{array}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

(i) Plot $[N_2O_5]$ against *t*.

(ii) Find the half-life period for the reaction.

(iii) Draw a graph between $\log[N_2O_5]$ and t.

(iv) What is the rate law ?

(v) Calculate the rate constant.

- (vi) Calculate the half-life period from k and compare it with (ii).
- The rate constant for a first order reaction is 60 s^{-1} . How much time will 4.16 it take to reduce the initial concentration of the reactant to its $1/16^{\text{th}}$ value?
- During nuclear explosion, one of the products is ⁹⁰Sr with half-life of 4.17 28.1 years. If 1µg of 90Sr was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.
- For a first order reaction, show that time required for 99% completion 4.18 is twice the time required for the completion of 90% of reaction.
- A first order reaction takes 40 min for 30% decomposition. Calculate $t_{1/2}$. 4.19
- For the decomposition of azoisopropane to hexane and nitrogen at 543 4.20 K, the following data are obtained.

t (sec)	P(mm of Hg)
0	35.0
360	54.0
720	63.0

Calculate the rate constant.

4.21 The following data were obtained during the first order thermal decomposition of SO₂Cl₂ at a constant volume.

 $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

Experiment	Time/s ⁻¹	Total pressure/atm
1	0	0.5
2	100	0.6

Calculate the rate of the reaction when total pressure is 0.65 atm.

121 Chemical Kinetics

4.22 The rate constant for the decomposition of N_2O_5 at various temperatures is given below:

<i>T</i> /° C	0	20	40	60	80
$10^5 \times k/s^{-1}$	0.0787	1.70	25.7	178	2140

Draw a graph between ln k and 1/T and calculate the values of A and E_{a} . Predict the rate constant at 30° and 50°C.

- **4.23** The rate constant for the decomposition of hydrocarbons is 2.418×10^{-5} s⁻¹ at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the value of pre-exponential factor.
- **4.24** Consider a certain reaction A \rightarrow Products with $k = 2.0 \times 10^{-2} \text{s}^{-1}$. Calculate the concentration of *A* remaining after 100 s if the initial concentration of *A* is 1.0 mol L⁻¹.
- **4.25** Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{1/2}$ = 3.00 hours. What fraction of sample of sucrose remains after 8 hours?
- 4.26 The decomposition of hydrocarbon follows the equation

 $k = (4.5 \times 10^{11} \text{s}^{-1}) \text{ e}^{-28000 \text{K/T}}$

Calculate E_a .

4.27 The rate constant for the first order decomposition of H_2O_2 is given by the following equation:

 $\log k = 14.34 - 1.25 \times 10^4 K/T$

Calculate E_{a} for this reaction and at what temperature will its half-period be 256 minutes?

- **4.28** The decomposition of A into product has value of k as 4.5×10^3 s⁻¹ at 10° C and energy of activation 60 kJ mol⁻¹. At what temperature would k be 1.5×10^4 s⁻¹?
- **4.29** The time required for 10% completion of a first order reaction at 298K is equal to that required for its 25% completion at 308K. If the value of A is 4×10^{10} s⁻¹. Calculate k at 318K and E_o.
- **4.30** The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

Answers to Some Intext Questions

- **4.1** $r_{av} = 6.66 \times 10^{-6} \text{ Ms}^{-1}$
- 4.2 Rate of reaction = rate of diappearance of A
 = 0.005 mol litre⁻¹min⁻¹
- 4.3 Order of the reaction is 2.5
- 4.4 $X \rightarrow Y$ Rate = $k[X]^2$

The rate will increase 9 times

- **4.5** t = 444 s
- 4.6 $1.925 \times 10^{-4} \text{ s}^{-1}$
- **4.8** Ea = 52.897 kJ mol⁻¹
- **4.9** 1.471 × 10⁻¹⁹

<u>Objectives</u>

After studying this Unit, you will be able to

- describe interfacial phenomenon and its significance;
- define adsorption and classify it into physical and chemical adsorption;
- explain mechanism of adsorption;
- explain the factors controlling adsorption from gases and solutions on solids;
- explain adsorption results on the basis of Freundlich adsorption isotherms;
- appreciate the role of catalysts in industry;
- enumerate the nature of colloidal state;
- describe preparation, properties and purification of colloids;
- classify emulsions and describe their preparation and properties;
- describe the phenomenon of gel formation;
- list the uses of colloids.

Some of the most important chemicals are produced industrially by means of reactions that occur on the surfaces of solid catalysts.

Surface chemistry deals with phenomena that occur at the surfaces or interfaces. The interface or surface is represented by separating the bulk phases by a hyphen or a slash. For example, the interface between a solid and a gas may be represented by solid-gas or solid/gas. Due to complete miscibility, there is no interface between the gases. The bulk phases that we come across in surface chemistry may be pure compounds or solutions. The interface is normally a few molecules thick but its area depends on the size of the particles of bulk phases. Many important phenomena, noticeable amongst these being corrosion, electrode processes, heterogeneous catalysis, dissolution and crystallisation occur at interfaces. The subject of surface chemistry finds many applications in industry, analytical work and daily life situations.

To accomplish surface studies meticulously, it becomes imperative to have a really clean surface. Under very high vacuum of the order of 10^{-8} to 10^{-9} pascal, it is now possible to obtain ultra clean surface of the metals. Solid materials with such clean surfaces need to be stored in vacuum otherwise these will be covered by molecules of the major components of air namely dioxygen and dinitrogen.

In this Unit, you will be studying some important features of surface chemistry such as adsorption, catalysis and colloids including emulsions and gels. There are several examples, which reveal that the surface of a solid has the tendency to attract and retain the molecules of the phase with which it comes into contact. These molecules remain only at the surface and do not go deeper into the bulk. **The accumulation of molecular species at the surface rather than in the bulk of a solid or liquid is termed adsorption**. The molecular species or substance, which concentrates or accumulates at the surface is termed **adsorbate** and the material on the surface of which the adsorption takes place is called **adsorbent**.

Adsorption is essentially a surface phenomenon. Solids, particularly in finely divided state, have large surface area and therefore, charcoal, silica gel, alumina gel, clay, colloids, metals in finely divided state, etc. act as good adsorbents.

Adsorption in action

- (i) If a gas like O_2 , H_2 , CO, Cl_2 , NH_3 or SO_2 is taken in a closed vessel containing powdered charcoal, it is observed that the pressure of the gas in the enclosed vessel decreases. The gas molecules concentrate at the surface of the charcoal, i.e., gases are adsorbed at the surface.
- (ii) In a solution of an organic dye, say methylene blue, when animal charcoal is added and the solution is well shaken, it is observed that the filtrate turns colourless. The molecules of the dye, thus, accumulate on the surface of charcoal, i.e., are adsorbed.
- (iii) Aqueous solution of raw sugar, when passed over beds of animal charcoal, becomes colourless as the colouring substances are adsorbed by the charcoal.
- (iv) The air becomes dry in the presence of silica gel because the water molecules get adsorbed on the surface of the gel.

It is clear from the above examples that solid surfaces can hold the gas or liquid molecules by virtue of adsorption. The process of removing an adsorbed substance from a surface on which it is adsorbed is called **desorption**.

5.1.1 Distinction In adsorption, the substance is concentrated only at the surface and does not penetrate through the surface to the bulk of the adsorbent, between Adsorption while in absorption, the substance is uniformly distributed throughout the bulk of the solid. For example, when a chalk stick is dipped in ink, and the surface retains the colour of the ink due to adsorption of coloured Absorption molecules while the solvent of the ink goes deeper into the stick due to absorption. On breaking the chalk stick, it is found to be white from inside. A distinction can be made between absorption and adsorption by taking an example of water vapour. Water vapours are absorbed by anhydrous calcium chloride but adsorbed by silica gel. In other words, in adsorption the concentration of the adsorbate increases only at the surface of the adsorbent, while in absorption the concentration is uniform throughout the bulk of the solid.

Both adsorption and absorption can take place simultaneously also. The term sorption is used to describe both the processes.

5.1.2 Mechanism of Adsorption Adsorption arises due to the fact that the surface particles of the adsorbent are not in the same environment as the particles inside the bulk. Inside the adsorbent all the forces acting between the particles are mutually

balanced but on the surface the particles are not surrounded by atoms or molecules of their kind on all sides, and hence they possess unbalanced or residual attractive forces. These forces of the adsorbent are responsible for attracting the adsorbate particles on its surface. The extent of adsorption increases with the increase of surface area per unit mass of the adsorbent at a given temperature and pressure.

Another important factor featuring adsorption is the heat of adsorption. During adsorption, there is always a decrease in residual forces of the surface, i.e., there is decrease in surface energy which appears as heat. Adsorption, therefore, is invariably an exothermic process. In other words, ΔH of adsorption is always negative. When a gas is adsorbed, the freedom of movement of its molecules become restricted. This amounts to decrease in the entropy of the gas after adsorption, i.e., ΔS is negative. Adsorption is thus accompanied by decrease in enthalpy as well as decrease in entropy of the system. For a process to be spontaneous, the thermodynamic requirement is that, at constant temperature and pressure, ΔG must be negative, i.e., there is a decrease in Gibbs energy. On the basis of equation, $\Delta G = \Delta H - T\Delta S$, ΔG can be negative if ΔH has sufficiently high negative value as – T ΔS is positive. Thus, in an adsorption process, which is spontaneous, a combination of these two factors makes ΔG negative. As the adsorption proceeds, ΔH becomes less and less negative ultimately ΔH becomes equal to T Δ S and Δ G becomes zero. At this state equilibrium is attained.

5.1.3 Types of There are mainly two types of adsorption of gases on solids. If accumulation of gas on the surface of a solid occurs on account of Adsorption weak van der Waals' forces, the adsorption is termed as **physical** adsorption or physisorption. When the gas molecules or atoms are held to the solid surface by chemical bonds, the adsorption is termed **chemical adsorption or chemisorption**. The chemical bonds may be covalent or ionic in nature. Chemisorption involves a high energy of activation and is, therefore, often referred to as activated adsorption. Sometimes these two processes occur simultaneously and it is not easy to ascertain the type of adsorption. A physical adsorption at low temperature may pass into chemisorption as the temperature is increased. For example, dihydrogen is first adsorbed on nickel by van der Waals' forces. Molecules of hydrogen then dissociate to form hydrogen atoms which are held on the surface by chemisorption.

Some of the important characteristics of both types of adsorption are described below:

Characteristics of physisorption

- (i) *Lack of specificity:* A given surface of an adsorbent does not show any preference for a particular gas as the van der Waals' forces are universal.
- (ii) Nature of adsorbate: The amount of gas adsorbed by a solid depends on the nature of gas. In general, easily liquefiable gases (i.e., with higher critical temperatures) are readily adsorbed as van der Waals' forces are stronger near the critical temperatures. Thus, 1g of activated charcoal adsorbs more sulphur dioxide (critical temperature 630K), than methane (critical temperature 190K) which is still more than 4.5 mL of dihydrogen (critical temperature 33K).

125 Surface Chemistry

(iii) *Reversible nature:* Physical adsorption of a gas by a solid is generally reversible. Thus,

Solid + Gas \Rightarrow Gas/Solid + Heat

More of gas is adsorbed when pressure is increased as the volume of the gas decreases (Le–Chateliers's principle) and the gas can be removed by decreasing pressure. Since the adsorption process is exothermic, the physical adsorption occurs readily at low temperature and decreases with increasing temperature (Le-Chatelier's principle).

- (iv) *Surface area of adsorbent:* The extent of adsorption increases with the increase of surface area of the adsorbent. Thus, finely divided metals and porous substances having large surface areas are good adsorbents.
- (v) *Enthalpy of adsorption:* No doubt, physical adsorption is an exothermic process but its enthalpy of adsorption is quite low (20–40 kJ mol⁻¹). This is because the attraction between gas molecules and solid surface is only due to weak van der Waals' forces.

Characteristics of chemisorption

- (i) *High specificity:* Chemisorption is highly specific and it will only occur if there is some possibility of chemical bonding between adsorbent and adsorbate. For example, oxygen is adsorbed on metals by virtue of oxide formation and hydrogen is adsorbed by transition metals due to hydride formation.
- (ii) Irreversibility: As chemisorption involves compound formation, it is usually irreversible in nature. Chemisorption is also an exothermic process but the process is very slow at low temperatures on account of high energy of activation. Like most chemical changes, adsorption often increases with rise of temperature. Physisorption of a gas adsorbed at low temperature may change into chemisorption at a high temperature. Usually high pressure is also favourable for chemisorption.
- (iii) *Surface area:* Like physical adsorption, chemisorption also increases with increase of surface area of the adsorbent.
- (iv) *Enthalpy of adsorption:* Enthalpy of chemisorption is high (80-240 kJ mol⁻¹) as it involves chemical bond formation.

Table 5.1: Comparison of Physisorption and Chemisorption

	Physisorption		Chemisorption
1.	It arises because of van der	1.	It is caused by chemical bond
	Waals' forces.		formation.
2.	It is not specific in nature.	2.	It is highly specific in nature.
3.	It is reversible in nature.	3.	It is irreversible.
4.	It depends on the nature of	4.	It also depends on the nature
	gas. More easily liquefiable		of gas. Gases which can react
	gases are adsorbed readily.		with the adsorbent show
			chemisorption.
5.	Enthalpy of adsorption is low	5.	Enthalpy of adsorption is high
	$(20-40 \text{ kJ mol}^{-1})$ in this case.		$(80-240 \text{ kJ mol}^{-1})$ in this case.

- 6. Low temperature is favourable for adsorption. It decreases with increase of temperature.
- 7. No appreciable activation energy is needed.
- 8. It depends on the surface area. It increases with an increase of surface area.
- **9.** It results into multimolecular layers on adsorbent surface under high pressure.
- 6. High temperature is favourable for adsorption. It increases with the increase of temperature.
- 7. High activation energy is sometimes needed.
- 8. It also depends on the surface area. It too increases with an increase of surface area.
- **9.** It results into unimolecular layer.

5.1.4 Adsorption Isotherms

The variation in the amount of gas adsorbed by the adsorbent with pressure at constant temperature can be expressed by means of a curve termed as **adsorption isotherm**.

Freundlich adsorption isotherm: Freundlich, in 1909, gave an empirical relationship between the quantity of gas adsorbed by unit mass of solid adsorbent and pressure at a particular temperature. The relationship can be expressed by the following equation:

$$\frac{x}{m} = k.p^{1/n} \ (n > 1) \qquad \dots (5.1)$$

Fig. 5.1: Adsorption isotherm

Fig. 5.2: Freundlich isotherm

where x is the mass of the gas adsorbed on mass m of the adsorbent at pressure P, k and n are constants which depend on the nature of the adsorbent and the gas at a particular temperature. The relationship is generally represented in the form of a curve where mass of the gas adsorbed per gram of the adsorbent is plotted against pressure (Fig. 5.1). These curves indicate that at a fixed pressure, there is a decrease in physical adsorption with increase in temperature. These curves always seem to approach saturation at high pressure.

Taking logarithm of eq. (5.1)

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log p \qquad \dots (5.2)$$

The validity of Freundlich isotherm can be verified by plotting log $\frac{x}{m}$ on *y*-axis (ordinate) and log *p* on x-axis (abscissa). If it comes to be a straight line, the Freundlich isotherm is valid, otherwise not (Fig. 5.2). The slope of the straight line gives the value of $\frac{1}{n}$. The intercept on the *y*-axis gives the value of log *k*.

Freundlich isotherm explains the behaviour of adsorption in an approximate manner. The factor $\frac{1}{n}$ can have values between 0 and 1 (probable range 0.1 to 0.5). Thus, equation (5.2) holds good over a limited range of pressure.

127 Surface Chemistry

When $\frac{1}{n} = 0, \frac{x}{m}$ = constant, the adsorption is independent of pressure.

When $\frac{1}{n} = 1$, $\frac{x}{m} = k p$, i.e. $\frac{x}{m} \propto p$, the adsorption varies directly with pressure.

Both the conditions are supported by experimental results. The experimental isotherms always seem to approach saturation at high pressure. This cannot be explained by Freundlich isotherm. Thus, it fails at high pressure.

5.1.5 Adsorption from Solution Solution Solution Phase
Solution Phase
Solution Phase
Solution Phase
Solution So

- (i) The extent of adsorption decreases with an increase in temperature.
- (ii) The extent of adsorption increases with an increase of surface area of the adsorbent.
- (iii) The extent of adsorption depends on the concentration of the solute in solution.
- (iv) The extent of adsorption depends on the nature of the adsorbent and the adsorbate.

The precise mechanism of adsorption from solution is not known. Freundlich's equation approximately describes the behaviour of adsorption from solution with a difference that instead of pressure, concentration of the solution is taken into account, i.e.,

$$\frac{x}{m} = kC^{1/n}$$
 ...(5.3)

(*C* is the equilibrium concentration, i.e., when adsorption is complete). On taking logarithm of the above equation, we have

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log C \qquad \dots (5.4)$$

Plotting log $\frac{x}{m}$ against log *C* a straight line is obtained which shows the validity of Freundlich isotherm. This can be tested experimentally by taking solutions of different concentrations of acetic acid. Equal volumes of solutions are added to equal amounts of charcoal in different flasks. The final concentration is determined in each flask after adsorption. The difference in the initial and final concentrations give the value of *x*. Using the above equation, validity of Freundlich isotherm can be established.

The phenomenon of adsorption finds a number of applications. Important ones are listed here:

(i) *Production of high vacuum*: The remaining traces of air can be adsorbed by charcoal from a vessel evacuated by a vacuum pump to give a very high vacuum.

of

5.1.6 Applications

Adsorption

- (ii) Gas masks: Gas mask (a device which consists of activated charcoal or mixture of adsorbents) is usually used for breathing in coal mines to adsorb poisonous gases.
- (iii) Control of humidity: Silica and aluminium gels are used as adsorbents for removing moisture and controlling humidity.
- (iv) Removal of colouring matter from solutions: Animal charcoal removes colours of solutions by adsorbing coloured impurities.
- (v) Heterogeneous catalysis: Adsorption of reactants on the solid surface of the catalysts increases the rate of reaction. There are many gaseous reactions of industrial importance involving solid catalysts. Manufacture of ammonia using iron as a catalyst, manufacture of H₂SO₄ by contact process and use of finely divided nickel in the hydrogenation of oils are excellent examples of heterogeneous catalysis.
- (vi) Separation of inert gases: Due to the difference in degree of adsorption of gases by charcoal, a mixture of noble gases can be separated by adsorption on coconut charcoal at different temperatures.
- (vii) In curing diseases: A number of drugs are used to kill germs by getting adsorbed on them.
- (viii) Froth floatation process: A low grade sulphide ore is concentrated by separating it from silica and other earthy matter by this method using pine oil and frothing agent (see Unit 6).
- (ix) Adsorption indicators: Surfaces of certain precipitates such as silver halides have the property of adsorbing some dyes like eosin, fluorescein, etc. and thereby producing a characteristic colour at the end point.
- (x) Chromatographic analysis: Chromatographic analysis based on the phenomenon of adsorption finds a number of applications in analytical and industrial fields.

Intext Questions **5.1** Write any two characteristics of Chemisorption. **5.2** Why does physisorption decrease with the increase of temperature? 5.3 Why are powdered substances more effective adsorbents than their crystalline forms? Potassium chlorate, when heated strongly decomposes slowly giving dioxygen. The decomposition occurs in the temperature range of 653-873K.

 $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$

However, when a little of manganese dioxide is added, the decomposition takes place at a considerably lower temperature range, i.e., 473-633K and also at a much accelerated rate. The added manganese dioxide remains unchanged with respect to its mass and composition. In a similar manner, the rates of a number of chemical reactions can be altered by the mere presence of a foreign substance.

129 Surface Chemistry

5.2 Catalysis

The systematic study of the effect of various foreign substances on the rates of chemical reactions was first made by Berzelius, in 1835. He suggested the term **catalyst** for such substances.

Substances, which accelerate the rate of a chemical reaction and themselves remain chemically and quantitatively unchanged after the reaction, are known as catalysts, and the phenomenon is known as catalysis. You have already studied about catalysts and its functioning in Section 4.5.

Promoters and poisons

Promoters are substances that enhance the activity of a catalyst while poisons decrease the activity of a catalyst. For example, in Haber's process for manufacture of ammonia, molybdenum acts as a promoter for iron which is used as a catalyst.

$$N_2(g) + 3H_2(g) \xrightarrow{Fe(s)} 2NH_3(g)$$

Catalysis can be broadly divided into two groups:

5.2.1

Homogeneous and Heterogeneous Catalysis

(a) Homogeneous catalysis

When the reactants products and the catalyst are in the same phase (i.e., liquid or gas), the process is said to be homogeneous catalysis. The following are some of the examples of homogeneous catalysis:

(i) Oxidation of sulphur dioxide into sulphur trioxide with dioxygen in the presence of oxides of nitrogen as the catalyst in the lead chamber process.

 $2SO_2(g) + O_2(g) \xrightarrow{NO(g)} 2SO_3(g)$

The reactants, sulphur dioxide and oxygen, and the catalyst, nitric oxide, are all in the same phase.

(ii) Hydrolysis of methyl acetate is catalysed by $\mathrm{H}^{\scriptscriptstyle +}$ ions furnished by hydrochloric acid.

 $CH_3COOCH_3(l) + H_2O(l) \xrightarrow{HCI(l)} CH_3COOH(aq) + CH_3OH(aq)$ Both the reactants and the catalyst are in the same phase.

(iii) Hydrolysis of sugar is catalysed by $\mathrm{H}^{\scriptscriptstyle +}$ ions furnished by sulphuric acid.

 $\begin{array}{ccc} C_{12}H_{22}O_{11}(aq) + H_2O(l) \xrightarrow{H_2SO_4(l)} & C_6H_{12}O_6(aq) + C_6H_{12}O_6(aq) \\ & \text{Solution} & \text{Glucose} & \text{Fructose} \end{array}$

Solution

Both the reactants and the catalyst are in the same phase.

(b) Heterogeneous catalysis

The catalytic process in which the reactants and the catalyst are in different phases is known as heterogeneous catalysis. Some of the examples of heterogeneous catalysis are given below:

(i) Oxidation of sulphur dioxide into sulphur trioxide in the presence of Pt.

$$2SO_2(g) \xrightarrow{\Gamma_1(g)} 2SO_3(g)$$

The reactant is in gaseous state while the catalyst is in the solid state.

(ii) Combination between dinitrogen and dihydrogen to form ammonia in the presence of finely divided iron in **Haber's process**. $N_2(g) + 3H_2(g) \xrightarrow{Fe(s)} 2NH_2(g)$

The reactants are in gaseous state while the catalyst is in the solid state.

(iii) Oxidation of ammonia into nitric oxide in the presence of platinum gauze in **Ostwald's process**.

 $4NH_3(g) + 5O_2(g) \xrightarrow{Pt(s)} 4NO(g) + 6H_2O(g)$

The reactants are in gaseous state while the catalyst is in the solid state.

(iv) Hydrogenation of vegetable oils in the presence of finely divided nickel as catalyst.

Vegetable oils(l) + $H_2(g) \xrightarrow{Ni(s)}$ Vegetable ghee(s)

One of the reactants is in liquid state and the other in gaseous state while the catalyst is in the solid state.

5.2.2 Adsorption Theory of Heterogeneous Catalysis
 Catalysis
 This theory explains the mechanism of heterogeneous catalysis. The old theory, known as adsorption theory of catalysis, was that the reactants in gaseous state or in solutions, are adsorbed on the surface of the solid catalyst. The increase in concentration of the reactants on the surface increases the rate of reaction. Adsorption being an exothermic process, the heat of adsorption is utilised in

enhancing the rate of the reaction.

The catalytic action can be explained in terms of the intermediate compound formation, the theory of which you have already studied in Section 4.5.1

The modern adsorption theory is the combination of intermediate compound formation theory and the old adsorption theory. The catalytic activity is localised on the surface of the catalyst. The mechanism involves five steps:

- (i) Diffusion of reactants to the surface of the catalyst.
- (ii) Adsorption of reactant molecules on the surface of the catalyst.
- (iii) Occurrence of chemical reaction on the catalyst's surface through formation of an intermediate (Fig. 5.3).
- (iv) Desorption of reaction products from the catalyst surface, and thereby, making the surface available again for more reaction to occur.
- (v) Diffusion of reaction products away from the catalyst's surface. The surface of the catalyst unlike the inner part of the bulk, has free valencies which provide the seat for chemical forces of attraction. When a gas comes in contact with such a surface, its molecules are held up there due to loose chemical combination. If different molecules are adsorbed side by side, they may react with each other resulting in the formation of new molecules. Thus, formed molecules may evaporate leaving the surface for the fresh reactant molecules.

This theory explains why the catalyst remains unchanged in mass and chemical composition at the end of the reaction and is effective

131 Surface Chemistry

even in small quantities. It however, does not explain the action of catalytic promoters and catalytic poisons.

Important features of solid catalysts

(a) Activity

The activity of a catalyst depends upon the strength of chemisorption to a large extent. The reactants must get adsorbed reasonably strongly on to the catalyst to become active. However, they must not get adsorbed so strongly that they are immobilised and other reactants are left with no space on the catalyst's surface for adsorption. It has been found that for hydrogenation reaction, the catalytic activity increases from Group 5 to Group 11 metals with maximum activity being shown by groups 7-9 elements of the periodic table (Class XI, Unit 3).

 $2H_2(g) + O_2(g) \xrightarrow{Pt} 2H_2O(l)$

(b) Selectivity

The selectivity of a catalyst is its ability to direct a reaction to yield a particular product selectively, when under the same reaction conditions many products are possible. Selectivity of different catalysts for same reactants is different. For example, starting with H_2 and CO, and using different catalysts, we get different products.

- (i) $CO(g) + 3H_2(g) \xrightarrow{Ni} CH_4(g) + H_2O(g)$
- (ii) $CO(g) + 2H_2(g) \xrightarrow{Cu/ZnO-Cr_2O_3} CH_3OH(g)$
- (iii) $CO(g) + H_2(g) \xrightarrow{Cu} HCHO(g)$

Thus, it can be inferred that the action of a catalyst is highly selective in nature. As a result a substance which acts as a catalyst in one reaction may fail to catalyse another reaction.

5.2.3 Shape-Selective Catalysis by Zeolites

The catalytic reaction that depends upon the pore structure of the catalyst and the size of the reactant and product molecules is called **shape-selective catalysis**. Zeolites are good shape-selective catalysts because of their honeycomb-like structures. They are microporous

aluminosilicates with three dimensional network of silicates in which some silicon atoms are replaced by aluminium atoms giving Al–O–Si framework. The reactions taking place in zeolites depend upon the size and shape of reactant and product molecules as well as upon the pores and cavities of the zeolites. They are found in nature as well as synthesised for catalytic selectivity.

Zeolites are being very widely used as catalysts in petrochemical industries for cracking of hydrocarbons and isomerisation. An important zeolite catalyst used in the petroleum industry is ZSM-5. It converts alcohols directly into gasoline (petrol) by dehydrating them to give a mixture of hydrocarbons.

5.2.4 Enzyme
 Enzymes are complex nitrogenous organic compounds which are produced by living plants and animals. They are actually protein molecules of high molecular mass and form colloidal solutions in water. They are very effective catalysts; catalyse numerous reactions, especially those connected with natural processes. Numerous reactions that occur in the bodies of animals and plants to maintain the life process are catalysed by enzymes. The enzymes are, thus, termed as biochemical catalysts.

Many enzymes have been obtained in pure crystalline state from living cells. However, the first enzyme was synthesised in the laboratory in 1969. The following are some of the examples of enzyme-catalysed reactions:

(i) *Inversion of cane sugar*: The invertase enzyme converts cane sugar into glucose and fructose.

$$C_{12}H_{22}O_{11}(aq) + H_2O(l) \xrightarrow{\text{Invertase}} C_6H_{12}O_6(aq) + C_6H_{12}O_6(aq)$$
Cane sugar Glucose Fructose

(ii) *Conversion of glucose into ethyl alcohol*: The zymase enzyme converts glucose into ethyl alcohol and carbon dioxide.

$$\begin{array}{c} C_{6}H_{12}O_{6}(aq) \xrightarrow{Zymase} 2C_{2}H_{5}OH(aq) + 2CO_{2}(g) \\ Glucose & Ethyl alcohol \end{array}$$

(iii) *Conversion of starch into maltose*: The diastase enzyme converts starch into maltose.

$$2(C_{6}H_{10}O_{5})_{n}(aq) + nH_{2}O(l) \xrightarrow{\text{Diastase}} nC_{12}H_{22}O_{11}(aq)$$

Starch Maltose

(iv) *Conversion of maltose into glucose*: The maltase enzyme converts maltose into glucose.

$$C_{12}H_{22}O_{11}(aq) + H_2O(l) \xrightarrow{\text{Maltase}} 2C_6H_{12}O_6(aq)$$

Maltose Glucose

(v) *Decomposition of urea into ammonia and carbon dioxide*: The enzyme urease catalyses this decomposition.

 $NH_2CONH_2(aq) + H_2O(l) \xrightarrow{Urease} 2NH_3(g) + CO_2(g)$

- (vi) In stomach, the pepsin enzyme converts proteins into peptides while in intestine, the pancreatic trypsin converts proteins into amino acids by hydrolysis.
- (vii) *Conversion of milk into curd*: It is an enzymatic reaction brought about by lacto bacilli enzyme present in curd.

133 Surface Chemistry

Table 5.2: Some Enzymatic Reactions Enzyme Source **Enzymatic reaction** Invertase Sucrose \rightarrow Glucose and fructose Yeast Zymase Yeast Glucose \rightarrow Ethyl alcohol and carbon dioxide Diastase Malt Starch \rightarrow Maltose Maltase Yeast Maltose \rightarrow Glucose Urease Soyabean Urea \rightarrow Ammonia and carbon dioxide

Table 5.2 gives the summary of some important enzymatic reactions.

Characteristics of enzyme catalysis

Stomach

Pepsin

Enzyme catalysis is unique in its efficiency and high degree of specificity. The following characteristics are exhibited by enzyme catalysts:

Proteins \rightarrow Amino acids

- (i) *Most highly efficient*: One molecule of an enzyme may transform one million molecules of the reactant per minute.
- (ii) Highly specific nature: Each enzyme is specific for a given reaction, i.e., one catalyst cannot catalyse more than one reaction. For example, the enzyme urease catalyses the hydrolysis of urea only. It does not catalyse hydrolysis of any other amide.
- (iii) Highly active under optimum temperature: The rate of an enzyme reaction becomes maximum at a definite temperature, called the optimum temperature. On either side of the optimum temperature, the enzyme activity decreases. The optimum temperature range for enzymatic activity is 298-310K. Human body temperature being 310 K is suited for enzyme-catalysed reactions.
- (iv) *Highly active under optimum pH*: The rate of an enzyme-catalysed reaction is maximum at a particular pH called optimum pH, which is between pH values 5-7.
- (v) *Increasing activity in presence of activators and co-enzymes*: The enzymatic activity is increased in the presence of certain substances, known as co-enzymes. It has been observed that when a small non-protein (vitamin) is present along with an enzyme, the catalytic activity is enhanced considerably.

Activators are generally metal ions such as Na^+ , Mn^{2+} , Co^{2+} , Cu^{2+} , etc. These metal ions, when weakly bonded to enzyme molecules, increase their catalytic activity. Amylase in presence of sodium chloride i.e., Na^+ ions are catalytically very active.

(vi) *Influence of inhibitors and poisons*: Like ordinary catalysts, enzymes are also inhibited or poisoned by the presence of certain substances. The inhibitors or poisons interact with the active functional groups on the enzyme surface and often reduce or completely destroy the catalytic activity of the enzymes. The use of many drugs is related to their action as enzyme inhibitors in the body.

Mechanism of enzyme catalysis

There are a number of cavities present on the surface of colloidal particles of enzymes. These cavities are of characteristic shape and possess active groups such as $-NH_2$, -COOH, -SH, -OH, etc. These are actually the active

centres on the surface of enzyme particles. The molecules of the reactant (substrate), which have complementary shape, fit into these cavities just like a key fits into a lock. On account of the presence of active groups, an activated complex is formed which then decomposes to yield the products.

Fig. 5.4: Mechanism of enzyme catalysed reaction

Thus, the enzyme-catalysed reactions may be considered to proceed in two steps.

Step 1: Binding of enzyme to substrate to form an activated complex. $E + S \rightarrow ES^{*}$

Step 2: Decomposition of the activated complex to form product. $ES^{\neq} \rightarrow E + P$

5.2.5 Catalysts in Industry Some of the important technical catalytic processes are listed in Table 5.3 to give an idea about the utility of catalysts in industries.

Fable	5.3:	Some	Industrial	Catalytic	Processes
--------------	------	------	------------	-----------	------------------

	Process	Catalyst
1.	Haber's process for the manufacture of ammonia $N_2(g)$ + $3H_2(g) \rightarrow 2NH_3(g)$	Finely divided iron, molybdenum as promoter; conditions: 200 bar pressure and 723-773K temp- erature. Now-a-days, a mixture of iron oxide, potassium oxide and alumina is used.
2.	Ostwald's process for the manufacture of nitric acid. $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ $4NO_2(g) + 2H_2O(l) + O_2(g) \rightarrow 4HNO_3(aq)$	Platinised asbestos; temperature 573K.
3.	Contact process for the manufacture of sulphuric acid. $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ $SO_3(g) + H_2SO_4(aq) \rightarrow H_2S_2O_7(l)$ oleum $H_2S_2O_7(l) + H_2O(l) \rightarrow 2H_2SO_4(aq)$	Platinised as bestos or vanadium pentoxide (V_2O_5); temperature 673-723K.

Intext Questions

- **5.4** In Haber's process, hydrogen is obtained by reacting methane with steam in presence of NiO as catalyst. The process is known as steam reforming. Why is it necessary to remove CO when ammonia is obtained by Haber's process?
- **5.5** Why is the ester hydrolysis slow in the beginning and becomes faster after sometime?
- **5.6** What is the role of desorption in the process of catalysis.

135 Surface Chemistry

We have learnt in Unit 2 that solutions are homogeneous systems. We also know that sand in water when stirred gives a suspension, which slowly settles down with time. Between the two extremes of suspensions and solutions we come across a large group of systems called colloidal dispersions or simply colloids.

A colloid is a heterogeneous system in which one substance is dispersed (dispersed phase) as very fine particles in another substance called dispersion medium.

The essential difference between a solution and a colloid is that of particle size. While in a solution, the constituent particles are ions or small molecules, in a colloid, the dispersed phase may consist of particles of a single macromolecule (such as protein or synthetic polymer) or an aggregate of many atoms, ions or molecules. Colloidal particles are larger than simple molecules but small enough to remain suspended. Their range of diameters is between 1 and 1000 nm $(10^{-9} \text{ to } 10^{-6} \text{ m})$.

Colloidal particles have an enormous surface area per unit mass as a result of their small size. Consider a cube with 1 cm side. It has a total surface area of 6 cm². If it were divided equally into 10^{12} cubes, the cubes would be the size of large colloidal particles and have a total surface area of 60,000 cm² or 6 m². This enormous surface area leads to some special properties of colloids to be discussed later in this Unit.

Colloids are classified on the basis of the following criteria:

- (i) Physical state of dispersed phase and dispersion medium
- (ii) Nature of interaction between dispersed phase and dispersion medium
- (iii) Type of particles of the dispersed phase.

5.4.1 Classification Based on Physical State of Dispersed Phase and Dispersion Medium

Classification

of Colloids

5.4

Depending upon whether the dispersed phase and the dispersion medium are solids, liquids or gases, eight types of colloidal systems are possible. A gas mixed with another gas forms a homogeneous mixture and hence is not a colloidal system. The examples of the various types of colloids along with their typical names are listed in Table 5.4.

Many familiar commercial products and natural objects are colloids. For example, whipped cream is a foam, which is a gas dispersed in a

Dispersed phase	Dispersion medium	Type of colloid	Examples
Solid	Solid	Solid sol	Some coloured glasses and gem stones
Solid	Liquid	Sol	Paints, cell fluids
Solid	Gas	Aerosol	Smoke, dust
Liquid	Solid	Gel	Cheese, jellies
Liquid	Liquid	Emulsion	Milk, hair cream, butter
Liquid	Gas	Aerosol	Fog, mist, cloud, insecticide sprays
Gas	Solid	Solid sol	Pumice stone, foam rubber
Gas	Liquid	Foam	Froth, whipped cream, soap lather

Table 5.4: Types of Colloidal Systems

liquid. Firefighting foams, used at emergency airplane landings are also colloidal systems. Most biological fluids are aqueous sols (solids dispersed in water). Within a typical cell, proteins and nucleic acids are colloidal-sized particles dispersed in an aqueous solution of ions and small molecules.

Out of the various types of colloids given in Table 5.4, the most common are **sols** (solids in liquids), **gels** (liquids in solids) and **emulsions** (liquids in liquids). However, in the present Unit, we shall take up discussion of the 'sols' and 'emulsions' only. Further, it may be mentioned that if the dispersion medium is water, the sol is called aquasol or hydrosol and if the dispersion medium is alcohol, it is called alcosol and so on.

Depending upon the nature of interaction between the dispersed phase and the dispersion medium, colloidal sols are divided into two categories, namely, **lyophilic** (solvent attracting) and **lyophobic** (solvent repelling). If water is the dispersion medium, the terms used are hydrophilic and hydrophobic.

- (i) *Lyophilic colloids*: The word 'lyophilic' means liquid-loving. Colloidal sols directly formed by mixing substances like gum, gelatine, starch, rubber, etc., with a suitable liquid (the dispersion medium) are called lyophilic sols. An important characteristic of these sols is that if the dispersion medium is separated from the dispersed phase (say by evaporation), the sol can be reconstituted by simply remixing with the dispersion medium. That is why these sols are also called **reversible sols**. Furthermore, these sols are quite stable and cannot be easily coagulated as discussed later.
- (ii) Lyophobic colloids: The word 'lyophobic' means liquid-hating. Substances like metals, their sulphides, etc., when simply mixed with the dispersion medium do not form the colloidal sol. Their colloidal sols can be prepared only by special methods (as discussed later). Such sols are called lyophobic sols. These sols are readily precipitated (or coagulated) on the addition of small amounts of electrolytes, by heating or by shaking and hence, are not stable. Further, once precipitated, they do not give back the colloidal sol by simple addition of the dispersion medium. Hence, these sols are also called **irreversible sols**. Lyophobic sols need stabilising agents for their preservation.

Depending upon the type of the particles of the dispersed phase, colloids are classified as: multimolecular, macromolecular and associated colloids.

- (i) *Multimolecular colloids*: On dissolution, a large number of atoms or smaller molecules of a substance aggregate together to form species having size in the colloidal range (1–1000 nm). The species thus formed are called multimolecular colloids. For example, a gold sol may contain particles of various sizes having many atoms. Sulphur sol consists of particles containing a thousand or more of S_8 sulphur molecules.
- (ii) *Macromolecular colloids*: Macromolecules (Unit 15) in suitable solvents form solutions in which the size of the macromolecules

137 Surface Chemistry

5.4.2 Classification Based on Nature of Interaction between Dispersed Phase and Dispersion Medium

5.4.3

Classification Based on Type of Particles of the Dispersed Phase, Multimolecular, Macromolecular and Associated Colloids may be in the colloidal range. Such systems are called macromolecular colloids. These colloids are quite stable and resemble true solutions in many respects. Examples of naturally occurring macromolecules are starch, cellulose, proteins and enzymes; and those of man-made macromolecules are polythene, nylon, polystyrene, synthetic rubber, etc.

(iii) Associated colloids (Micelles): There are some substances which at low concentrations behave as normal strong electrolytes, but at higher concentrations exhibit colloidal behaviour due to the formation of aggregates. The aggregated particles thus formed are called **micelles**. These are also known as **associated colloids**. The formation of micelles takes place only above a particular temperature called **Kraft temperature** (T_k) and above a particular concentration called **critical micelle concentration (CMC)**. On dilution, these colloids revert back to individual ions. Surface active agents such as soaps and synthetic detergents belong to this class. For soaps, the CMC is 10^{-4} to 10^{-3} mol L⁻¹. These colloids have both lyophobic and lyophilic parts. Micelles may contain as many as 100 molecules or more.

Mechanism of micelle formation

Let us take the example of soap solutions. Soap is sodium or potassium salt of a higher fatty acid and may be represented as $RCOO^-Na^+$ (e.g., sodium stearate $CH_3(CH_2)_{16}COO^-Na^+$, which is a major component of many bar soaps). When dissolved in water, it dissociates into $RCOO^-$ and Na^+ ions. The $RCOO^-$ ions, however, consist of two parts — a long hydrocarbon chain R (also called non-polar 'tail') which is hydrophobic (water repelling), and a polar group COO^- (also called polar-ionic 'head'), which is hydrophilic (water loving).

The RCOO⁻ ions are, therefore, present on the surface with their COO⁻ groups in water and the hydrocarbon chains R staying away from it and remain at the surface. But at critical micelle concentration, the anions are pulled into the bulk of the solution and aggregate to form a spherical

Fig. 5.5: Hydrophobic and hydrophilic parts of stearate ion

(b) Arrangement of stearate ions inside the bulk of water (ionic micelle) at critical micelle concentrations of soap

Cleansing action of soaps

shape with their hydrocarbon chains pointing towards the centre of the sphere with COO⁻ part remaining outward on the surface of the sphere. An aggregate thus formed is known as 'ionic micelle'. These micelles may contain as many as 100 such ions.

Similarly, in case of detergents, e.g., sodium laurylsulphate, CH₃(CH₂)₁₁SO₄⁻ Na⁺, the polar group is $-SO_4^-$ along with the long hydrocarbon chain. Hence, the mechanism of micelle formation here also is same as that of soaps.

Fig. 5.7: (a) Grease on cloth (b) Stearate ions arranging around the grease droplet and (c) Grease droplet surrounded by stearate ions (micelle formed)

It has been mentioned earlier that a micelle consists of a hydrophobic hydrocarbon – like central core. The cleansing action of soap is due to the

fact that soap molecules form micelle around the oil droplet in such a way that hydrophobic part of the stearate ions is in the oil droplet and hydrophilic part projects out of the grease droplet like the bristles (Fig. 5.7). Since the polar groups can interact with water, the oil droplet surrounded by stearate ions is now pulled in water and removed from the dirty surface. Thus soap helps in emulsification and washing away of oils and fats. The negatively charged sheath around the globules prevents them from coming together and forming aggregates.

5.4.4 Preparation A few important methods for the preparation of colloids are as follows: of Colloids

(a) Chemical methods

Colloidal dispersions can be prepared by chemical reactions leading to formation of molecules by double decomposition, oxidation, reduction or hydrolysis. These molecules then aggregate leading to formation of sols.

> (b) Electrical disintegration or Bredig's Arc method This process involves dispersion as well as condensation. Colloidal sols of metals such as gold,

silver, platinum, etc., can be prepared by this

method. In this method, electric arc is struck between electrodes of the metal immersed in the

dispersion medium (Fig. 5.8). The intense heat produced vapourises the metal, which then condenses to form particles of colloidal size.

$$\begin{array}{l} \text{As}_2\text{O}_3 + 3\text{H}_2\text{S} & \xrightarrow{\text{Double decomposition}} & \text{As}_2\text{S}_3(\text{sol}) + 3\text{H}_2\text{O} \\ \text{SO}_2 + 2\text{H}_2\text{S} & \xrightarrow{\text{Oxidation}} & 3\text{S}(\text{sol}) + 2\text{H}_2\text{O} \end{array}$$

2 AuCl₃ + 3 HCHO + $3H_2O \xrightarrow{\text{Reduction}} 2Au(\text{sol}) + 3HCOOH + 6HCl$ Electrodes $\text{FeCl}_3 + 3\text{H}_2\text{O} \xrightarrow{\text{Hydrolysis}} \text{Fe(OH)}_3 \text{ (sol) + 3HCl}$

Fig. 5.8: Bredig's Arc method

139 Surface Chemistry

(c)

(c) Peptization

Peptization may be defined as the **process of converting a precipitate into colloidal sol** by shaking it with dispersion medium in the presence of a small amount of electrolyte. The electrolyte used for this purpose is called **peptizing agent**. This method is applied, generally, to convert a freshly prepared precipitate into a colloidal sol.

During peptization, the precipitate adsorbs one of the ions of the electrolyte on its surface. This causes the development of positive or negative charge on precipitates, which ultimately break up into smaller particles of the size of a colloid. You will learn about the phenomenon of development of charge on solid particles and their dispersion in Section 5.4.6 under the heading "Charge on collodial particles".

5.4.5 Purification of Colloidal Solutions

Colloidal solutions when prepared, generally contain excessive amount of electrolytes and some other soluble impurities. While the presence of traces of electrolyte is essential for the stability of the colloidal solution, larger quantities coagulate it. It is, therefore, necessary to reduce the concentration of these soluble impurities to a requisite minimum. **The process used for reducing the amount of impurities to a requisite minimum is known as purification of colloidal solution**. The purification of colloidal solution is carried out by the following mehods:

Chemistry 140

(i) Dialysis: It is a process of removing a dissolved substance from a colloidal solution by means of diffusion through a suitable membrane. Since particles (ions or smaller molecules) in a true solution can pass through animal membrane (bladder) or parchment paper or cellophane sheet but not the colloidal particles, the membrane can be used for dialysis. The apparatus used for this purpose is called dialyser. A bag of suitable membrane containing the colloidal solution is suspended in a vessel through which fresh water is continuously flowing (Fig. 5.9). The molecules and ions diffuse through membrane into the outer water and pure colloidal solution is left behind.

(ii) *Electro-dialysis*: Ordinarily, the process of dialysis is quite slow. It can be made faster by applying an electric field if the dissolved substance in the impure colloidal solution is only an electrolyte. The process is then named electrodialysis. The colloidal solution is placed in a bag of suitable membrane while pure water is taken outside. Electrodes are fitted in the compartment as shown in Fig. 5.10. The ions present in the colloidal solution migrate out to the oppositely charged electrodes.

(iii) *Ultrafiltration*: Ultrafiltration is the process of separating the colloidal particles from the solvent and soluble solutes present in

the colloidal solution by specially prepared filters, which are permeable to all substances except the colloidal particles.
Colloidal particles can pass through ordinary filter paper because the pores are too large. However, the pores of filter paper can be reduced in size by impregnating with collodion solution to stop the flow of colloidal particles. The usual collodion is a 4% solution of nitro-cellulose in a mixture of alcohol and ether. An ultra-filter paper may be prepared by soaking the

filter paper in a collodion solution, hardening by formaldehyde and then finally drying it. Thus, by using ultra-filter paper, the colloidal particles are separated from rest of the materials. Ultrafiltration is a slow process. To speed up the process, pressure or suction is applied. The colloidal particles left on the ultra-filter paper are then stirred with fresh dispersion medium (solvent) to get a pure colloidal solution.

Various properties exhibited by the colloidal solutions are described below:

(i) *Colligative properties*: Colloidal particles being bigger aggregates, the number of particles in a colloidal solution is comparatively small as compared to a true solution. Hence, the values of colligative properties (osmotic pressure, lowering in vapour pressure, depression in freezing point and elevation in boiling point) are of small order as compared to values shown by true solutions at same concentrations.

5.4.6 Properties

of Colloidal

Solutions

(ii) *Tyndall effect*: If a homogeneous solution placed in dark is observed in the direction of light, it appears clear and, if it is observed from a direction at right angles to the direction of light beam, it appears perfectly dark. Colloidal solutions viewed in the same way may also appear reasonably clear or translucent by the transmitted light but they show a mild to strong opalescence, when viewed at right angles to the passage of light, i.e., the path of the beam is illuminated by a bluish light. This effect was first observed by Faraday and later studied in detail by Tyndall and is termed as **Tyndall effect**. The bright cone of the light is called **Tyndall cone** (Fig. 5.11). The Tyndall effect

is due to the fact that colloidal particles scatter light in all directions in space. This scattering of light illuminates the path of beam in the colloidal dispersion.

Tyndall effect can be observed during the projection of picture in the cinema hall due to scattering of light by dust and smoke particles present there. Tyndall effect is observed only when the following two conditions are satisfied.

- (i) The diameter of the dispersed particles is not much smaller than the wavelength of the light used; and
- (ii) The refractive indices of the dispersed phase and the dispersion medium differ greatly in magnitude.

Tyndall effect is used to distinguish between a colloidal and true solution. Zsigmondy, in 1903, used Tyndall effect to set up an apparatus known as ultramicroscope. An intense beam of light is focussed on the colloidal solution contained in a glass vessel. The focus of the light is then observed with a microscope at right angles to the beam. Individual colloidal particles appear as bright stars against a dark background. Ultramicroscope does not render the actual colloidal particles visible but only observe the light scattered by them. Thus, ultramicroscope does not provide any information about the size and shape of colloidal particles.

(iii) *Colour*: The colour of colloidal solution depends on the wavelength of light scattered by the dispersed particles. The wavelength of light further depends on the size and nature of the particles. The colour

141 Surface Chemistry

Fig. 5.11: Tyndall effect

of colloidal solution also changes with the manner in which the observer receives the light. For example, a mixture of milk and water appears blue when viewed by the reflected light and red when viewed by the transmitted light. Finest gold sol is red in colour; as the size of particles increases, it appears purple, then blue and finally golden.

(iv) *Brownian movement*: When colloidal solutions are viewed under a powerful ultramicroscope, the colloidal particles appear to be in a state of continuous zig-zag motion all over the field of view. This motion was first observed by the British botanist, Robert Brown,

> and is known as Brownian movement (Fig. 5.12). This motion is independent of the nature of the colloid but depends on the size of the particles and viscosity of the solution. Smaller the size and lesser the viscosity, faster is the motion.

> The Brownian movement has been explained to be due to the unbalanced bombardment of the particles by the molecules of the dispersion medium. The Brownian movement has a stirring effect which does not permit the particles to settle and thus, is responsible for the stability of sols.

(v) Charge on colloidal particles: Colloidal particles always carry an electric charge. The nature of this charge is the same on all the particles in a given colloidal solution and may be either positive or negative. A list of some common sols with the nature of charge on their particles is given below:

Positively charged sols	Negatively charged sols
Hydrated metallic oxides, e.g., Al_2O_3 .x H_2O , CrO_3 .x H_2O and Fe_2O_3 .x H_2O , etc.	Metals, e.g., copper, silver, gold sols.
Basic dye stuffs, e.g., methylene blue sol.	Metallic sulphides, e.g., As_2S_3 , Sb_2S_3 , CdS sols.
Haemoglobin (blood)	Acid dye stuffs, e.g., eosin, congo red sols.
Oxides, e.g., TiO_2 sol.	Sols of starch, gum, gelatin, clay, charcoal, etc.

The presence of equal and similar charges on colloidal particles is largely responsible in providing stability to the colloidal solution, because the repulsive forces between charged particles having same charge prevent them from coalescing or aggregating when they come closer to one another.

The charge on the sol particles is due to one or more reasons, viz., due to electron capture by sol particles during electrodispersion of metals, due to preferential adsorption of ions from solution and/or due to formulation of electrical double layer. Development of charge on sol particles by preferential adsorption of ions is described below.

The sol particles acquire positive or negative charge by preferential adsorption of positive or negative ions. When two or more ions are present in the dispersion medium, preferential adsorption of the ion

Fig. 5.12: Brownian movement
common to the colloidal particle usually takes place. This can be explained by taking the following examples:

(a) When highly diluted solution of silver nitrate is added to highly diluted potassium iodide solution, the precipitated silver iodide adsorbs iodide ions from the dispersion medium and negatively charged colloidal sol results. However, when KI solution is added to $AgNO_3$ solution, positively charged sol results due to adsorption of Ag^+ ions from dispersion medium.

AgI/I⁻	AgI/Ag ⁺
Negatively charged	Positively charged

(b) If $FeCl_3$ is added to the excess of hot water, a positively charged sol of hydrated ferric oxide is formed due to adsorption of Fe^{3+} ions. However, when ferric chloride is added to NaOH solution a negatively charged sol is obtained with adsorption of OH⁻ ions.

Fe ₂ O ₃ .xH ₂ O/Fe ³⁺	Fe ₂ O ₃ .xH ₂ O/OH ⁻
Positively charged	Negatively charged

Having acquired a positive or a negative charge by selective adsorption on the surface of a colloidal particle as stated above, this layer attracts counter ions from the medium forming a second layer, as shown below.

$Ag_{1/1} \Lambda \qquad Ag_{1/Ag_{1}}$	AgI∕I⁻ K⁺		AgI/Ag ⁺ I ⁻
---	-----------	--	------------------------------------

The combination of the two layers of opposite charges around the colloidal particle is called Helmholtz electrical double layer. According to modern views, the first layer of ions is firmly held and is termed fixed layer while the second layer is mobile which is termed diffused layer. Fig. 5.13 depicts the formation of double layer. Since separation of

charge is a seat of potential, the charges of opposite signs on the fixed and diffused parts of the double layer results in a difference in potential between these layers in the same manner as potential difference is developed in a capacitor. This potential difference between the fixed layer and the diffused layer of opposite charges is called the **electrokinetic potential or zeta potential**.

If two particles of an insoluble material (precipitate) do not have double layers they can come close enough and attractive van der Waals forces pull them together. When particles possess double layer as shown in Fig. 5.13, the overall effect is that particles repel each other at large distances of separation. This repulsion prevents their close approach. They remain dispersed and colloid is stabilised.

The addition of more electrolytes to sol supresses the diffused double layer and reduces the zita potential. This decreases the electrostatic repulsion between particles to a large extent and colloid precipitates. That is why colloid is particularly sensitive to oppositely charged ions.

(vi) *Electrophoresis*: The existence of charge on colloidal particles is confirmed by electrophoresis experiment. When electric potential is applied across two platinum electrodes dipping in a colloidal solution, the colloidal particles move towards one or the other electrode. The movement of colloidal particles under an applied electric potential is called electrophoresis. Positively charged particles move towards the cathode while negatively charged

143 Surface Chemistry

Fig. 5.13: Formation of double layer

Fig. 5.14: Electrophoresis

particles move towards the anode. This can be demonstrated by the following experimental setup (Fig. 5.14).

When electrophoresis, i.e., movement of particles is prevented by some suitable means, it is observed that the dispersion medium begins to move in an electric field. This phenomenon is termed **electroosmosis**.

(vii) *Coagulation or precipitation*: The stability of the lyophobic sols is due to the presence of charge on colloidal particles. If, somehow, the charge is removed, the particles will come nearer to each other to form aggregates (or coagulate) and settle down under the force of gravity.

The process of settling of colloidal particles is called coagulation or precipitation of the sol.

The coagulation of the lyophobic sols can be carried out in the following ways:

- (i) *By electrophoresis*: The colloidal particles move towards oppositely charged electrodes, get discharged and precipitated.
- (ii) By mixing two oppositely charged sols: Oppositely charged sols when mixed in almost equal proportions, neutralise their charges and get partially or completely precipitated. Mixing of hydrated ferric oxide (+ve sol) and arsenious sulphide (-ve sol) bring them in the precipitated forms. This type of coagulation is called mutual coagulation.
- (iii) *By boiling*: When a sol is boiled, the adsorbed layer is disturbed due to increased collisions with the molecules of dispersion medium. This reduces the charge on the particles and ultimately leads to settling down in the form of a precipitate.
- (iv) *By persistent dialysis*: On prolonged dialysis, traces of the electrolyte present in the sol are removed almost completely and the colloids become unstable and ultimately coagulate.
- (v) By addition of electrolytes: When excess of an electrolyte is added, the colloidal particles are precipitated. The reason is that colloids interact with ions carrying charge opposite to that present on themselves. This causes neutralisation leading to their coagulation. The ion responsible for neutralisation of charge on the particles is called the coagulating ion. A negative ion causes the precipitation of positively charged sol and vice versa.

It has been observed that, generally, the greater the valence of the flocculating ion added, the greater is its power to cause precipitation. This is known as Hardy-Schulze rule. In the coagulation of a negative sol, the flocculating power is in the order: $Al^{3+}>Ba^{2+}>Na^{+}$

Similarly, in the coagulation of a positive sol, the flocculating power is in the order: $[Fe(CN)_6]^{4-} > PO_4^{3-} > SO_4^{2-} > Cl^-$

The minimum concentration of an electrolyte in millimoles per litre required to cause precipitation of a sol in two hours is called coagulating value. The smaller the quantity needed, the higher will be the coagulating power of an ion.

Coagulation of lyophilic sols

There are two factors which are responsible for the stability of lyophilic sols. These factors are the charge and solvation of the colloidal particles. When these two factors are removed, a lyophilic sol can be coagulated. This is done (i) by adding an electrolyte and (ii) by adding a suitable solvent. When solvents such as alcohol and acetone are added to hydrophilic sols, the dehydration of dispersed phase occurs. Under this condition, a small quantity of electrolyte can bring about coagulation.

Protection of colloids

Lyophilic sols are more stable than lyophobic sols. This is due to the fact that lyophilic colloids are extensively solvated, i.e., colloidal particles are covered by a sheath of the liquid in which they are dispersed.

Lyophilic colloids have a unique property of protecting lyophobic colloids. When a lyophilic sol is added to the lyophobic sol, the lyophilic particles form a layer around lyophobic particles and thus protect the latter from electrolytes. Lyophilic colloids used for this purpose are called protective colloids.

These are liquid-liquid colloidal systems, i.e., the dispersion of finely

divided droplets in another liquid. If a mixture of two immiscible or partially miscible liquids is shaken, a coarse dispersion of one liquid

5.5 Emulsions

Water in oil

Fig. 5.14: Types of emulsions

in the other is obtained which is called emulsion. Generally, one of the two liquids is water. There are two types of emulsions.

(i) Oil dispersed in water (O/W type) and

(ii) Water dispersed in oil (W/O type).

In the first system, water acts as dispersion medium. Examples of this type of emulsion are milk and vanishing cream. In milk, liquid fat is dispersed in water. In the second system, oil acts as dispersion medium.

Common examples of this type are butter and cream.

Emulsions of oil in water are unstable and sometimes they separate into two layers on standing. For stabilisation of an emulsion, a third component called emulsifying agent is usually added. The emulsifying agent forms an interfacial film between suspended particles and the medium. The principal emulsifying agents for O/W emulsions are proteins, gums, natural and synthetic soaps, etc., and for W/O, heavy metal salts of fatty acids, long chain alcohols, lampblack, etc.

Emulsions can be diluted with any amount of the dispersion medium. On the other hand, the dispersed liquid when mixed, forms a separate layer. The droplets in emulsions are often negatively charged and can be precipitated by electrolytes. They also show Brownian movement and Tyndall effect. Emulsions can be broken into constituent liquids by heating, freezing, centrifuging, etc.

5.6 Colloids Around Us Most of the substances, we come across in our daily life, are colloids. The meals we eat, the clothes we wear, the wooden furniture we use, the houses we live in, the newspapers we read, are largely composed of colloids.

Following are the interesting and noteworthy examples of colloids:

- (i) *Blue colour of the sky*: Dust particles along with water suspended in air scatter blue light which reaches our eyes and the sky looks blue to us.
- (ii) Fog, mist and rain: When a large mass of air containing dust particles, is cooled below its dewpoint, the moisture from the air condenses on the surfaces of these particles forming fine droplets. These droplets being colloidal in nature continue to float in air in the form of mist or fog. Clouds are aerosols having small droplets of water suspended in air. On account of condensation in the upper atmosphere, the colloidal droplets of water grow bigger and bigger in size, till they come down in the form of rain. Sometimes, the rainfall occurs when two oppositely charged clouds meet.

It is possible to cause artificial rain by throwing electrified sand or spraying a sol carrying charge opposite to the one on clouds from an aeroplane.

- (iii) *Food articles*: Milk, butter, halwa, ice creams, fruit juices, etc., are all colloids in one form or the other.
- (iv) *Blood*: It is a colloidal solution of an albuminoid substance. The styptic action of alum and ferric chloride solution is due to coagulation of blood forming a clot which stops further bleeding.
- (v) *Soils*: Fertile soils are colloidal in nature in which humus acts as a protective colloid. On account of colloidal nature, soils adsorb moisture and nourishing materials.
- (vi) *Formation of delta*: River water is a colloidal solution of clay. Sea water contains a number of electrolytes. When river water meets the sea water, the electrolytes present in sea water coagulate the colloidal solution of clay resulting in its deposition with the formation of delta.

Applications of colloids

Colloids are widely used in the industry. Following are some examples:

(i) Electrical precipitation of smoke: Smoke is a colloidal solution of solid particles such as carbon, arsenic compounds, dust, etc., in air. The smoke, before it comes out from the chimney, is led through a chamber containing plates having a charge opposite to that carried by smoke particles. The particles on coming in contact with these plates lose their charge and get precipitated. The particles thus settle down on the floor of the chamber. The precipitator is called Cottrell precipitator (Fig.5.15).

- (ii) Purification of drinking water: The water obtained from natural sources often contains suspended impurities. Alum is added to such water to coagulate the suspended impurities and make water fit for drinking purposes.
- (iii) Medicines: Most of the medicines are colloidal in nature. For example, argyrol is a silver sol used as an eye lotion. Colloidal antimony is used in curing kalaazar. Colloidal gold is used for intramuscular injection. Milk of magnesia, an emulsion, is used for stomach disorders. Colloidal medicines are more effective because they have large surface area and are therefore easily assimilated.

- (iv) *Tanning*: Animal hides are colloidal in nature. When a hide, which has positively charged particles, is soaked in tannin, which contains negatively charged colloidal particles, mutual coagulation takes place. This results in the hardening of leather. This process is termed as tanning. Chromium salts are also used in place of tannin.
- (v) *Cleansing action of soaps and detergents*: This has already been described in Section 5.4.3.
- (vi) *Photographic plates and films*: Photographic plates or films are prepared by coating an emulsion of the light sensitive silver bromide in gelatin over glass plates or celluloid films.
- (vii) *Rubber industry*: Latex is a colloidal solution of rubber particles which are negatively charged. Rubber is obtained by coagulation of latex.
- (viii) *Industrial products*: Paints, inks, synthetic plastics, rubber, graphite lubricants, cement, etc., are all colloidal solutions.

Intext Questions

5.7 What modification can you suggest in the Hardy Schulze law?

5.8 Why is it essential to wash the precipitate with water before estimating it quantitatively?

<u>Summary</u>

Adsorption is the phenomenon of attracting and retaining the molecules of a substance on the surface of a solid resulting into a higher concentration on the surface than in the bulk. The substance adsorbed is known as **adsorbate** and the substance on which adsorption takes place is called **adsorbent**. In physisorption, adsorbate is held to the adsorbent by weak van der Waals forces, and in chemisorption, adsorbate is held to the adsorbent by strong chemical bond. Almost all solids adsorb gases. The extent of adsorption of a gas on a solid depends upon nature of gas, nature of solid, surface area of the solid, pressure of gas and temperature of gas at constant temperature is known as **adsorption isotherm**.

A **catalyst** is a substance which enhances the rate of a chemical reaction without itself getting used up in the reaction. The phenomenon using catalyst is known as **catalysis**. In homogeneous catalysis, the catalyst is in the same phase as are the reactants, and in heterogeneous catalysis the catalyst is in a different phase from that of the reactants.

Colloidal solutions are intermediate between true solutions and suspensions. The size of the colloidal particles range from 1 to 1000 nm. A colloidal system consists of two phases - the dispersed phase and the dispersion medium. Colloidal systems are classified in three ways depending upon (i) physical states of the dispersed phase and dispersion medium and (ii) nature of particles of dispersed phase. The colloidal systems show interesting optical, mechanical and electrical properties. The process of changing the colloidal particles in a sol into the insoluble precipitate by addition of some suitable electrolytes is known as **coagulation**. **Emulsions** are colloidal systems in which both dispersed phase and dispersion medium are liquids. These can be of: (i) **oil in water type** and (ii) **water in oil type.** The process of making emulsion is known as **emulsification**. To stabilise an emulsion, an emulsifying agent or emulsifier is added. Soaps and detergents are most frequently used as emulsifiers. Colloids find several applications in industry as well as in daily life.

147 Surface Chemistry

Exercises

- **5.1** Distinguish between the meaning of the terms adsorption and absorption. Give one example of each.
- 5.2 What is the difference between physisorption and chemisorption?
- **5.3** Give reason why a finely divided substance is more effective as an adsorbent.
- **5.4** What are the factors which influence the adsorption of a gas on a solid?
- $\textbf{5.5} \quad \text{What is an adsorption isotherm? Describe Freundlich adsorption isotherm.}$
- 5.6 What do you understand by activation of adsorbent? How is it achieved?
- 5.7 What role does adsorption play in heterogeneous catalysis?
- 5.8 Why is adsorption always exothermic ?
- **5.9** How are the colloidal solutions classified on the basis of physical states of the dispersed phase and dispersion medium?
- **5.10** Discuss the effect of pressure and temperature on the adsorption of gases on solids.
- **5.11** What are lyophilic and lyophobic sols? Give one example of each type. Why are hydrophobic sols easily coagulated ?
- **5.12** What is the difference between multimolecular and macromolecular colloids? Give one example of each. How are associated colloids different from these two types of colloids?
- 5.13 What are enzymes ? Write in brief the mechanism of enzyme catalysis.
- 5.14 How are colloids classified on the basis of
 - (i) physical states of components
 - (ii) nature of dispersed phase and
 - (iii) interaction between dispersed phase and dispersion medium?

5.15 Explain what is observed

- (i) when a beam of light is passed through a colloidal sol.(ii) an electrolyte, NaCl is added to hydrated ferric oxide sol.
- (iii) electric current is passed through a colloidal sol?
- **5.16** What are emulsions? What are their different types? Give example of each type.
- 5.17 How do emulsifires stabilise emulsion? Name two emulsifiers.
- 5.18 Action of soap is due to emulsification and micelle formation. Comment.
- 5.19 Give four examples of heterogeneous catalysis.
- 5.20 What do you mean by activity and selectivity of catalysts?
- 5.21 Describe some features of catalysis by zeolites.
- 5.22 What is shape selective catalysis?
- **5.23** Explain the following terms:
- (i) Electrophoresis (ii) Coagulation (iii) Dialysis (iv) Tyndall effect.
- **5.24** Give four uses of emulsions.
- 5.25 What are micelles? Give an example of a micellers system.
- 5.26 Explain the terms with suitable examples:

(i) Alcosol (ii) Aerosol (iii) Hydrosol.

5.27 Comment on the statement that "colloid is not a substance but a state of substance".

<u>Objectives</u>

After studying this Unit, you will be able to:

- appreciate the contribution of Indian traditions in the metallurgical processes,
- explain the terms minerals, ores, concentration, benefaction, calcination, roasting, refining, etc.;
- understand the principles of oxidation and reduction as applied to the extraction procedures;
- apply the thermodynamic concepts like that of Gibbs energy and entropy to the principles of extraction of Al, Cu, Zn and Fe;
- explain why reduction of certain oxides like Cu₂O is much easier than that of Fe₂O₃;
- explain why CO is a favourable reducing agent at certain temperatures while coke is better in some other cases;
- explain why specific reducing agents are used for the reduction purposes.

General Principles and Processes of Isolation of Elemenis

Unit

Thermodynamics illustrates why only a certain reducing element and a minimum specific temperature are suitable for reduction of a metal oxide to the metal in an extraction.

The history of civilisation is linked to the use of metals in antiquity in many ways. Different periods of early human civilisations have been named after metals. The skill of extraction of metals gave many metals and brought about several changes in the human society. It gave weapons, tools, ornaments, utensils, etc., and enriched the cultural life. The **'Seven metals of antiquity'**, as they are sometimes called, are gold, copper, silver, lead, tin, iron and mercury. Although modern metallurgy had exponential growth after Industrial Revolution, it is interesting to note that many modern concepts in metallurgy have their roots in ancient practices that pre-dated the Industrial Revolution. For over 7000 years, India has had a rich tradition of metallurgical skills.

The two important sources for the history of Indian metallurgy are archeological excavations and literary evidences. The first evidence of metal in Indian subcontinent comes from Mehrgarh in Baluchistan, where a small copper bead, dated to about 6000 BCE was found. It is however thought to be native copper, which has not been extracted from the ore. Spectrometric studies on copper ore samples obtained from the ancient mine pits at Khetri in Rajasthan and on metal samples cut from representative Harappan artefacts recovered from Mitathal in Haryana and eight other sites distributed in Rajasthan, Gujarat, Madhya Pradesh and Maharashtra prove that copper metallurgy in India dates back to the Chalcolithic cultures in the subcontinent. Indian chalcolithic copper objects were in all probability made indigenously. The ore for extraction of metal for making the objects was obtained from chalcopyrite ore deposits in Aravalli Hills. Collection of archeological texts from copper-plates and rock-inscriptions have been compiled and published by the Archeological Survey of India during the past century. Royal records were engraved on copper plates *(tamra-patra)*. Earliest known copperplate has a Mauryan record that mentions famine relief efforts. It has one of the very few pre-Ashoka Brahmi inscriptions in India.

Harappans also used gold and silver, as well as their joint alloy electrum. Variety of ornaments such as pendants, bangles, beads and rings have been found in ceramic or bronze pots. Early gold and silver ornaments have been found from Indus Valley sites such as Mohenjodaro (3000 BCE). These are on display in the National Museum, New Delhi. India has the distinction of having the deepest ancient gold mines in the world, in the Maski region of Karnataka. Carbon dating places them in mid 1st millennium BCE.

Hymns of Rigveda give earliest indirect references to the alluvial placer gold deposits in India. The river Sindhu was an important source of gold in ancient times. It is interesting that the availability of alluvial placer gold in the river Sindhu has been reported in modern times also. It has been reported that there are great mines of gold in the region of Mansarovar and in Thokjalyug even now. The *Pali* text, *Anguttara Nikaya* narrates the process of the recovery of gold dust or particles from alluvial placer gold deposits. Although evidence of gold refining is available in Vedic texts, it is Kautilya's *Arthashastra*, authored probably in 3rd or 4th century BCE, during Mauryan era, which has much data on prevailing chemical practices in a long section on mines and minerals including metal ores of gold, silver, copper, lead, tin and iron. Kautilya describes a variety of gold called *rasviddha*, which is naturally occurring gold solution. *Kalidas* also mentioned about such solutions. It is astonishing how people recognised such solutions.

The native gold has different colours depending upon the nature and amount of impurity present in it. It is likely that the different colours of native gold were a major driving force for the development of gold refining.

Recent excavations in central parts of Ganges Valley and Vindhya hills have shown that iron was produced there possibly as early as in 1800 BCE. In the recent excavations conducted by the Uttar Pradesh State Archeological Department, iron furnaces, artefacts, tuyers and layers of slag have been found. Radiocarbon dating places them between BCE 1800 and 1000. The results of excavation indicate that the knowledge of iron smelting and manufacturing of iron artefacts was well known in Eastern Vindhyas and it was in use in the Central Ganga Plains, at least from the early 2nd millennium BCE. The quantity and types of iron artefacts and the level of technical advancements indicate that working of iron would have been introduced much earlier. The evidence indicates early use of iron in other areas of the country, which proves that India was indeed an independent centre for the development of the working of iron.

Iron smelting and the use of iron was especially established in South Indian megalithic cultures. The forging of wrought iron seems to have been at peak in India in the 1st millennium CE. Greek accounts report the manufacture of steel in India by crucible process. In this process, iron, charcoal and glass were mixed together in a crucible and heated until the iron melted and absorbed the carbon. India was a major innovator in the production of advanced quality steel. Indian steel was called 'the Wonder Material of the Orient'. A Roman historian, Quintus Curtius, records that one of the gifts Porus of Taxila (326 BCE) gave to Alexander the Great was some two-and-a-half tons of Wootz steel. Wootz steel is primarily iron containing a high proportion of carbon (1.0 - 1.9%). Wootz is the English version of the word 'ukku' which is used for steel in Karnataka and Andhra Pradesh. Literary accounts suggest that Indian Wootz steel from southern part of the Indian subcontinent was exported to Europe, China and Arab world. It became prominent in the Middle East where it was named as Damasus Steel. Michael Faraday tried to duplicate this steel by alloying iron with a variety of metals, including noble metals, but failed.

When iron ore is reduced in solid state by using charcoal, porous iron blocks are formed. Therefore, reduced iron blocks are also called sponge iron blocks. Any useful product can be obtained from this material only after removing the porosity by hot forging. The iron so obtained is termed as wrought iron. An exciting example of wrought iron produced in ancient India is the world famous Iron Pillar. It was erected in its present position in Delhi in 5th century CE. The Sanskrit inscription engraved on it suggests that it was brought here from elsewhere during the Gupta Period. The average composition (weight%) of the components present in the wrought iron of the pillar, besides iron, are 0.15% C, 0.05% Si, 0.05% Mn, 0.25% P, 0.005% Ni, 0.03% Cu and 0.02% N. The most significant aspect of the pillar is that there is no sign of corrosion inspite of the fact that it has been exposed to the atmosphere for about 1,600 years.

Radiocarbon dating of charcoal from iron slag revealed evidence of continuous smelting in Khasi Hills of Meghalaya. The slag layer, which is dated to 353 BCE – CE 128, indicates that Khasi Hill region is the earliest iron smelting site studied in the entire region of North East India. The remnants of former iron-ore excavation and iron manufacturing are visible even now in the landscape of Khasi Hills. British naturalists who visited Meghalaya in early 19th century described the iron industry that had developed in the upper part of the Khasi Hills.

There is archeological evidence of zinc production in Rajasthan mines at Zawar from the 6th or 5th BCE. India was the first country to master zinc distillation. Due to low boiling point, zinc tends to vapourise while its ore is smelted. Pure zinc could be produced after a sophisticated 'downward' distillation technique in which the vapour was condensed in a lower container. This technique was also applied to mercury. Indian metallurgists were masters in this technique. This has been described in Sanskrit texts of 14th century.

Indians had knowledge about mercury. They used it for medicinal purpose. Development of mining and metallurgy declined during the British colonial era. By the 19th century, once flourished mines of Rajasthan were mostly abandoned and became almost extinct. In 1947 when India got independence, European literature on science had already found its way slowly into the country. Thus, in post independence era, the Government of India initiated the process of nation building through the establishment of various institutes of science and technology. In the following sections, we will learn about the modern methods of extraction of elements.

A few elements like carbon, sulphur, gold and noble gases, occur in free state while others are found in combined forms in the earth's crust. Elements vary in abundance. Among metals, aluminium is the most abundant. In fact, it is the third most abundant element in earth's crust (8.3% approx. by weight). It is a major component of many igneous minerals including mica and clays. Many gemstones are impure forms of Al_2O_3 . For example, gems 'ruby' and 'sapphire' have Cr and Co respectively as impurity. Iron is the second most abundant metal in the earth's crust. It forms a variety of compounds and their various uses make it a very important element. It is one of the essential elements in biological systems as well.

For obtaining a particular metal, first we look for **minerals** which are naturally occurring chemical substances in the earth's crust and are obtained through mining. Out of many minerals in which a metal may be found, only a few are viable to be used as source of that metal. Such minerals are known as **ores**.

The principal ores of aluminium, iron, copper and zinc are given in Table 6.1.

Metal	Ores	Composition
Aluminium	Bauxite	$AlO_{x}(OH)_{3-2x}$ [where 0 < x < 1]
	Kaolinite (a form of clay)	$[Al_2(OH)_4 Si_2O_5]$
Iron	Haematite	Fe_2O_3
	Magnetite	Fe_3O_4
	Siderite	FeCO ₃
	Iron pyrites	FeS_2
Copper	Copper pyrites	$CuFeS_2$
	Malachite	CuCO ₃ .Cu(OH) ₂
	Cuprite	Cu_2O
	Copper glance	Cu_2S
Zinc	Zinc blende or Sphalerite	ZnS
	Calamine	ZnCO ₃
	Zincite	ZnO

Table 6.1: Principal Ores of Some Important Metals

A particular element may occur in a variety of compounds. The process of isolation of element from its compound should be such that it is chemically feasible and commercially viable.

6.1 Occurrence of Metals For the purpose of extraction, bauxite is chosen for aluminium. For iron, usually the oxide ores which are abundant and do not produce polluting gases (like SO_2 that is produced in case of iron pyrites) are taken. For copper and zinc, any of the ores listed in Table 6.1 may be used depending upon the availability and other relevant factors.

The entire scientific and technological process used for isolation of the metal from its ore is known as **metallurgy**. The extraction and isolation of an element from its combined form involves various principles of chemistry. Still, some general principles are common to all the extraction processes of metals.

An ore rarely contains only a desired substance. It is usually contaminated with earthly or undesired materials known as **gangue**. The extraction and isolation of metals from ores involves the following major steps:

- Concentration of the ore,
- Isolation of the metal from its concentrated ore, and
- Purification of the metal.

In the following Sections, we shall first describe the various steps for effective concentration of ores. After that principles of some of the common metallurgical processes will be discussed. Those principles will include the thermodynamic and electrochemical aspects involved in the effective reduction of the concentrated ore to the metal.

6.2 Concentration of Ores

Removal of the unwanted materials (e.g., sand, clays, etc.) from the ore is known as *concentration*, *dressing* or *benefaction*. Before proceeding for concentration, ores are graded and crushed to reasonable size. Concentration of ores involves several steps and selection of these steps depends upon the differences in physical properties of the compound of the metal present and that of the *gangue*. The type of the metal, the available facilities and the environmental factors are also taken into consideration. Some of the important procedures for concentration of ore are described below.

6.2.1 Hydraulic WashingThis is based on the difference between specific gravities of the ore and the *gangue* particles. It is therefore a type of *gravity separation*. In one such process, an upward stream of running water is used to wash the powdered ore. The lighter gangue particles are washed away and the heavier ore particles are left behind.

6.2.2 Magnetic This is based on differences in magnetic properties of the ore components. If either the ore or the gangue is attracted towards

magnetic field, then the separation is carried out by this method. For example iron ores are attracted towards magnet, hence, non-magnetic impurities can be separted from them using magnetic separation. The powdered ore is dropped over a conveyer belt which moves over a magnetic roller (Fig.6.1) Magnetic substance remains attracted towards the belt and falls close to it.

The impurity, SiO_2 too dissolves forming sodium silicate. Other impurities are left behind.

 $Al_2O_3(s) + 2NaOH(aq) + 3H_2O(l) \rightarrow 2Na[Al(OH)_4](aq)$ (6.1)

The sodium aluminate present in solution is neutralised by passing CO_2 gas and hydrated Al_2O_3 is precipitated. At this stage, small amount of freshly prepared sample of hydrated Al_2O_3 is added to the solution. This is called seeding. It induces the precipitation.

$$2Na[Al(OH)_4](aq) + CO_2(g) \rightarrow Al_2O_3.xH_2O(s) + 2NaHCO_3 (aq)$$
(6.2)

Sodium silicate remains in the solution and hydrated alumina is filtered, dried and heated to give back pure Al_2O_3 .

$$Al_2O_3.xH_2O(s) \xrightarrow{1470 \text{ K}} Al_2O_3(s) + xH_2O(g)$$
(6.3)

(b) Other examples

In the metallurgy of silver and gold, the respective metal is leached with a dilute solution of NaCN or KCN in the presence of air, which supplies O_2 . The metal is obtained later by replacement reaction.

$$4\mathrm{M}(\mathrm{s}) + 8\mathrm{CN}(\mathrm{aq}) + 2\mathrm{H}_{2}\mathrm{O}(\mathrm{aq}) + \mathrm{O}_{2}(\mathrm{g}) \rightarrow 4[\mathrm{M}(\mathrm{CN})_{2}](\mathrm{aq}) +$$

 $4OH^{-}(aq)$ (M= Ag or Au) (6.4)

$$2[M(CN)_{2}]^{-}(aq) + Zn(s) \rightarrow [Zn(CN)_{4}]^{2-}(aq) + 2M(s)$$
(6.5)

Intext Questions

- **6.1** Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method?
- 6.2 What is the significance of leaching in the extraction of aluminium?

6.3 Extraction of Crude Metal from Concentrated Ore To extract metal from concentrated ore, it must be converted to a form which is suitable for reduction to metal. Usually sulphide ores are converted to oxide before reduction because oxides are easier to reduce. Thus isolation of metals from concentrated ore involves two major steps *viz.*,

- (a) conversion to oxide, and
- (b) reduction of the oxide to metal.

.

- (a) Conversion to oxide
 - (i) *Calcination*: Calcinaton involves heating. It removes the volatile matter which escapes leaving behind the metal oxide:

$$\operatorname{Fe}_2\operatorname{O}_3.\mathrm{xH}_2\operatorname{O}(\mathrm{s}) \xrightarrow{\Delta} \operatorname{Fe}_2\operatorname{O}_3(\mathrm{s}) + \mathrm{xH}_2\operatorname{O}(\mathrm{g})$$
 (6.6)

$$\operatorname{ZnCO}_3(s) \xrightarrow{\Delta} \operatorname{ZnO}(s) + \operatorname{CO}_2(g)$$
 (6.7)

 $CaCO_3.MgCO_3(s) \xrightarrow{\Delta} CaO(s) + MgO(s) + 2CO_2(g)$ (6.8)

(ii) *Roasting*: In roasting, the ore is heated in a regular supply of air in a furnace at a temperature below the melting point of the metal. Some of the reactions involving sulphide ores are:

$$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2 \tag{6.9}$$

 $2Cu_2S + 3O_2 \to 2Cu_2O + 2SO_2 \tag{6.11}$

 $2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$

The sulphide ores of copper are heated in **reverberatory furnace** [Fig. 6.3]. If the ore contains iron, it is mixed with silica before heating. Iron oxide 'slags of'* as iron silicate and copper is produced in the form of **copper matte** which contains Cu_2S and FeS.

$$FeO + SiO_2 \rightarrow FeSiO_3$$
 (6.12)
(slag)

The SO_2 produced is utilised for manufacturing H_2SO_4 .

(b) Reduction of oxide to the metal

Reduction of the metal oxide usually involves heating it with a reducing agent, for example C, or CO or even another metal.

The reducing agent (e.g., carbon) combines with the oxygen of the metal oxide.

$$M_{x}O_{y} + yC \rightarrow xM + y CO$$
(6.13)

Some metal oxides get reduced easily while others are very difficult to be reduced (reduction means electron gain by the metal ion). In any case, heating is required.

Some basic concepts of thermodynamics help us in understanding the theory of metallurgical transformations. Gibbs energy is the most significant term. To understand the variation in the temperature required for thermal reductions and to predict which element will suit as the reducing agent for a given metal oxide (M_xO_y) , Gibbs energy interpretations are made. The criterion for the feasibility of a thermal reduction is that at a given temperture Gibbs energy change of the reaction must be negative. The change in Gibbs energy, ΔG for any process at any specified temperature, is described by the equation:

 $\Delta G = \Delta H - T \Delta S \tag{6.14}$

where, ΔH is the enthalpy change and ΔS is the entropy change for the process.

When the value of ΔG is negative in equation 6.14, only then the reaction will proceed. ΔG can become negative in the following situations:

- 1. If ΔS is positive, on increasing the temperature (*T*), the value of *T* ΔS increases so that $\Delta H < T\Delta S$. In this situation ΔG will become negative on increasing temperature.
- 2. If coupling of the two reactions, i.e. reduction and oxidation, results in negative value of ΔG for overall reaction, the final reaction becomes feasible. Such coupling is easily understood

* During metallurgy, 'flux' is added which combines with 'gangue' to form 'slag'. Slag separates more easily from the ore than the gangue. This way, removal of gangue becomes easier.

6.4 Thermodynamic Principles of Metallurgy

through Gibbs energy $(\Delta_r G^{\circ})$ vs T plots for the formation of the oxides (Fig. 6.4). These plots are drawn for free energy changes that occur when one gram mole of oxygen is consumed.

The graphical representation of Gibbs energy was first used by H.J.T. Ellingham. This provides a sound basis for considering the choice of reducing agent in the reduction of oxides. This is known as **Ellingham Diagram**. Such diagrams help us in predicting the feasibility of thermal reduction of an ore.

Fig. 6.4: Gibbs energy $(\Delta_{r}G^{\circ})$ vs T plots (schematic) for the formation of some oxides per mole of oxygen consumed (Ellingham diagram)

As we know, during reduction, the oxide of a metal decomposes and the reducing agent takes away the oxygen. The role of reducing agent is to provide $\Delta_r G^{\ominus}$ negative and large enough to make the sum of $\Delta_r G^{\ominus}$ of the two reactions, i.e, oxidation of the reducing agent and reduction of the metal oxide negative.

$$M_xO(s) \rightarrow xM \text{ (solid or liq)} + \frac{1}{2}O_2(g) \qquad [\Delta_r G^{\Theta}_{(M_xO,M)}] \qquad (6.15)$$

If reduction is carried out by carbon the oxidation of the reducing agent (i.e., C) will be there:

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g) \qquad [\Delta_r G^{\theta}_{(C,CO)}] \qquad (6.16)$$

There may also be complete oxidation of carbon to CO_2 .

$$\frac{1}{2}C(s) + \frac{1}{2}O_{2}(g) \to \frac{1}{2}CO_{2}(g) \qquad [\frac{1}{2}\Delta_{r}G^{\theta}_{(c,CO_{2})}]$$
(6.17)

On coupling (combing) reaction 6.15 and 6.16 we get:

$$M_xO(s) + C(s) \rightarrow xM(s \text{ or } l) + CO(g)$$
(6.18)

On coupling reaction 6.15 and 6.17 we have

$$M_x O(s) + \frac{1}{2} C(s) \to x M(s \text{ or } l) + \frac{1}{2} CO_2(g)$$
 (6.19)

Similarly, if carbon monoxide is reducing agent, reactions 6.15 and 6.20 given below need to be coupled.

$$\operatorname{CO}(g) + \frac{1}{2} \operatorname{O}_2(g) \to \operatorname{CO}_2(g) \qquad [\Delta_r G^{\Theta}_{(\operatorname{CO}, \operatorname{CO}_2)}] \qquad (6.20)$$

Over all reaction will be as follows:

$$M_xO(s) + CO(g) \rightarrow xM(s \text{ or } l) + CO_2(g)$$
(6.21)

Ellingham Diagram

(a) Ellingham diagram normally consists of plots of $\Delta_j G^{\ominus} vs T$ for the formation of oxides of common metals and reducing agents i.e., for the reaction given below.

 $2xM(s) + O_2(g) \rightarrow 2M_xO(s)$

In this reaction, gas is consumed in the formation of oxide hence, molecular randomness decreases in the formation of oxide which leades to a negative value of ΔS as a result sign of $T\Delta S$ term in equation (6.14) becomes positive. Subsequently $\Delta_{f}G^{\circ}$ shifts towards higher side despite rising *T*. The result is positive slope in the curve for most of the reactions for the formation of $M_{v}O(s)$.

- (b) Each plot is a straight line and slopes upwards except when some change in phase (s→l or l→g) takes place. The temperature at which such change occurs, is indicated by an increase in the slope on positive side (e.g., in the Zn, ZnO plot, the melting is indicated by an abrupt change in the curve) [Fig. 6.4].
- (c) When temperature is raised, a point is reached in the curve where it crosses $\Delta_r G^{\odot}=0$ line. Below this temperature, $\Delta_r G^{\odot}$ for the formation of oxide is negative so $M_x O$ is stable. Above this point, free energy of formation of oxide is positive. The oxide, $M_x O$ will decompose on its own.
- (d) Similar diagrams are constructed for sulfides and halides also. From them it becomes clear that why reduction of M_vS is difficult.

Limitations of Ellingham Diagram

- 1. The graph simply indicates whether a reaction is possible or not, i.e., the tendency of reduction with a reducing agent is indicated. This is so because it is based only on the thermodynamic concepts. It does not explain the kinetics of the reduction process. It cannot answer questions like how fast reduction can proceed? However, it explains why the reactions are sluggish when every species is in solid state and smooth when the ore melts down. It is interesting to note here that ΔH (enthalpy change) and the ΔS (entropy change) values for any chemical reaction remain nearly constant even on varying temperature. So the only dominant variable in equation(6.14) becomes *T*. However, ΔS depends much on the physical state of the compound. Since entropy depends on disorder or randomness in the system, it will increase if a compound melts (s \rightarrow l) or vapourises ($l \rightarrow g$) since molecular randomness increases on changing the phase from solid to liquid or from liquid to gas.
- 2. The interpretation of $\Delta_r G^{\ominus}$ is based on *K* ($\Delta G^{\ominus} = -RT \ln K$). Thus it is presumed that the reactants and products are in equilibrium:

 $M_xO + A_{red} \Rightarrow xM + A_{red}O$

This is not always true because the reactant/product may be solid. In commercial processes reactants and products are in contact for a short time.

The reactions 6.18 and 6.21 describe the actual reduction of the metal oxide, M_xO , that we want to accomplish. The Δ_rG^{\ominus} values for these reactions in general, can be obtained from the corresponding $\Delta_f G^{\ominus}$ values of oxides.

As we have seen, heating (i.e., increasing *T*) favours a negative value of $\Delta_r G^{\ominus}$. Therefore, the temperature is chosen such that the sum of $\Delta_r G^{\ominus}$ in the two combined redox processes is negative. In $\Delta_r G^{\ominus}$ vs *T* plots (Ellingham diagram, Fig. 6.4), this is indicated by the point of intersection of the two curves, i.e, the curve for the formation of M_xO and that for the formation of the oxide of the reducing substance. After that point, the $\Delta_r G^{\ominus}$ value becomes more negative for the combined process making the reduction of M_xO possible. The difference in the two $\Delta_r G^{\ominus}$ values after that point determines whether reduction of the oxide of the element of the upper line is feasible by the element of which oxide formation is represented by the lower line. If the difference is large, the reduction is easier.

	Example 6.1	Suggest a condition under which magnesium could reduce alumina.		
	<u>Solution</u>	The two equations are:		
		(a) $\frac{4}{3}$ Al + O ₂ $\rightarrow \frac{2}{3}$ Al ₂ O ₃ (b) 2Mg +O ₂ $\rightarrow 2$ MgO		
		At the point of intersection of the Al_2O_3 and MgO curves (marked "A" in diagram 6.4), the $\Delta_r G^{\ominus}$ becomes ZERO for the reaction:		
		$\frac{2}{3}$ Al ₂ O ₃ +2Mg \rightarrow 2MgO + $\frac{4}{3}$ Al		
		Below that point magnesium can reduce alumina.		
-	Example 6.2	Although thermodynamically feasible, in practice, magnesium metal is not used for the reduction of alumina in the metallurgy of aluminium. Why ?		
	<u>Solution</u>	Temperatures below the point of intersection of Al_2O_3 and MgO curves, magnesium can reduce alumina. But the process will be uneconomical.		
	Example 6.3	Why is the reduction of a metal oxide easier if the metal formed is in liquid state at the temperature of reduction?		
	<u>Solution</u>	The entropy is higher if the metal is in liquid state than when it is in solid state. The value of entropy change (ΔS) of the reduction process is more on positive side when the metal formed is in liquid state and the metal oxide being reduced is in solid state. Thus the value of $\Delta_r G^{\circ}$		
		becomes more on negative side and the reduction becomes easier.		

6.4.1 Applications (a) Extraction of iron from its oxides

After concentration, mixture of oxide ores of iron (Fe_2O_3 , Fe_3O_4) is subjected to **calcination/roasting** to remove water, to decompose carbonates and to oxidise sulphides. After that these are mixed with limestone and coke and fed into a *Blast furnace* from its top, in which the oxide is reduced to the metal. In the Blast furnace,

Fig. 6.5: Blast furnace

[Fig. 6.5] reduction of iron oxides takes place at different temperature ranges. A blast of hot air is blown from the bottom of the furnace by burning coke in the lower portion to give temperature upto about 2200K. The burning of coke, therefore, supplies most of the heat required in the process. The CO and heat move to the upper part of

the furnace. In upper part, the temperature is lower and the iron oxides (Fe_2O_3 and Fe_3O_4) coming from the top are reduced in steps to FeO. These reactions can be summarised as follows:

At 500 - 800 K (lower temperature range in the blast furnace),

 Fe_2O_3 is first reduced to Fe_3O_4 and then to FeO

$$3 \operatorname{Fe}_2 \operatorname{O}_3 + \operatorname{CO} \rightarrow 2 \operatorname{Fe}_3 \operatorname{O}_4 + \operatorname{CO}_2 \tag{6.22}$$

$$\mathrm{Fe}_{3}\mathrm{O}_{4} + 4 \ \mathrm{CO} \rightarrow 3\mathrm{Fe} + 4 \ \mathrm{CO}_{2} \qquad (6.23)$$

 $Fe_2O_3 + CO \rightarrow 2FeO + CO_2$ (6.24) Limestone is also decomposed to CaO which removes silicate impurity of the ore as slag. The slag is in molten state and separates out from iron.

At 900 – 1500 K (higher temperature range in the blast furnace):

$$C + CO_2 \rightarrow 2 CO \tag{6.25}$$

$$FeO + CO \rightarrow Fe + CO_2$$
 (6.26)

Thermodynamics helps us to understand how coke reduces the oxide and why this furnace is chosen. One of the main reduction steps in this process involves reaction 6.27 given below.

$$FeO(s) + C(s) \rightarrow Fe(s/l) + CO(g)$$
 (6.27)

This reaction can be seen as a reaction in which two simpler reactions have coupled. In one the reduction of FeO is taking place and in the other, C is being oxidised to CO:

$$FeO(s) \rightarrow Fe(s) + \frac{1}{2}O_2(g) \quad [\Delta_r G^{\Theta}_{(FeO,Fe)}]$$
(6.28)

$$C(s) + \frac{1}{2}O_2(g) \to CO(g) [\Delta_r G^{\Theta}_{(C,CO)}]$$
 (6.29)

When both the reactions take place to yield the equation (6.27), the net Gibbs energy change becomes:

$$\Delta_r G^{\ominus}_{(C, CO)} + \Delta_r G^{\ominus}_{(FeO, Fe)} = \Delta_r G^{\ominus}$$
(6.30)

Naturally, the resultant reaction will take place when the right hand side in equation 6.30 is negative. In $\Delta_r G^{\ominus}$ vs *T* plot representing the change Fe \rightarrow FeO in Fig. 6.6 goes upward and that representing the change C \rightarrow CO (C,CO) goes downward. They cross each other at about 1073K. At temperatures above 1073K (approx.), the C, CO line is below the Fe, FeO line $[\Delta_r G^{e}_{_{[C,CO]}}] < [\Delta_r G^{e}_{_{[Fo,Fe]}}]$. So above 1073 K in the range of temprature 900–1500 K coke will reduce FeO and will itself be oxidised to CO. Let us try to understand this through Fig. 6.6 (approximate values of $\Delta_r G^{\ominus}$ are given). At about 1673K (1400°C) $\Delta_r G^{\ominus}$ value for the reaction:

Fig. 6.6: Gibbs energy Vs T plot (schematic) for the formation of oxides of iron and carbon (Ellingham diagram)

 $2\text{FeO} \rightarrow 2\text{Fe+O}_2 \text{ is } +341 \text{ kJmol}^{-1} \text{ because it is}$ reverse of Fe \rightarrow FeO change and for the reaction

 $2C+O_2 \rightarrow 2CO \ \Delta_r G^{\ominus}$ is -447 kJmol⁻¹. If we calculate $\Delta_r G^{\ominus}$ value for overall reaction (6.27 the value will be -53 kJmol⁻¹). Therefore, reaction 6.27 becomes feasible. In a similar way the reduction of Fe₃O₄ and Fe₂O₃ by CO at relatively lower temperatures can be explained on the basis of lower lying points of intersection of their curves with the CO, CO₂ curve.

The iron obtained from Blast furnace contains about 4% carbon and many impurities in smaller amount (e.g., S, P, Si, Mn). This is known as **pig iron**. It can be moulded into variety of shapes. **Cast iron** is different from *pig iron* and is made by melting pig iron with scrap iron and coke using hot air blast. It has slightly lower carbon content (about 3%) and is extremely hard and brittle.

Further Reductions

Wrought iron or malleable iron is the purest form of commercial iron and is prepared from cast iron by oxidising impurities in a reverberatory furnace lined with haematite. The haematite oxidises carbon to carbon monoxide:

$$Fe_2O_3 + 3 C \rightarrow 2 Fe + 3 CO \tag{6.31}$$

Limestone is added as a flux and sulphur, silicon and phosphorus are oxidised and passed into the slag. The metal is removed and freed from the slag by passing through rollers.

(b) Extraction of copper from cuprous oxide [copper(I) oxide]

In the graph of $\Delta_r G^{\ominus}$ vs T for the formation of oxides (Fig. 6.4), the Cu₂O line is almost at the top. So it is quite easy to reduce oxide ores of copper directly to the metal by heating with coke. The lines (C, CO) and (C, CO₂) are at much lower positions in the graph particularly after 500 – 600K. However, many of the ores are sulphides and some may also contain iron. The sulphide ores are roasted/smelted to give oxides:

$$2\mathrm{Cu}_{2}\mathrm{S} + 3\mathrm{O}_{2} \rightarrow 2\mathrm{Cu}_{2}\mathrm{O} + 2\mathrm{SO}_{2} \tag{6.32}$$

The oxide can then be easily reduced to metallic copper using coke:

$$Cu_2O + C \rightarrow 2 Cu + CO \tag{6.33}$$

In actual process, the ore is heated in a reverberatory furnace after mixing with silica. In the furnace, iron oxide 'slags of as iron slicate is formed. Copper is produced in the form of **copper matte**. This contains Cu_2S and FeS.

$$FeO + SiO_2 \rightarrow FeSiO_3 \tag{6.34}$$
(Slag)

Copper matte is then charged into silica lined convertor. Some silica is also added and hot air blast is blown to convert the remaining

FeS, FeO and Cu_2S/Cu_2O to the metallic copper. Following reactions take place:

 $2\text{FeS} + 3\text{O}_2 \rightarrow 2\text{FeO} + 2\text{SO}_2 \tag{6.35}$

 $FeO + SiO_2 \rightarrow FeSiO_3$ (6.36)

 $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2 \tag{6.37}$

$$2\mathrm{Cu}_{2}\mathrm{O} + \mathrm{Cu}_{2}\mathrm{S} \to 6\mathrm{Cu} + \mathrm{SO}_{2} \tag{6.38}$$

The solidified copper obtained has blistered appearance due to the evolution of SO_2 and so it is called **blister copper**.

(c) Extraction of zinc from zinc oxide

The reduction of zinc oxide is done using coke. The temperature in this case is higher than that in the case of copper. For the purpose of heating, the oxide is made into brickettes with coke and clay.

$$ZnO + C \xrightarrow{coke,1673K} Zn + CO$$
 (6.39)

The metal is distilled off and collected by rapid chilling.

	Intext Questions			
6.3	The reaction,			
	$Cr_2O_3+2Al \rightarrow Al_2O_3+2Cr$ ($\Delta_rG^{\ominus}= -421kJ$)			
	is thermodynamically feasible as is apparent from the Gibbs energy value. Why does it not take place at room temperature?			
6.4	.4 Is it true that under certain conditions, Mg can reduce Al_2O_3 and Al can reduce MgO? What are those conditions?			

6.5 Electrochemical Principles of Metallurgy We have seen how principles of thermodyamics are applied to **pyrometallurgy**. Similar principles are effective in the reductions of metal ions in solution or molten state. Here they are reduced by electrolysis or by adding some reducing element.

In the reduction of a molten metal salt, electrolysis is done. Such methods are based on electrochemical principles which could be understood through the equation,

$$\Delta G^{\ominus} = -nE^{\ominus}F \tag{6.40}$$

here n is the number of electrons and E^{\ominus} is the electrode potential of the redox couple formed in the system. More reactive metals have large negative values of the electrode potential. So their reduction is difficult. If the difference of two E^{\ominus} values corresponds to a positive E^{\ominus} and consequently negative ΔG^{\ominus} in equation 6.40, then the less reactive metal will come out of the solution and the more reactive metal will go into the solution, e.g.,

 $Cu^{2+} (aq) + Fe(s) \rightarrow Cu(s) + Fe^{2+} (aq)$ (6.41)

In simple electrolysis, the M^{n^+} ions are discharged at negative electrodes (cathodes) and deposited there. Precautions are taken considering the reactivity of the metal produced and suitable materials are used as electrodes. Sometimes a flux is added for making the molten mass more conducting.

Aluminium

In the metallurgy of aluminium, purified Al_2O_3 is mixed with Na_3AlF_6 or CaF_2 which lowers the melting point of the mixture and brings

aluminium

conductivity. The fused matrix is electrolysed. Steel vessel with lining of carbon acts as cathode and graphite anode is used. The overall reaction may be written as:

$$2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$$
 (6.42)

This process of electrolysis is widely known as **Hall-Heroult process**.

Thus electrolysis of the molten mass is carried out in an electrolytic cell using carbon electrodes. The oxygen liberated at anode reacts with the carbon of anode producing CO and CO_2 . This way for each kg of aluminium produced, about 0.5 kg of carbon anode is burnt away. The electrolytic reactions are:

Cathode:
$$Al^{3+}$$
 (melt) + $3e^{-} \rightarrow Al(l)$ (6.43)

Anode:
$$C(s) + O^{2-} (melt) \rightarrow CO(g) + 2e^{-}$$
 (6.44)

$$C(s) + 2O^{2-} (melt) \to CO_2 (g) + 4e^{-}$$
 (6.45)

Copper from Low Grade Ores and Scraps

Copper is extracted by *hydrometallurgy* from low grade ores. It is leached out using acid or bacteria. The solution containing Cu^{2+} is treated with scrap iron or H₂ (equations 6.40; 6.46).

$$Cu^{2+}(aq) + H_2(g) \rightarrow Cu(s) + 2H^+(aq)$$
 (6.46)

Example 6.4 At a site, low grade copper ores are available and zinc and iron scraps are also available. Which of the two scraps would be more suitable for reducing the leached copper ore and why?

Solution Zinc being above iron in the electrochemical series (more reactive metal is zinc), the reduction will be faster in case zinc scraps are used. But zinc is costlier metal than iron so using iron scraps will be advisable and advantageous.

6.6 Oxidation Reduction Besides reductions, some extractions are based on oxidation particularly for non-metals. A very common example of extraction based on oxidation is the extraction of chlorine from brine (chlorine is abundant in sea water as common salt).

$$2CI^{-}(aq) + 2H_2O(l) \rightarrow 2OH^{-}(aq) + H_2(g) + Cl_2(g)$$
 (6.47)

The ΔG^{\ominus} for this reaction is + 422 kJ. When it is converted to E^{\ominus} (using $\Delta G^{\ominus} = -nE^{\ominus}F$), we get $E^{\ominus} = -2.2$ V. Naturally, it will require an external emf that is greater than 2.2 V. But the electrolysis requires an excess potential to overcome some other hindering reactions (Unit–3, Section 3.5.1). Thus, Cl_2 is obtained by electrolysis giving out H_2 and aqueous NaOH as by-products. Electrolysis of molten NaCl is also carried out. But in that case, Na metal is produced and not NaOH.

As studied earlier, extraction of gold and silver involves leaching the metal with CN^{-} . This is also an oxidation reaction (Ag \rightarrow Ag⁺ or Au \rightarrow Au⁺). The metal is later recovered by displacement method.

4Au(s) + 8CN⁻(aq) + 2H₂O(aq) + O₂(g)
$$\rightarrow$$

4[Au(CN)₂]⁻(aq) + 4OH⁻(aq) (6.48)

$$2[\operatorname{Au}(\operatorname{CN})_2]^{-}(\operatorname{aq}) + \operatorname{Zn}(\operatorname{s}) \to 2\operatorname{Au}(\operatorname{s}) + [\operatorname{Zn}(\operatorname{CN})_4]^{2^-}(\operatorname{aq})$$
(6.49)
In this reaction zinc acts as a reducing agent.

6.7 *Refining* A metal extracted by any method is usually contaminated with some impurity. For obtaining metals of high purity, several techniques are used depending upon the differences in properties of the metal and the impurity. Some of them are listed below.

- (a) Distillation (b) Liquation
- (c) Electrolysis (d) Zone refining
- (e) Vapour phase refining(f) Chromatographic methodsThese are described in detail here.
- (a) Distillation

This is very useful for low boiling metals like zinc and mercury. The impure metal is evaporated to obtain the pure metal as distillate.

(b) Liquation

In this method a low melting metal like tin can be made to flow on a sloping surface. In this way it is separated from higher melting impurities.

(c) Electrolytic refining

In this method, the impure metal is made to act as anode. A strip of the same metal in pure form is used as cathode. They are put in a suitable electrolytic bath containing soluble salt of the same metal. The more basic metal remains in the solution and the less basic ones go to the anode mud. This process is also explained using the concept of electrode potential, over potential, and Gibbs energy which you have seen in previous sections. The reactions are:

Anode:
$$M \to M^{n^+} + ne^-$$

Cathode: $M^{n^+} + ne^- \to M$ (6.50)

Copper is refined using an electrolytic method. Anodes are of impure copper and pure copper strips are taken as cathode. The electrolyte is acidified solution of copper sulphate and the net result of electrolysis is the transfer of copper in pure form from the anode to the cathode:

Anode:
$$Cu \rightarrow Cu^{2^+} + 2 e^-$$

Cathode: $Cu^{2^+} + 2e^- \rightarrow Cu$ (6.51)

Impurities from the blister copper deposit as anode mud which contains antimony, selenium, tellurium, silver, gold and platinum; recovery of these elements may meet the cost of refining. Zinc may also be refined this way.

(d) Zone refining

This method is based on the principle that the impurities are more soluble in the melt than in the solid state of the metal. A mobile heater surrounding the rod of impure metal is fixed at its one end (Fig. 6.8). The molten zone moves along with the heater which is

moved forward. As the heater moves forward, the pure metal crystallises out of the melt left behind and the impurities pass on into the adjacent new molten zone created by movement of heaters. The process is repeated several times and the heater is moved in the same direction again and again. Impurities get concentrated at one end. This end is cut off. This method is very useful for producing semiconductor and other metals of very high purity, e.g., germanium, silicon, boron, gallium and indium.

(e) Vapour phase refining

In this method, the metal is converted into its volatile compound which is collected and decomposed to give pure metal. So, the two requirements are:

- (i) the metal should form a volatile compound with an available reagent,
- (ii) the volatile compound should be easily decomposable, so that the recovery is easy.

Following examples will illustrate this technique.

Mond Process for Refining Nickel: In this process, nickel is heated in a stream of carbon monoxide forming a volatile complex named as nickel tetracarbonyl. This compex is decomposed at higher temperature to obtain pure metal.

$$Ni + 4CO \xrightarrow{330-350 \text{ K}} Ni(CO)_4 \tag{6.52}$$

$$Ni(CO)_4 \xrightarrow{450-470 \text{ K}} Ni + 4CO \quad (6.53)$$

van Arkel Method for Refining Zirconium or Titanium: This method is very useful for removing all the oxygen and nitrogen present in the form of impurity in certain metals like Zr and Ti. The crude metal is heated in an evacuated vessel with iodine. The metal iodide being more covalent, volatilises:

$$Zr + 2I_2 \rightarrow ZrI_4 \tag{6.54}$$

The metal iodide is decomposed on a tungsten filament, electrically heated to about 1800K. The pure metal deposits on the filament.

$$\operatorname{ZrI}_4 \to \operatorname{Zr} + 2\operatorname{I}_2 \tag{6.55}$$

(f) Chromatographic methods

This method is based on the principle that different components of a mixture are adsorbed to different extent on an adsorbent. The mixture is put onto a stationery phase which may be a solid or a liquid. A pure solvent, a mixture of solvents or a gas is allowed to move slowly over the stationary phase. Different components of the mixture get separated gradually as the moving phase moves (see Unit 12, Class–XI). There are several chromatographic techniques* such as **paper chromatography**, column chromatography, gas chromatography, etc. Procedures followed in column chromatography have been depicted in Fig. 6.9. *Column chromatography* is very useful for purification of the elements which are available in minute quantities and the impurities are not very different in chemical properties from the element to be purified.

Fig. 6.9: Schematic diagrams showing column chromatography

6.8 Uses of Aluminium, Copper, Zinc and Iron Aluminium foils are used as wrappers for food materials. The fine dust of the metal is used in paints and lacquers. Aluminium, being highly reactive, is also used in the extraction of chromium and manganese from their oxides. Wires of aluminium are used as electricity conductors. Alloys containing aluminium, being light, are very useful.

Looking it the other way, chromatography in general, involves a mobile phase and a stationary phase. The sample or sample extract is dissolved in a mobile phase. The mobile phase may be a gas, a liquid or a supercritical fluid. The stationary phase is immobile and immiscible like Al₂O₃ column. The mobile phase moves through the stationary phase. The mobile phase and the stationary phase are chosen such that components of the sample have different solubilities in the two phases. A component which is quite soluble in the stationary phase but very soluble in the mobile phase. Thus sample components are separated from each other as they travel through the stationary phase but very soluble in the stationary phase. They are shown and the stationary phase but very soluble in the mobile phase. Thus sample components are separated from each other as they travel through the stationary phase but very soluble in the stationary phase. They are the chromatographic technique is named. These methods have been described in detail in Unit 12 of Class XI textbook (12.8.5).

Copper is used for making wires used in electrical industry and for water and steam pipes. It is also used in several alloys that are rather tougher than the metal itself, e.g., brass (with zinc), bronze (with tin) and coinage alloy (with nickel).

Zinc is used for galvanising iron. It is also used in large quantities in batteries. It is constituent of many alloys, e.g., brass, (Cu 60%, Zn 40%) and german silver (Cu 25-30%, Zn 25-30%, Ni 40–50%). Zinc dust is used as a reducing agent in the manufacture of dye-stuffs, paints, etc.

Cast iron, which is the most important form of iron, is used for casting stoves, railway sleepers, gutter pipes, toys, etc. It is used in the manufacture of wrought iron and steel. **Wrought iron** is used in making anchors, wires, bolts, chains and agricultural implements. Steel finds a number of uses. Alloy steel is obtained when other metals are added to it. Nickel steel is used for making cables, automobiles and aeroplane parts, pendulum, measuring tapes. Chrome steel is used for cutting tools and crushing machines, and stainless steel is used for cycles, automobiles, utensils, pens, etc.

Summary

Although modern metallurgy had exponential growth after Industrial Revolution, many modern concepts in metallurgy have their roots in ancient practices that predated the Industrial Revolution. For over 7000 years, India has had high tradition of metallurgical skills. Ancient Indian metallurgists have made major contributions which deserve their place in metallurgical history of the world. In the case of zinc and high–carbon steel, ancient India contributed significantly for the developemnt of base for the modern metallurgical advancements which induced metallurgical study leading to Industrial Revolution.

Metals are required for a variety of purposes. For this, we need their extraction from the minerals in which they are present and from which their extraction is commercially feasible. These minerals are known as ores. Ores of the metal are associated with many impurities. Removal of these impurities to certain extent is achieved in **concentration** steps. The concentrated ore is then treated chemically for obtaining the metal. Usually the metal compounds (e.g., oxides, sulphides) are reduced to the metal. The reducing agents used are carbon, CO or even some metals. In these reduction processes, the thermodynamic and electrochemical concepts are given due consideration. The metal oxide reacts with a reducing agent; the oxide is reduced to the metal and the reducing agent is oxidised. In the two reactions, the net Gibbs energy change is negative, which becomes more negative on raising the temperature. Conversion of the physical states from solid to liquid or to gas, and formation of gaseous states favours decrease in the Gibbs energy for the entire system. This concept is graphically displayed in plots of ΔG^{\ominus} vs T (Ellingham diagram) for such oxidation/reduction reactions at different temperatures. The concept of electrode potential is useful in the isolation of metals (e.g., Al, Ag, Au) where the sum of the two redox couples is positive so that the Gibbs energy change is negative. The metals obtained by usual methods still contain minor impurities. Getting pure metals requires refining. Refining process depends upon the differences in properties of the metal and the impurities. Extraction of aluminium is usually carried out from its bauxite ore by leaching it with NaOH. Sodium aluminate, thus formed, is separated

and then neutralised to give back the hydrated oxide, which is then electrolysed using cryolite as a flux. Extraction of iron is done by reduction of its oxide ore in blast furnace. Copper is extracted by smelting and heating in a reverberatory furnace. Extraction of zinc from zinc oxides is done using coke. Several methods are employed in refining the metal. Metals, in general, are very widely used and have contributed significantly in the development of a variety of industries.

Metal	Occurrence	Common method of extraction	l Remarks
Aluminium	1. Bauxite, Al_2O_3 . <i>x</i> H_2O 2. Cryolite, Na_3AlF_6	Electrolysis of Al_2O_3 dissolved in molten Na_3AlF_6	For the extraction, a good source of electricity is required.
Iron	1. Haematite, Fe_2O_3 2. Magnetite, Fe_3O_4	Reduction of the oxide with CO and coke in Blast furnace	Temperature approaching 2170 K is required.
Copper	 Copper pyrites, CuFeS₂ Copper glance, Cu₂S Malachite, CuCO₃.Cu(OH)₂ Cuprite, Cu₂O 	Roasting of sulphide partially and reduction	It is self reduction in a specially designed converter. The reduction takes place easily. Sulphuric acid leaching is also used in hydrometallurgy for low grade ores.
Zinc	 Zinc blende or Sphalerite, ZnS Calamine, ZnCO₃ Zincite, ZnO 	Roasting followed by reduction with coke	The metal may be purified by fractional distillation.

- 6.1 Copper can be extracted by hydrometallurgy but not zinc. Explain.
- **6.2** What is the role of depressant in froth floatation process?
- **6.3** Why is the extraction of copper from pyrites more difficult than that from its oxide ore through reduction?
- **6.4** Explain: (i) Zone refining (ii) Column chromatography.
- 6.5 Out of C and CO, which is a better reducing agent at 673 K?
- **6.6** Name the common elements present in the anode mud in electrolytic refining of copper. Why are they so present ?
- **6.7** Write down the reactions taking place in different zones in the blast furnace during the extraction of iron.
- **6.8** Write chemical reactions taking place in the extraction of zinc from zinc blende.
- **6.9** State the role of silica in the metallurgy of copper.
- **6.10** What is meant by the term "chromatography"?

- **6.11** What criterion is followed for the selection of the stationary phase in chromatography?
- **6.12** Describe a method for refining nickel.
- **6.13** How can you separate alumina from silica in a bauxite ore associated with silica? Give equations, if any.
- 6.14 Giving examples, differentiate between 'roasting' and 'calcination'.
- 6.15 How is 'cast iron' different from 'pig iron"?
- 6.16 Differentiate between "minerals" and "ores".
- 6.17 Why copper *matte* is put in silica lined converter?
- 6.18 What is the role of cryolite in the metallurgy of aluminium?
- 6.19 How is leaching carried out in case of low grade copper ores?
- 6.20 Why is zinc not extracted from zinc oxide through reduction using CO?
- **6.21** The value of $\Delta_1^{G^{\ominus}}$ for formation of $Cr_2^{}O_3^{}$ is 540 kJmol⁻¹and that of $Al_2^{}O_3^{}$ is 827 kJmol⁻¹. Is the reduction of $Cr_2^{}O_3^{}$ possible with Al ?
- 6.22 Out of C and CO, which is a better reducing agent for ZnO ?
- **6.23** The choice of a reducing agent in a particular case depends on thermodynamic factor. How far do you agree with this statement? Support your opinion with two examples.
- **6.24** Name the processes from which chlorine is obtained as a by-product. What will happen if an aqueous solution of NaCl is subjected to electrolysis?
- 6.25 What is the role of graphite rod in the electrometallurgy of aluminium?
- 6.26 Outline the principles of refining of metals by the following methods:(i) Zone refining
 - (ii) Electrolytic refining
 - (iii) Vapour phase refining
- **6.27** Predict conditions under which Al might be expected to reduce MgO. (Hint: See Intext question 6.4)

Answers to Some Intext Questions

- **6.1** Ores in which one of the components (either the impurity or the actual ore) is magnetic can be concentrated, e.g., ores containing iron (haematite, magnetite, siderite and iron pyrites).
- **6.2** Leaching is significant as it helps in removing the impurities like SiO_2 , Fe_2O_3 , etc. from the bauxite ore.
- **6.3** Certain amount of activation energy is essential even for such reactions which are thermodynamically feasible, therefore heating is required.
- **6.4** Yes, below 1350°C Mg can reduce Al_2O_3 and above 1350°C, Al can reduce MgO. This can be inferred from ΔG° Vs T plots (Fig. 6.4).