
Government of Kerala

DEPARTMENT OF EDUCATION

State Council of Educational Research and Training (SCERT); Kerala

2016

Class - XI

Part - II

Prepared by :

State Council of Educational Research and Training (SCERT)
Poojappura, Thiruvananthapuram 695012, Kerala

Website : www.scertkerala.gov.in e-mail : scertkerala@gmail.com
Phone : 0471 - 2341883, Fax : 0471 - 2341869

Typesetting and Layout : SCERT
© Department of Education, Government of Kerala

THE NATIONAL ANTHEM

Jana-gana-mana adhinayaka, jaya he

Bharatha-bhagya-vidhata.

Punjab-Sindh-Gujarat-Maratha

Dravida-Utkala-Banga

Vindhya-Himachala-Yamuna-Ganga

Uchchala-Jaladhi-taranga

Tava subha name jage,

Tava subha asisa mage,

Gahe tava jaya gatha.

Jana-gana-mangala-dayaka jaya he

Bharatha-bhagya-vidhata.

Jaya he, jaya he, jaya he,

Jaya jaya jaya, jaya he!

PLEDGE

India is my country. All Indians are my brothers and sisters.

I love my country, and I am proud of its rich and varied

heritage. I shall always strive to be worthy of it.

I shall give respect to my parents, teachers and all elders and

treat everyone with courtesy.

I pledge my devotion to my country and my people. In their

well-being and prosperity alone lies my happiness.

Dear students,

Computer Science, a subject belonging to the discipline of Science

and of utmost contemporary relevance, needs continuous updating.

The Higher Secondary Computer Science syllabus has been revised

with a view to bringing out its real spirit and dimension. The constant

and remarkable developments in the field of computing as well as

the endless opportunities of research in the field of Computer Science

and Technology have been included.

This textbook is prepared strictly in accordance with the revised syllabus

for the academic year 2014 - 15. It begins with the historical

developments in computing and familiarises the learner with the latest

technological advancements in the field of computer hardware,

software and network. The advancement in computer network,

Internet technology, wireless and mobile communication are also

dealt with extensively in the content. In addition to familiarising various

services over the Internet, the need to be concerned about the factors

that harness morality and the awareness to refrain from cyber security

threats are also highlighted.

The major part of the textbook as well as the syllabus establishes a

strong foundation to construct and enhance the problem solving

and programming skills of the learner. The multi-paradigm

programming language C++ is presented to develop programs

which enable computers to manage different real life applications

effectively. The concepts and constructs of the principles of

programming are introduced in such a way that the learner can

grasp the logic and implementation methods easily.

I hope this book will meet all the requirements for stepping to levels

of higher education in Computer Science and pave your way to the

peak of success.

Wish you all success.

Dr P. A. Fathima

Director, SCERT; Kerala

Textbook Development Team
C O M P U T E R S C I E N C E

Academic Co-ordinator

Dr Meena S.
Research Officer, SCERT

Jancy Rani A. K.
Research Officer, SCERT

Experts

Dr Lajish V. L.

Assistant Professor, Dept. of Computer Science, University of Calicut
Dr Madhu S. Nair

Assistant Professor, Dept. of Computer Science, University of Kerala
Madhu V. T.

Director, Computer Centre, University of Calicut
Dr Binu P. Chacko

Associate Professor, Dept. of Computer Science,
Prajyoti Niketan College, Pudukad

Dr Sushil Kumar R.

Associate Professor, Dept. of English, D.B. College, Sasthamcotta
Dr Vineeth K. Paleri

Professor, Dept. of Computer Science and Engineering, NIT, Kozhikode
Maheswaran Nair V.

Sub Divisional Engineer, Regional Telecom Training Centre, Thiruvananthapuram

Artist

Sudheer Y. Vineeth V.

Joy John

HSST, St. Joseph's HSS
Thiruvananthapuram

Asees V.

HSST, GHSS Velliyode, Kozhikode

Roy John

HSST, St. Aloysius HSS
Elthuruth, Thrissur

Aboobacker P.

HSST, Govt. GHSS Chalappuram,
Kozhikode

Shajan Jos N.

HSST, St. Joseph's HSS, Pavaratty,
Thrissur

Afsal K. A.

HSST, GHSS Sivapuram,
Kariyathankare P.O., Kozhikode

Prasanth P. M.

HSST, St. Joseph's Boys' HSS,
Kozhikode

Vinod V.

HSST, NSS HSS, Prakkulam, Kollam

Rajamohan C.

HSST, Nava Mukunda HSS,
Thirunavaya,Malappuram

A. S. Ismael

HSST, Govt. HSS Palapetty,
Malappuram

Sunil Kariyatan

HSST, Govt. Brennen HSS,
Thalassery

Sai Prakash S.

HSST, St. Thomas HSS,
Poonthura, Thiruvananthapuram

Contents

Unit 7. Control Statements187

Unit 8. Arrays ..231

Unit 9. String Handling and I/O Functions259

Unit 10. Functions ...273

Unit 11. Computer Networks311

Unit 12. Internet and Mobile Computing344

Learning outcomes

Icons used in this textbook

Let us do

Check yourself

Lab activities

Information box

1

lllll Decision making statements

o if statement

o if … else statement

o Nested if

o else if ladder

o switch statement

o Conditional operator

lllll Iteration statements

o while statement

o for statement

o do ... while statement

o Nesting of loops

lllll Jump statements

o goto

o break

o continue

Key Concepts

In the previous chapters we discussed some
executable statements of C++ to perform
operations such as input, output and assignment.
We know how to write simple programs. The
execution of these programs is sequential in
nature, that is, the statements constituting the
program are executed one by one. In this chapter,
we discuss C++ statements used for altering the
default flow of execution. As we discussed in
Chapter 4, selection, skipping or repeated
execution of some statements may be required
for solving problems. Usually this decision will
be based on some condition(s). C++ provides
statements to facilitate this requirement with the
help of control statements. These statements are
used for altering the normal flow of program
execution. Control statements are classified into
two: (i) decision making/selection statements and
(ii) iteration statements. Let us discuss these
statements, their syntax and mode of execution.

7.1 Decision making statements

At times, it so happens that the computer may
not execute all statements while solving problems.
Some statements may be executed in a situation,
while they may not be executed in another
situation. The computer has to take the required
decision in this respect. For this, we have to
provide appropriate conditions which will be
evaluated by the computer. It will then take a

7

188

decision on the basis of the result. The decision will be in the form of selecting a
particular statement for execution or skipping some statement from being executed.
The statements provided by C++ for the selected execution are called decision making

statements or selection statements. if and switch are the two types of selection
statements in C++.

7.1.1 if statement

The if statement is used to select a set of statements for execution based on a condition.
In C++, conditions (otherwise known as test expressions) are provided by relational
or logical expressions. The syntax (general form) of if statement is as follows:

if (test expression)

 {

statement block;

}

Here the test expression represents a condition which is either a relational

expression or logical expression. If the test expression evaluates to True (non-zero

value), a statement or a block of statements associated with if is executed. Otherwise,

the control moves to the statement following the if construct. Figure 7.1 shows the

mode of execution of if statement. While using if, certain points are to be

remembered.

l The test expression is always enclosed in

parentheses.

l The expression may be a simple expression

constituted by relational expression or a

compound expression constituted by logical

expression.

l The statement block may contain a single statement

or multiple statements. If there is a single

statement, then it is not mandatory to enclose it in

curly braces { }. If there are multiple statements,

they must be enclosed in curly braces.

Program 7.1 accepts the score of a student and displays the text "You have Passed"

only if he/she has passed. (Assume that 18 is the minimum score for pass).

Body of

if statement that consists

of the statement(s) to be

executed when the

condition is true

Fig. 7.1 : Working of
 if statement

False

7. Control Statements

189

Program 7.1: To display 'You have passed' if score is 18 or more

#include<iostream>

using namespace std;

int main()

{

int score ;

cout << "Enter your score: ";

cin >> score;

if (score >= 18)

cout << "You have passed";

return 0;

}

The following is a sample output of program 7.1:

Enter your score: 25

You have passed

In Program 7.1, the score of a student is entered and stored in the variable score.
The test expression compares the value of score with 18. The body of if will be
executed only if the test expression evaluates to True. That means, when the score is
greater than or equal to 18, the output You have Passed will be displayed on the
screen. Otherwise, there will be no output.

Note that the statement block associated with if is written after a tab space. We call it
indentation. This is a style of coding which enhances the readability of the source
code. Indentation helps the debugging process greatly. But it has no impact on the
execution of the program.

Consider the following C++ program segment. It checks whether a given character is
an alphabet or a digit.

char ch;

cin >> ch;

if (ch >= 'a' && ch <= 'z')

cout << "You entered an alphabet";

if (ch >= '0' && ch <= '9')

{

cout << “You entered a digit\n”;

cout << “It is a decimal number “;

}

Logical expression

is evaluated

Only a single

statement; No need

of braces { }

More than one

statement; Must be

enclosed in braces { }

Body of if

190

7.1.2 if...else statement

Consider the if statement in Program 7.1:

if (score >= 18)

cout << “You have passed”;

Here, the output is obtained only if the score is greater than or equal to 18. What will

happen if the score entered is less than 18? It is clear that there will be no output.

Actually we don't have the option of selecting another set of statements if the test

expression evaluates to False. If we want to execute some actions when the condition

becomes False, we introduce another form of if statement, if...else. The syntax

is:
if (test expression)

{

statement block 1;

}

else

{

statement block 2;

}

If the test expression

evaluates to True, only the

statement block 1 is

executed. If the test

expression evaluates to

False statement block 2

is executed. The flowchart

shown in Figure 7.2 explains

the execution of if...else

statement.

The following code segment

illustrates the working of

if...else statement.

if (score >= 18)

 cout << "Passed";

else

 cout << "Failed";

Let us write a program to input the heights of two students and find the taller.

This statement is executed only when score is less

than 18 (i.e. when Test expression returns False)

This statement is executed only when score is 18 or

more (i.e. when Test expression returns True)

Fig 7.2 : Flowchart of if - else statement

Statement block 1 Statement block 2

Test
Expression

False

7. Control Statements

191

Program 7.2: To find the taller student by comparing their heights

#include <iostream>

using namespace std;

int main()

{

int ht1, ht2;

cout << "Enter heights of the two students: ";

cin >> ht1 >> ht2;

if (ht1 > ht2) //decision making based on condition

cout<<"Student with height "<<ht1<<" is taller";

else

cout<<"Student with height "<<ht2<<" is taller";

return 0;

}

When Program 7.2 is executed, one of the output statements will be displayed. The

selection depends upon the relational expression ht1>ht2. The following are sample

outputs:

Output 1: Enter heights of the two students: 170 165

Student with height 170 is taller

Output 2: Enter heights of the two students: 160 171

Student with height 171 is taller

In the first output, we input 170 for ht1 and 165 for ht2. So, the test expression,
(ht1>ht2) is evaluated to True and hence the statement block of if is selected and
executed. In the second output, we input 160 for ht1 and 171 for ht2. The test
expression, (ht1>ht2) is evaluated and found False. Hence the statement block of
else is selected and executed.

In if...else statement, either the code associated with if (statement block 1) or
the code associated with else (statement block 2) is executed.

Let us see another program that uses an arithmetic expression as one of the operands
in the test expression. Program 7.3 uses this concept to check whether an input number
is even or odd.

Program 7.3: To check whether a given number is even or odd

#include <iostream>

using namespace std;

int main()

{

 int num;

192

cout << "Enter the number: ";

cin >> num;

if (num%2 == 0)

cout << "The given number is Even";

else

cout << "The given number is Odd";

return 0;

}

Some sample outputs of Program 7.3 are shown below:

Output 1:

Enter the number: 7

The given number is Odd

Output 2:

Enter the number: 10

The given number is Even

In this program, the expression (num%2) finds the remainder when num is divided
by 2 and compares it with the value 0. If they are equal, the if block is executed,
otherwise the else block is executed.

7.1.3 Nested if

In some situations there may arise the need to take a decision within if block. When
we write an if statement inside another if block, it is called nesting. Nested means
one inside another. Consider the following program segment:

if (score >= 60)

{

if(age >= 18)

cout<<"You are selected for the course!";

}

In this code fragment, if the value of score is greater than or equal to 60, the flow of
control enters the statement block of outer if. Then the test expression of the inner
if is evaluated (i.e. whether the value of age is greater than or equal to 18). If it is

outer if

inner if

1. Write a program to check whether a given number is a non-zero

integer number and is positive or negative.

2. Write a program to enter a single character for sex and display the

gender. If the input is 'M' display "Male" and if the input is 'F', display

"Female".

3. Write a program to input your age and check whether you are eligible

to cast vote (the eligibility is 18 years and above).

Let us do

7. Control Statements

193

evaluated to True, the code displays the message, "You are selected for the
course!". Then the program continues to execute the statement following the outer
if statement. An if statement, inside another if statement is termed as a nested

if statement. The following is an expanded form of nested if.

if (test expression 1)

{

if (test expression 2)

statement 1;

else

statement 2;

}

else

{

body of else ;

}

The important point to remember about nested if is that an else statement always
refers to the nearest if statement within the same block. Let us discuss this case with
an example. Consider the following program segment:

cout<<"Enter your score in Computer Science exam: ";

cin>>score;

if (score >= 18)

cout<<"You have passed";

if(score >= 54)

cout<<" with A+ grade !";

else

cout<<"\nYou have failed";

If we input the value 45 for score, the output will be as follows:

You have passed

You have failed

We know that this is logically not correct. Though the indentation of the code is proper,
that doesn’t matter in execution. The second if statement will not be considered as
nested if, rather it is counted as an independent if with an else block. So, when
the first if statement is executed, the if block is selected for execution since the test
expression is evaluated to True. It causes the first line in the output. After that, while
considering the second if statement, the test expression is evaluated to False and
hence the second line in the output is obtained. So to get the correct output, the code
should be modified as follows:

It will be

executed if both the test

expressions are True.

It will be executed if test expression 1 is

False. The test expression 2 is not evaluated.

It will be executed if test

expression 1 is True, but

test expression 2 is

False.

194

cout<<"Enter your score in Computer Science exam: ";

cin>>score;

if (score >= 18)

{

cout<<"You have passed";

if(score >= 54)

cout<<" with A+ grade !";

}

else

cout<<"\nYou have failed";

If we input the same value 45 as in the case of previous example, the output will be as
follows:

 You have passed

Program 7.4 uses nested if to find the largest among three given numbers. In this
program, if statement is used in both the if block and else block.

Program 7.4: To find the largest among three numbers

#include <iostream>

using namespace std;

int main()

{

int x, y, z;

cout << "Enter three different numbers: ";

cin >> x >> y >> z ;

if (x > y)

{

if (x > z)

cout << "The largest number is: " << x;

else

cout << "The largest number is: " << z;

}

else

 {

if (y > z)

cout << "The largest number is: " << y;

else

cout << "The largest number is: " << z;

}

return 0;

}

Nesting is enforced

by putting a pair of

braces

The else is now

associated with the

outer if

7. Control Statements

195

A sample output of Program 7.4 is given below:

Enter three different numbers: 6 2 7

The largest number is: 7

As per the input given above, the test expression (x>y) in the outer if is evaluated
to True and hence the control enters the inner if. Here the test expression (x>z) is
evaluated to False and so its else block is executed. Thus the value of z is displayed
as the output.

7.1.4 The else if ladder

There are situations where an if statement is used within an else block. It is used in
programs when multiple branching is required. Different conditions will be given and
each condition will decide which statement is to be selected for execution. A common
programming construct based on if statement is the else if ladder, also referred
to as the else if staircase because of its appearance. It is also known as
if...else if statement. The general form of else if ladder is:

if (test expression 1)

statement block 1;

else if (test expression 2)

statement block 2;

else if (test expression 3)

statement block 3;

...............

else

statement block n;

At first, the test expression 1 is evaluated and if it is True, the statement
block 1 is executed and the control comes out of the ladder. That means, the rest of
the ladder is bypassed. If test expression 1 evaluates to False, then the test
expression 2 is evaluated and so on. If any one of the test expressions evaluates
to True, the corresponding statement block is executed and control comes out of the
ladder. If all the test expressions are evaluated to False, the statement block n

1. Write a program to input an integer and check whether it is positive,

negative or zero.

2. Write a program to input three numbers and print the smallest one.

Check yourself

196

after the final else is executed. Observe the indentation provided in the syntax and
follow this style to use else if ladder.

Let us illustrate the working of the else if ladder by using a program to find the
grade of a student in a subject when the score out of 100 is given. The grade is found
out by the criteria given in the following table:

Scores Grade

80 or more A

From 60 to 79 B

From 40 to 59 C

From 30 to 39 D

Below 30 E

Program 7.5: To find the grade of a student for a given score

#include <iostream>

using namespace std;

int main()

{

int score;

cout << "Enter your score: ";

cin >> score;

if (score >= 80)

cout << "A Grade";

else if (score >= 60)

cout << "B Grade ";

else if (score >= 40)

cout << "C grade";

else if (score >= 30)

cout << "D grade";

else

cout << "E Grade";

return 0;

}

The following are the sample outputs of Program 7.5:

Output 1:
Enter your score: 73

B Grade

Output 2:
Enter your score: 25

E Grade

7. Control Statements

197

In Program 7.5, initially the test expression score>=80 is evaluated. Since the input is
73 in Output 1, the test expression is evaluated to False, and the next test expression
score>=60 is evaluated. Here it is True, and hence "B Grade" is displayed and the
remaining part of the else if ladder is bypassed. But in the case of Output 2, all
the test expressions are evaluated to False and so the final else block is executed
which makes "E Grade" as the output.

Let us write a program to check whether the given year is a leap year or not. The input
value should be checked to know whether it is century year (year divisible by 100). If it
is a century year, it becomes a leap year only if it is divisible by 400 also. If the input
value is not a century year, then we have to check whether it is divisible by 4. If it is
divisible the given year is a leap year, otherwise it is not a leap year.

Program 7.6: To check whether the given year is leap year or not

#include <iostream>

using namespace std;

void main()

{

int year ;

cout << "Enter the year (in 4-digits): ";

cin >> year;

if (year%100 == 0) // Checks for century year

{

if (year%400 == 0)

cout << "Leap year\n";

else

cout<< "Not a leap year\n";

}

else if (year%4 == 0)

cout << "Leap year\n";

else

cout<< "Not a leap year\n";

return 0;

}

Let us see some sample outputs of Program 7.6:

Output 1:

Enter the year (in 4-digits): 2000

Leap year

Output 2:

Enter the year (in 4-digits): 2014

Not a leap year

Non - century year

is leap year only if it

is divisible by 4

198

Output 3:

Enter the year (in 4-digits): 2100

Not a leap year

Output 4:

Enter the year (in 4-digits): 2004

Leap year

Let us write one more program to illustrate the use of else if ladder. Program 7.7
allows to input a number between 1 and 7 to denote the day of a week and display the
name of the corresponding day. The input 1 will give you “Sunday” as output, 2 will
give “Monday” and so on. If the input is outside the range 1 to 7, the output will be
“Wrong input”.

Program 7.7: To display the name of the day for a given day number

#include <iostream>

using namespace std;

int main()

{

int day;

cout << "Enter the day number (1-7): ";

cin >> day;

if (day == 1)

cout << "Sunday";

else if (day == 2)

cout << "Monday";

else if (day == 3)

cout << "Tuesday";

else if (day == 4)

cout << "Wednesday";

else if (day == 5)

cout << "Thursday";

else if (day == 6)

cout << "Friday";

else if (day == 7)

cout << "Saturday";

else

cout << "Wrong input";

return 0;

}

7. Control Statements

199

The following are some sample outputs of Program 7.7:

Output 1:

Enter the day number (1-7): 5

Thursday

Output 2:

Enter day number (1-7): 9

Wrong input

1. Write a program to input an integer number and check whether it is

positive, negative or zero using if ... else if statement.

2. Write a program to input a character (a, b, c or d) and print as follows:

a - abacus, b - boolean, c - computer, d - debugging.

3. Write a program to input a character and print whether it is an alphabet,

digit or any other character.

Check yourself

7.1.5 switch statement

We have seen the concept of multiple branching with the help of else if ladder.
Some of these programs can be written using another construct of C++ known as
switch statement. This selection statement successively tests the value of a variable
or an expression against a list of integers or character constants. The syntax of switch
statement is as follows:

switch(expression)

{

case constant_1 : statement block 1;

break;

case constant_2 : statement block 2;

break;

case constant_3 : statement block 3;

break;

:

:

case constant_n-1 : statement block n-1;

break;

default : statement block n;

}

200

In the syntax switch, case, break and default are keywords. The expression
is evaluated to get an integer or character constant and it is matched against the constants
specified in the case statements. When a match is found, the statement block associated
with that case is executed until the break statement or the end of switch statement
is reached. If no match is found, the statements in the default block get executed.
The default statement is optional and if it is missing, no action takes place when all
matches fail.

The break statement, used inside switch, is one of the jump statements in C++. When
a break statement is encountered, the program control goes to the statements following
the switch statement. We will discuss break statement in detail in Section 7.3.2.
Program 7.7 can be written using switch statement. It enhances the readability and
effectiveness of the code. Observe the modification in Program 7.8.

Program 7.8: To display the day of a week using switch statement

#include <iostream>

using namespace std;

int main()

{ int day ;

cout << "Enter a number between 1 and 7: ";

cin >> day ;

switch (day)

{

case 1: cout << "Sunday";

break;

case 2: cout << "Monday";

break;

case 3: cout << "Tuesday";

break;

case 4: cout << "Wednesday";

break;

case 5: cout << "Thursday";

break;

case 6: cout << "Friday";

break;

case 7: cout << "Saturday";

break;

default: cout << "Wrong input";

}

return 0;

}

7. Control Statements

201

The output of Program 7.8 will be the same as in Program 7.7. The following are
some samples:

Output 1:
Enter a number between 1 and 7: 5

Thursday

Output 2:
Enter a number between 1 and 7: 8

Wrong input

In Program 7.8, value of the variable day is compared against the constants specified
in the case statements. When a match is found, the output statement associated with
that case is executed. If we input the value 5 for the variable day, then the match
occurs for the fifth case statement and the statement cout << "Thursday"; is
executed. If the input is 8 then no match occurs and hence the default block is executed.

Can you predict the output of Program 7.8, if all the break statements are omitted?
The value returned by day is compared with the case constants. When the first match
is found the associated statements will be executed and the following statements will
also be executed irrespective of the remaining constants. There are situations where
we omit the break statements purposefully. If the statements associated with all the
case in a switch are the same, we only need to write the statement against the last
case. Program 7.9 illustrates this concept.

Program 7.9: To check whether the given character is a vowel or not

#include <iostream>

using namespace std;

int main()

{

char ch;

cout<<"Enter the character to check: ";

cin>>ch;

switch(ch)

{

case 'A' :

case 'a' :

case 'E' :

case 'e' :

case 'I' :

case 'i' :

case 'O' :

case 'o' :

202

case 'U' :

case 'u' : cout<<"The given character is a vowel";

 break;

default : cout<<"The given character is not a vowel";

}

return 0;

}

Some of the outputs given by Program 7.9 are shown below:

Output 1:
Enter the character to check: E

The given character is a vowel

Output 2:
Enter the character to check: k

The given character is not a vowel

Suitability and requirements for using switch

Though switch statement and else if ladder cause multiple branching, they do
not work in the same fashion. In C++ all switch statements can be replaced by else
if ladders, but all else if ladders cannot be substituted by switch. The following
are the requirements to implement a multi branching using switch statement:

• Conditions involve only equality checking. In other cases, it should be converted
into equality expression.

• The first operand in all the equality expressions should be the same variable or
expression.

• The second operand in these expressions should be integer or character constants.

Among the programs we have discussed so far in this chapter, only the branching in
Programs 7.3 and 7.7 can be replaced by switch. In Program 7.5, we can use switch
if we modify the test expressions as score/10==10, score/10==9, score/10==8,
and so on. So the following program fragment may be used instead of else if ladder.

switch(score/10)

{

case 10:

case 9: case 8: cout<< "A Grade"; break;

case 7: case 6: cout<< "B Grade"; break;

case 5: case 4: cout<< "C Grade"; break;

case 3: cout<< "D Grade"; break;

default: cout<< "E Grade";

}

Score being int type, the expression
returns only integer values

7. Control Statements

203

Let us have a comparison between switch and else if ladder as indicated in Table

7.1.

7.1.6 The conditional operator (?:)

As we mentioned in Chapter 6, C++ has a ternary operator. It is the conditional

operator (?:) consisting of the symbols ? and : (a question mark and a colon). It
requires three operands to operate upon. It can be used as an alternative to if...else
statement. Its general form is:

Test expression ? True_case code : False_case code;

Test expression can be any relational or logical expression and True_case code
and False_case code can be constants, variables, expressions or statement. The
operation performed by this operator is shown below with the help of an if statement.

if (Test expression)

{

True_case code;

}

else

{

False_case code;

}

The conditional operator works in the same way as if...else works. It evaluates
the test expression and if it is true, the True_case code is executed. Otherwise,
False_case code is executed. Program 7.10 illustrates the working of conditional
operator.

switch statement else if ladder

Table 7.1: Comparison between switch and else if ladder

• Permits multiple branching

• Evaluates conditions with equality operator only

• Case constant must be an integer or a character

type value

• When no match is found, default statement is

executed

• break statement is required to exit from

switch statement

• More efficient when the same variable or

expression is compared against a set of values

for equality

• Permits multiple branching

• Evaluates any relational or logical

expression

• Condition may include range of values

and floating point constants

• When no expression evaluates to True,

else block is executed

• Program control automatically goes out

after the completion of a block

• More flexible and versatile compared

to switch

204

Program 7.10: To find the larger number using the conditional operator

#include <iostream>

using namespace std;

int main()

{

int num1, num2;

cout << "Enter two numbers: ";

cin>> num1 >> num2 ;

(num1>num2)? cout<<num1<<" is larger" : cout<<num2<<" is larger";

return 0;

}

The last statement of this program is called conditional statement as it uses conditional
operator. This statement may be replaced by the following code segment:

int big = (num1>num2)? num1 : num2;

cout<< big << "is larger";

If the test expression evaluates to True, the value of num1 will be assigned to big,
otherwise that of num2. Here conditional operator is used to construct a conditional
expression. The value returned by this expression will be assigned to big. The following
is a complex form of conditional expression. It gives the largest among three numbers.
If n1, n2, n3 and big are integer variables,

big = (n1>n2) ? ((n1>n3)?n1:n3) : ((n2>n3)?n2:n3);

Refer to program 7.4 and see how the above conditional expression replaces the nesting
of if.

Check yourself

1. Write a program to input a number in the range 1 to 12 and display the

corresponding month of the year (January for the value 1, February for 2,

and so on).

2. Write a program to perform arithmetic operations using switch statement.

Accept two operands and a binary arithmetic operator as input.

3. What is the significance of break statement within a switch statement?

4. Write a program to enter a digit (0 to 9) and display it in words using switch

statement.

5. Write a program to input a number and check whether it is a multiple of 5

using selection statements and conditional operator.

6. Rewrite the following statement using if...else statement

result= mark>30 ? 'p' :' f';

7. Control Statements

205

7.2 Iteration statements

In Chapter 4, we discussed some problems for which the solution contains some tasks
that were executed repeatedly. While writing programs, we use some specific constructs
of the language to perform the repeated execution of a set of one or more statements.
Such constructs are called iteration statements or looping statements. In C++, we
have three iteration statements and all of them allow a set of instructions to be executed
repeatedly when a condition is True.

We use the concept of loop in everyday life. Let us consider a situation. Suppose your
class teacher has announced a gift for every student securing A+ grade in an examination.
You are assigned the duty of wrapping the gifts. The teacher has explained the procedure
for wrapping the gifts as follows:

Step 1 : Take the gift

Step 2 : Cut the wrapping paper

Step 3 : Wrap the gift

Step 4 : Tie the cover with a ribbon

Step 5 : Fill up a name card and paste it on the gift pack

If there are 30 students with A+ grade in the examination, you have to repeat the same
procedure 30 times. To repeat the wrapping process 30 times, the instructions can be
restructured in the following way.

Repeat the following steps 30 times

{ Take the next gift

Cut the wrapping paper

Wrap the gift

Tie the cover with a ribbon

Fill up a name card and paste on the gift pack

}

Let us take another example. Suppose we want to find the class average of scores
obtained in Computer Science. The following steps are to be performed:

Initially Total_Score has no value

Repeat the following steps starting from the first student till the last

{ Add Score of the student to the Total_Score

Take the Score of the next student

}

Average = Total_Score /No. of students in the class

206

In both the examples, we perform certain steps for a number of times. We use a counter
to know how many times the process is executed. The value of this counter decides
whether to continue the execution or not. Since loops work on the basis of such
conditions, a variable like the counter will be used to construct a loop. This variable is
generally known as loop control variable because it actually controls the execution of
the loop. In Chapter 4, we discussed four elements of a loop. Let us refresh them:

1. Initialisation: Before entering a loop, its control variable must be initialized.
During initialisation, the loop control variable gets its first value. The initialisation
statement is executed only once, at the beginning of the loop.

2. Test expression: It is a relational or logical expression whose value is either
True or False. It decides whether the loop-body will be executed or not. If the
test expression evaluates to True, the loop-body gets executed, otherwise it will
not be executed.

3. Update statement: The update statement modifies the loop control variable by
changing its value. The update statement is executed before the next iteration.

4. Body of the loop: The statements that need to be executed repeatedly constitute
the body of the loop. It may be a simple statement or a compound statement.

We learnt in Chapter 4 that loops are generally classified into entry-controlled loops
and exit-controlled loops. C++ provides three loop statements: while loop, for

loop and do-while loop. Let us discuss the working of each one in detail.

7.2.1 while statement

while loop is an entry-controlled loop. The condition is checked first and if it is
found True the body of the loop will be executed. That is the body will be executed as
long as the condition is True. The syntax of while loop is:

initialisation of loop control variable;

while(test expression)

{

body of the loop;

updation of loop control variable;

}

Here, test expression defines the condition which controls the loop. The body
of the loop may be a single statement or a compound statement or without any
statement. The body is the set of statements for repeated execution. Update
expression refers to a statement that changes the value of the loop control variable.

In a while loop, a loop control variable should be initialised before the loop begins

7. Control Statements

207

and it should be updated inside the body of the

loop. The flowchart in Figure 7.3 illustrates the

working of a while loop.

The initialisation of the loop control variable takes

place first. Then the test expression is

evaluated. If it returns True the body of the loop

is executed. That is why while loop is called an

entry controlled loop. Along with the loop body,

the loop control variable is updated. After

completing the execution of the loop body, test

expression is again evaluated. The process is

continued as long as the condition is True. Now,

let us consider a code segment to illustrate the

execution of while loop.

int k=1;

while(k<=3)

{

cout << k << '\t';

++k;

}

In this code segment, the value 1 is assigned to the variable k (loop control variable) at

first. Then the test expression k<=3 is evaluated. Since it is True, the body of the loop

is executed. That is the value of k is printed as 1 on the screen. After that the update

statement ++k is executed and the value of k becomes 2. The condition k<=3 is checked

again and found to be True. Program control enters the body of the loop and prints

the value of k as 2 on the screen. Again the update statement is executed and the value

of k is changed to 3. Since the condition is still True, body is executed and 3 is displayed

on the screen. The value of k is again updated to 4 and now the test expression is

evaluated to False. The control comes out of the loop and executes the next statement

after the while loop. In short, the output of the code will be:

1 2 3

Fig. 7.3: Working of while loop

Test

expression

Body of loop

Initialisation

before loop

Updation inside

the loop body

Fa lse

True

208

Imagine what will happen if the initial value of k is 5? The test expression is evaluated

to False in the first evaluation and the loop body will not be executed. This clearly

shows that while loop controls the entry into the body of the loop.

Let us see a program that uses while loop to print the first 10 natural numbers.

Program 7.11: To print the first 10 natural numbers

#include<iostream>

using namespace std;

int main()

{

int n = 1;

while(n <= 10)

 {

 cout<< n << " ";

 ++n;

 }

return 0;

}

The output of Program 7.11 will be as follows:

1 2 3 4 5 6 7 8 9 10

Program 7.12 uses while loop to find the sum of even numbers upto 20. This program

shows that the loop control variable can be updated using any operation.

Program 7.12: To find the sum of even numbers upto 20

#include<iostream>

using namespace std;

int main()

{

int i, sum = 0;

i = 2;

while(i<= 20)

{

 sum = sum + i;

 i = i + 2;

}

cout<<"\nThe sum of even numbers up to 20 is: "<<sum;

return 0;

}

The output of Program 7.12 is given below:

The sum of even numbers up to 20 is: 110

Test expression

Body of loop

Initialisation of loop

variable

Updating of loop

variable

Loop control variable is

updated by adding 2 to

the current value

7. Control Statements

209

7.2.2 for statement

for loop is also an entry-controlled loop in C++. All the three loop elements

(initialisation, test expression and update statement) are placed together in for

statement. So it makes the program compact. The syntax is:

for (initialisation; test expression; update statement)

{

body-of-the-loop;

}

The execution of for loop is the same as that of while

loop. The flowchart used for while can explain the

working of for loop. Since the three elements come

together this statement is more suitable in situations

where counting is involved. The flowchart given in

Figure 7.4 is commonly used to show the execution of

for statement. At first, the initialisation takes place and then the test

expression is evaluated. If its result is True, body-of-the-loop is executed,

otherwise the program control goes out of the for loop. After the execution of the

loop body, update expression is executed and again test expression is

evaluated. These three steps (test, body, update) are continued until the test

expression is evaluated to False.

The loop segment used in Program 7.11 can be replaced with a for loop as follows:

for (n=1; n<=10; ++n)

 cout << n << " ";

This code is executed in the same way as in the case of while loop.

If we put a semi colon (;) after the test expression of while

statement, there will not be any syntax error. But the statements

within the following pair of braces will not be considered as loop

body. The worst situation is that, if the test expression is evaluated

to be True, neither the code after the while loop will be executed nor the

program will be terminated. It is a case of infinite loop.

1. Modify the Program 7.11 to display all odd numbers between 100

and 200.

2. Modify the Program 7.12 to find the average of the first N natural

numbers.
Let us do

Fig. 7.4: Execution of for loop

False

True

210

Let us write a program using for loop to find the factorial of a number. Factorial of

a number, say N, represented as N!, is the product of the first N natural numbers. For

example, factorial of 5 (5!) is calculated by 1 × 2 × 3 × 4 × 5 = 120.

Program 7.13: To find the factorial of a number using for loop

#include <iostream>

using namespace std;

int main()

{ int n, i;

long fact=1;

cout<<"Enter the number: ";

cin>>n;

for (i=1; i<=n; ++i)

 fact = fact * i;

cout << "Factorial of " << n << " is " << fact;

return 0;

}

The following is a sample output of program 7.13

Enter the number: 6

Factorial of 6 is 720

Another program is given below which gives the class average of scores obtained in

Computer Science. Program 7.14 accepts the value for n as the number of students,

then reads the scores of each student and prints the average score.

Program 7.14: To find the average score of n students

#include<iostream>

using namespace std;

int main()

{

int i, sum, score, n;

float avg;

cout << "How many students? ";

cin >> n ;

The steps 1 and 2 in the execution sequence of the for loop just

mentioned before are given below. Write down the remaining steps.

Step 1: n =1, Condition is True, 1 is displayed, n becomes 2

Step 2: Condition is True, 2 is displayed, n becomes 3

Step 3: ……………
Let us do

Initialisation; Test

Expression; Updation

Loop body

7. Control Statements

211

for(i=1, sum=0; i<=n; ++i)

{

cout << "Enter the score of student " << i << ": ";

cin >> score;

sum = sum + score;

}

avg = (float)sum / n;

cout << "Class Average: " << avg;

return 0;

}

The following is a sample output of Program 7.14 for 5 students

How many students? 5

Enter the score of student 1: 45

Enter the score of student 2: 50

Enter the score of student 3: 52

Enter the score of student 4: 34

Enter the score of student 5: 55

Class Average: 47.2

In Program 7.14, the initialisation contains two expressions i=1 and sum=0 separated

by comma. The initialisation part may contain more than one expression, but they

should be separated by comma. Both the variables i and sum get their first values 1

and 0, respectively. Then, the test expression i<=n is evaluated to be True and body

of the loop is executed. After the execution of the body of the loop the update

expression ++i is executed. Again the test expression i<=n is evaluated, and body of

the loop is executed since the condition is True. This process continues till the test

expression returns False. It has occurred in the sample output when the value of i

becomes 6.

While using for loops certain points are to be noted. The given four code segments

explain these special cases. Assume that all the variables used in the codes are declared

with int data type.

Write a program to display the multiplication table of a given number.

Assume that the number will be the input to the variable n. The body of

the loop is given below:

cout<<i<<" x "<<n<<" = "<< i * n <<"\n";

 Give the output also.
Let us do

Initialisation contains

two expressions

Explicit type

conversion

212

Code segment 1: for (n=1; n<5; n++);

 cout<<n;

A semicolon appears after the parentheses of for statement. It is not a syntax error.
Can you predict the output? If it is 5, you are correct. This loop has no body. But its
process will be completed as usual. The initialisation assigns 1 to n and the condition
is evaluated to True. Since there is no loop body update takes place and the process
continues till n becomes 5. At that point, condition is evaluated to be False and the
program control comes out of the loop. The output statement then displays 5 on the
screen.

Code segment 2: for (n=1; n<5;)

 cout<<n;

In this code, update expression is not present. It does not make any syntax error in the
code. But on execution, the loop will never be terminated. The number 1 will be
displayed infinitely. We call this an infinite loop.

Code segment 3: for (; n<5; n++)

 cout<<n;

The output of this code cannot be predicted. Since there is no initialisation, the control
variable n gets some integer value. If it is smaller than 5, the body will be executed
until the condition becomes False. If the default value of n is greater than or equal to
5, the loop will be terminated without executing the loop body.

Code segment 4: for (n=1; ; n++)

 cout<<n;

The test expression is missing in this code. C++ takes this absence as True and obviously
the loop becomes an infinite loop.

The four code segments given above reveal that all the elements of a for loop are
optional. But this is not the case for while and do...while statements. Test expression
is compulsory for these two loops. Other elements are optional, but be cautious about
the output.

Another aspect to be noted is that we can provide a number instead of the test
expression. If it is zero it will be treated as False, otherwise True.

Check yourself

1. Write a program to find the sum and average of all even numbers between

1 and 49.

2. Write a program to print the numbers between 10 and 50 which are divisible

by both 3 and 5.

3. Predict the output of the following code

for(int i=1; i<=10; ++i);

 cout << i+2;

7. Control Statements

213

7.2.3 do...while statement

In the case of for loop and while loop, the test
expression is evaluated before executing the body of the
loop. If the test expression evaluates to False for the first
time itself, the body is never executed. But in some
situations, it is necessary to execute the loop body at least
once, without considering the result of the test expression.
In that case the do...while loop is the best choice. Its
syntax is :

initialisation of loop control variable;
do

{

body of the loop;

updation of loop control variable;

} while(test expression);

Figure 7.5 shows the order of execution of this loop.
Here, the test expression is evaluated only after
executing body of the loop. So do...while loop
is an exit controlled loop. If the test expression
evaluates to False, the loop will be terminated. Otherwise, the execution process will
be continued. It means that in do...while loop the body will be executed at least
once irrespective of the result of the condition.

Let us consider the following program segment to illustrate the execution of
do...while loop.

int k=1;

do

{

cout << k << '\t';

++k;

} while(k<=3);

At first, the value 1 is assigned to the variable k. Then body of the loop is executed
and the value of k is printed as 1. After that the k is incremented by 1 (now k=2). Then
it checks the condition k<=3. Since it is found True the body of the loop is executed
to print the value of k, i.e. 2 on the screen. Again the updation process is carried out,

Fig. 7.5: Execution of
do..while loop

Initialisation before

the loop

Body of loop

Updation inside

the loop body

Test expression

False

True

214

which makes value of k as 3 and the condition k<=3 is checked again. As it is True, the

body of the loop is executed to print the value 3. The variable k is again updated to 4

and now the condition is evaluated to be False. It causes the program control to come

out of the loop and executes the next statement after the loop body. Thus the output

of the code will be:

1 2 3

Now let us see how this loop differs from the other two. Imagine that the initial value

of k is 5. What will happen? The body of the loop is executed and the value of k will

be printed on the screen as 5. After that the variable k will be updated by incrementing

it by 1 and k becomes 6. On checking the condition k<=3, the test expression is

evaluated to False and the control comes out of the loop. This clearly shows that in

do...while loop there is no restriction to enter the loop body for the first time. So

if we want the body to be executed based on the True value of the condition, use

while or for loops.

Let us see an interactive program in the sense that some part of the code will be

executed on user’s choice. The simplest form of such programs provides facility to

accept user’s response for executing a code segment repeatedly. Program 7.15 illustrates

the use of do...while loop to write an interactive program to find the area of

rectangles by accepting the length and breadth of each rectangle from the user.

Program 7.15: To find the area of rectangles

#include <iostream>

using namespace std;

int main()

{

float length, breadth, area;

char ch;

do

{

cout << "Enter length and breadth: ";

cin >> length >> breadth;

area = length * breadth;

cout << "Area = " << area;

cout << "Any more rectangle (Y/N)? ";

cin >> ch;

} while (ch == 'Y' || ch == 'y');

return 0;

}

7. Control Statements

215

A sample output of Program7.15 is given below:

Enter length and breadth: 3.5 7

Area = 24.5

Any more rectangle (Y/N)? Y

Enter length and breadth: 6 4.5

Area = 27

Any more rectangle (Y/N)? N

We have discussed all the three looping statements of C++. Table 7.2 shows a
comparison between these statements.

Entry controlled loop

Initialization along with loop
definition

No guarantee to execute the
loop body at least once

Exit controlled loop

Initialization before loop
definition

Will execute the loop body at
least once even though the
condition is False

Entry controlled loop

Initialization before loop
definition

No guarantee to execute the
loop body at least once

for loop while loop do...while loop

Table 7.2: Comparison between the looping statements of C++

7.2.4 Nesting of loops

Placing a loop inside the body of another loop is called nesting of a loop. When we

nest two loops, the outer loop counts the number of completed repetitions of the

inner loop. Here the loop control variables for the two loops should be different.

Let us observe how a nested loop works. Take the case of a minute-hand and second-

hand of a clock. Have you noticed the working of a clock?. While the minute-hand

stands still at a position, the second-hand moves to complete one full rotation (say 1

to 60). The minute hand moves to the next position (that is, the next minute) only after

the second hand completes one full rotation. Then the second-hand again completes

another full rotation corresponding to the minute-hand’s current position. For each

position of the minute-hand, second-hand completes one full rotation and the process

goes on. Here the second hand movement can be treated as the execution of the inner

loop and the minute-hand’s movement can be treated as the execution of the outer

loop.

All types of loops in C++ allow nesting. An example is given to show the working

procedure of a nested for loop.

User Input

User Input

User Input

216

for(i=1; i<=2; ++i)

{

for(j=1; j<=3; ++j)

{

cout<< "\n" << i << " and " << j;

}

}

Initially value 1 is assigned to the outer loop variable i. Its test expression is evaluated
to be True and hence the body of the loop is executed. The body contains the inner
loop with the control variable j and it begins to execute by assigning the initial value
1 to j. The inner loop is executed 3 times, for j =1, j=2, j=3. Each time it evaluates
the test expression j<=3 and displays the output since it is True.

1 and 1

1 and 2

1 and 3

When the test expression j<=3 is False, the program control comes out of the inner
loop. Now the update statement of the outer loop is executed which makes i=2.
Then the test expression i<=2 is evaluated to True and once again the loop body (i.e.
the inner loop) is executed. Inner loop is again executed 3 times, for j=1, j=2, j=3
and displays the output.

2 and 1

2 and 2

2 and 3

After completing the execution of the inner loop, the control again goes back to the
update expression of the outer loop. Value of i is incremented by 1 (Now i=3) and
the test expression i<=2 is now evaluated to be False. Hence the loop terminates its
execution. Table 7.3 illustrates the execution of the above given program segment:

Table 7.3: Execution of a nested loop

Outer loop

Inner loop

The first 1 is of i

and the second 1 is

of j

Iterations Outer loop Inner loop Output

1 1 1 1 and 1

2 1 2 1 and 2

3 1 3 1 and 3

4 2 1 2 and 1

5 2 2 2 and 2

6 2 3 2 and 3

7. Control Statements

217

When working with nested loops, the control variable of the outer loop changes its
value only after the inner loop is terminated. Let us write a program to display the
following triangle using nested loop:

*

* *

* * *

* * * *

* * * * *

Program 7.16 : To display a triangle of stars

#include<iostream>

using namespace std;

int main()

{ int i, j;

char ch = '*';

for(i=1; i<=5; ++i) //outer loop

{

cout<< "\n" ;

for(j=1; j<=i; ++j) // inner loop

cout<<ch;

}

return 0;

}

1. Predict the output of the following program segment:

sum = 0;

for (i=1; i<3; ++i)

{

for (j=1; j<3; ++j)

 sum = sum + i * j ;

}

cout<<sum;

2. Write C++ programs to display the following triangles:

1 1

2 2 1 2

3 3 3 1 2 3

4 4 4 1 2 3 4

5 5 5 5 1 2 3 4 5

Let us do

218

7.2.5 Nesting of control statements

We have discussed nesting of if and nesting of loops. Any control statement can be
nested with another control statement. A loop can contain a selection statement such
as if or switch. Similarly, a selection statement can contain a loop such as while,
for or do...while. Program 7.17 contains a loop and its body includes a switch
statement. It is the usual style of a menu driven program.

Program 7.17: To input two numbers and perform an arithmetic operation based

on user’s choice

#include<iostream>

using namespace std;

int main()

 {

char ch;

float n1, n2;

cout<<"Enter two numbers: ";

cin>>n1>>n2;

do

{

cout<<"\nNumber 1: “<<n1<<“\tNumber 2: "<<n2;

cout<<"\n\t\tOperator Menu";

cout<<"\n\t1. Addition (+)";

cout<<"\n\t2. Subtraction (–)";

cout<<"\n\t3. Multiplication (*)";

cout<<"\n\t4. Division (/)";

cout<<"\n\t5. Exit (E)";

cout<<"\nEnter Option number or operator: ";

cin>>ch;

switch(ch)

{

case '1' :

case '+' : cout<<n1<<" + "<<n2<<" = "<<n1+n2;

 break;

case '2' :

case '-' : cout<<n1<<" - "<<n2<<" = "<<n1-n2;

 break;

case '3' :

case '*' : cout<<n1<<" * "<<n2<<" = "<<n1*n2;

 break;

case '4' :

case '/' : cout<<n1<<" / "<<n2<<" = "<<n1/n2;

 break;

7. Control Statements

219

case '5' :

case 'E' :

case 'e' : cout<<"Thank You for using the program";

 break;

default : cout<<"Invalid Choice!!";

}

} while (ch!='5' && ch!='E' && ch!='e');

return 0;

}

The following is a sample output of Program 7.17:

Enter two numbers: 25 4

Number 1: 25 Number 2: 4

Operator Menu

1. Addition (+)

2. Subtraction (–)

3. Multiplication (*)

4. Division (/)

5. Exit (E)

Enter Option number or operator: 1

25 + 4 = 29

Number 1: 25 Number 2: 4

Operator Menu

1. Addition (+)

2. Subtraction (–)

3. Multiplication (*)

4. Division (/)

5. Exit (E)

Enter Option number or operator: /

25 / 4 = 6.25

Number 1: 25 Number 2: 4

Operator Menu

1. Addition (+)

2. Subtraction (–)

3. Multiplication (*)

4. Division (/)

5. Exit (E)

Enter Option number or operator: 5

Thank You for using the program

User Input

User Input

User Input

220

We will discuss more programs using various combinations of nesting of control
statements in the Program gallery section.

7.3 Jump statements

The statements that facilitate the transfer of program control from one place to another
are called jump statements. C++ provides four types of jump statements that perform
unconditional branching in a program. They are return, goto, break and continue
statements. In addition, C++ provides a standard library function exit()that helps
us to terminate a program.

The return statement is used to transfer control back to the calling program or to
come out of a function. It will be explained in detail later in Chapter 10. Now, we will

discuss the other jump statements.

7.3.1 goto statement

The goto statement can transfer the program control to anywhere in the function.
The target destination of a goto statement is marked by a label, which is an identifier.

The syntax of goto statement is:

goto label;

............;

............;

label:;

............;

where the label can appear in the program either before or after goto statement.
The label is followed by a colon (:) symbol. For example, consider the following
code fragment which prints numbers from 1 to 50.

 int i=1;

start:

 cout<<i;

 ++i;

 if (i<=50)

 goto start;

Here, the cout statement prints the value 1. After that i is incremented by 1 (now
i=2), then the test expression i<=50 is evaluated. Since it is True the control is transferred
to the statement marked with the label start. When the test expression evaluates to
False, the process terminates and transfers the program control following the if
statement.

Let us see another example. Here a number is accepted and tested with a pre-defined
value. If it matches, the program continues, otherwise it terminates.

Label

7. Control Statements

221

 int p;

 cout<<"Enter the Code: ";

 cin>>p;

 if(p!=7755)

goto end;

 cout<<"Enter the details";

 ;

 ;

end:

 cout<<"Sorry, the code number is wrong. Try again!";

Here the program validates the user input. The program accepts other details only if
it is a valid code, otherwise the control goes to the label end. It is to be noted that the

usage of goto is not encouraged in structured programming.

7.3.2 break statement

When a break statement is encountered in a program, it takes the program control
outside the immediate enclosing loop (for, while, do...while) or switch
statement. Execution continues from the statement immediately after the control
structure. We have already discussed the impact of break in switch statement.
Let us see how it affects the execution of loops. Consider the following two program
segments.

Code segment 1:

i=1;

while(i<=10)

{

cin>>num;

if (num==0)

break;

cout<<"Entered number is: "<<num;

cout<<"\nInside the loop";

++i;

}

cout<<"\nComes out of the loop";

The above code fragment allows to input 10 different numbers. During the input if
any number happens to be 0, the program control comes out of the loop by skipping
the rest of the statements within the loop-body and displays the message “Comes
out of the loop” on the screen. Let us consider another code segment that uses
break within a nested loop.

Label

222

Code segment 2:

for(i=1; i<=5; ++i) //outer loop

{

cout<<"\n";

for(j=1; j<=i; ++j) //inner loop

{

cout<<"* ";

if (j==3)

break;

}

}

This code segment will display the following pattern:

*

* *

* * *

* * *

* * *

The nested loop executes normally for the value of i=1, i=2, i=3. For each value
of i, the variable j takes values from 1 to i. When the value of i becomes 4, the
inner loop executes for the value of j = 1, j=2, j=3 and comes out from the inner

loop on executing the break statement.

7.3.3 continue statement

continue statement is another jump statement used for skipping over a part of the
code within the loop-body and forcing the next iteration. The break statement forces
termination of the loop, but continue statement forces next iteration of the loop.

The following program segment explains the working of continue statement:

for (i=1; i<=10; ++i)

{

if (i==6)

continue;

cout<<i<<"\t";

}

This code gives the following output:

1 2 3 4 5 7 8 9 10

Note that 6 is not in the list. When the value of i becomes 6 the continue statement
is executed. As a result, the output statement is skipped and program control goes to
the update expression for next iteration.

Whenever j

becomes 3, the inner

loop terminates

7. Control Statements

223

A break statement inside a loop will abort the loop and transfer control to the

statement following the loop. A continue statement will just abandon the current

iteration and let the loop start next iteration. When continue statement is used within

while and do...while loops, care should be taken to avoid infinite execution. Table

7.4 shows a comparison between break and continue statements.

• Used with switch and loops.

• Brings the program control outside
the switch or loop by skipping
the rest of the statements within
the block.

• Program control goes out of the
loop even though the test
expression is True.

• Used only with loops.

• Brings the program control to the
beginning of the loop by skipping
the rest of the statements within
the block.

• Program control goes out of the
loop only when the test expression
becomes False.

Table 7.4: Comparison between the break and continue statements

break statement continue statement

C++ provides a built-in function exit() which terminates the program itself. The

exit() function can be used in a program only if we include the header file cstdlib

(process.h.in Turbo C++). Program 7.18 illustrates the working of this function.

Program 7.18: To check whether the given number is prime or not

#include <iostream>

#include <cstdlib>

using namespace std;

int main()

{

int i, num;

cout<<"Enter the number: ";

cin>>num;

for(i=2; i<=num/2; ++i)

{

if(num%i == 0)

{

cout<<"Not a Prime Number";

exit(0);

}

}

cout<<"Prime Number";

return 0;

}

224

Program gallery

This section contains a collection of programs which use different control statements
for solving various problems. The sample outputs of the programs are also given
after each program.

Program 7.19 accepts the three coefficients of a quadratic equation of the form ax2 +
bx + c = 0 and calculates its roots. The value of a should not be 0 (zero). To solve this
problem, the discrminent value of the quadratic equation is to be determined using
the formula (b2 – 4ac), to identify the nature of the roots. Formula is also available to
find the roots. In this program we use the function sqrt() to get the square root of a
number. The header file math.h is to be included in the program to use this function.

The test expression in the for loop of Program 7.18 can be replaced
by i<=sqrt(num), where sqrt() is a function which gives the
square root of the given number. If a number has no factors from
2 to its squrae root, the number will be a prime number. To use
sqrt(), we have to include the statement #include<cmath>

Check yourself

1. The goto statement causes control to go to

(a) an operator (b) a Label (c) a variable (d) a function

2. A break statement causes an exit

(a) only from the innermost loop.

(b) only from the innermost switch.

(c) from all loops and switches.

(d) from the innermost loop or switch.

3. The exit() function takes the control out of

(a) the function it appears in.

(b) the loop it appears in.

(c) the block it appears in.

(d) the program it appears in.

4. Name the header file to be included for using exit() function.

Some sample outputs of program 7.18 are shown below:
Output 1:

Enter the number: 17

Prime Number

Output 2:

Enter the number: 18

Not a Prime Number

7. Control Statements

225

Program 7.19: To find the roots of a quadratic equation

#include <iostream>

#include <cmath>// to use sqrt()function

using namespace std;

int main()

{

float a, b, c, root1, root2, d;

cout<< "Enter the three coefficients: ";

cin >> a >> b >> c ;

if (!a) // equivalent to if (a == 0)

cout<<"Value of \'a \' should not be zero\n"

 <<"Aborting!!!!!\n";

else

{

d =b*b-4*a*c; //beginning of else block

if (d > 0)

{

root1 = (-b + sqrt(d))/(2*a);

root2 = (-b - sqrt(d))/(2*a);

cout<<"Roots are REAL and UNEQUAL\n";

cout<<"Root1 = "<<root1<<"\tRoot2 = "<<root2;

}

else if (d == 0)

{

root1 = -b/(2*a);

cout<<"Roots are REAL and EQUAL\n";

cout<<"Root1 =" <<root1;

}

else

cout<<"Roots are COMPLEX and IMAGINARY";

}// end of else block of outer if

return 0;

}

Output 1:
Enter the three coefficients: 2 3 4

Roots are COMPLEX and IMAGINARY

Output 2:
Enter the three coefficients: 3 5 1

Roots are REAL and UNEQUAL

Root1 = -0.232408 Root2 = -1.434259

226

Program 7.20 displays the first N terms of the Fibonacci series. This series begins
with terms 0 and 1. The next term onwards will be the sum of the last two terms. The
series is 0, 1, 1, 2, 3, 5, 8, 13, ……

Program 7.20: To print n terms of the Fibonacci series

#include <iostream>

using namespace std;

int main()

{

int first=0, second=1, third, n;

cout<<"\nEnter number of terms in the series: ";

cin>>n;

cout<<first<<"\t"<<second;

for(int i=3; i<=n; ++i)

{

third = first + second;

cout<<"\t"<<third;

first = second;

second = third;

}

return 0;

}

Output:

Enter number of terms in the series: 10

0 1 1 2 3 5 8 13 21 34

Program 7.21 reads a number and checks whether it is palindrome or not. A number
is said to be palindrome if it is equal to its image. By the term image, we mean a
number obtained by reversing the digits of the original number. That is, the image of
163 is 361. Since these two are not equal the number 163 is not palindrome. The
number 232 is a palindrome number.

Program 7.21: To check whether the given number is palindrome or not

#include <iostream>

using namespace std;

int main()

{

int num, copy, digit, rev=0;

cout<<"Enter the number: ";

cin>>num;

copy=num;

The value of num will
be 0 after the completion of
loop. That is why the original
value is copied into another

variable

If the variables first and second

are initialised with the values -1 and

+1 respectively, we can avoid the

cout statement for displaying the

first two terms.

7. Control Statements

227

while(num != 0)

{

digit = num % 10;

rev = (rev * 10)+ digit;

num = num/10;

}

cout<<"The reverse of the number is: "<<rev;

if (rev == copy)

cout<<"\nThe given number is a palindrome.";

else

cout<<"\nThe given number is not a palindrome.";

return 0;

}

Output 1:

Enter the number: 363

The reverse of the number is: 363

The given number is a palindrome.

Output 2:

Enter the number: 257

The reverse of the number is: 752

The given number is not a palindrome.

Program 7.22: To accept n integers and print the largest among them

#include <iostream>

using namespace std;

int main()

{

int num, big, count;

cout<<"How many Numbers in the list? ";

cin >> count;

cout<<"\nEnter first number: ";

cin >> num;

big = num;

for(int i=2; i<=count; i++)

{

cout<<"\nEnter next number: ";

cin >> num;

if(num > big) big = num;

}

cout<<"\nThe largest number is " << big;

return 0;

}

228

1234567890123456789012345678901212345678901234567890123456789012123456789012
1234567890123456789012345678901212345678901234567890123456789012123456789012
1234567890123456789012345678901212345678901234567890123456789012123456789012
1234567890123456789012345678901212345678901234567890123456789012123456789012
1234567890123456789012345678901212345678901234567890123456789012123456789012
1234567890123456789012345678901212345678901234567890123456789012123456789012

Output:

How many Numbers in the list? 5

Enter first number: 23

Enter next number: 12

Enter next number: -18

Enter next number: 35

Enter next number: 18

The largest number is 35

Learning outcomes

After the completion of this chapter the learner will be able to

• use control statements in C++ for problem solving.

• identify the situation where control statements are used in a program.

• use correct control statements suitable for the situations.

• categorise different types of control statements.

• identify different types of jump statements in C++.

• write C++ programs using control statements.

 Sample questions

Very short answer type

1. Write the significance of break statement in switch statement. What is the effect
of absence of break in a switch statement?

2. What will the output of the following code fragment be?

for(i=1;i<=10;++i) ;

cout<<i+5;

The statements providing facilities for taking decisions or for performing
repetitive actions in a program are known as control statements. The control
statements are the backbones of a computer program. In this chapter we
covered the different types of control statements such as selection statements
(if, if…else, if…else if, switch), iteration statements (for, while,
do…while) and also jump statements (goto, break, continue, exit()
function). All these control statements will help us in writing efficient C++
programs.

Let us sum up

7. Control Statements

229

3. Rewrite the following statement using while and do while loops.

for (i=1; i<=10; i++) cout<<i;

4. How many times will the following loop execute?

int s=0, i=0;

while(i++<5)

s+=i;

5. Write the name of the header file which contains the exit() function.

6. Which statement in C++ can transfer control of the program to a named label?

7. Write the purpose of default statement in switch statement.

Short answer type

1. Consider two program fragments given below.

// version 1 //version 2

cin>>mark; cin>>mark;

if (mark > = 90) if (mark>=90)

cout<<“ A+”; cout<<“ A+”;

if (mark > = 80 && mark <90) else if (mark>=80 && mark <90)

cout<<“ A”; cout<<“ A”;

if (mark > = 70 && mark <80) else if (mark>=70 && mark <80)

cout<<“ B+”; cout<<“ B+”;

if (mark > = 60 && mark <70) else if (mark>=60 && mark <70)

cout<<“ B”; cout<<“ B”;

Discuss the advantages of version 2 over version 1.

2. Briefly explain the working of a for loop along with its syntax. Give an example
of for loop to support your answer.

3. Compare and discuss the suitability of three loops in different situations.

4. Consider the following if else if statement. Rewrite it with switch statement.

if (a==1)

cout << “One”;

else if (a==0)

cout << “Zero”;

else

cout << “Not a binary digit”;

5. What is wrong with the following while statement if the value of z = 3?

while(z>=0)

 sum+=z;

230

6. What will the output of the following code fragments be?

for (outer=10; outer > 5; --outer)

{

for (inner=1; inner<4; ++inner)

cout<<outer <<"\t"<<inner <<endl;

}

7. What will the output of the given code fragments be? Explain.

for (n = 1; n <= 10; ++n)

{

for (m=1; m <= 5 ; ++m)

num = n*m;

cout<<num <<endl;

}

8. Write the importance of a loop control variable. Briefly explain the different
parts of a loop.

Long answer type

1. What output will be produced by the following code fragment?

int val, res, n=1000;

cin>>val;

res = n+val > 1750 ? 400 : 200;

(a) If the input is 2000

(b) If the input is 500

2. Write a program to find the sum of digits of a number using
(a) Entry controlled loop.
(b) Exit controlled loop.

3. Write a program to print Armstrong numbers less than 1000. (An Armstrong
number is a number which is equal to the sum of cubes of its digits. Eg. 153 =
13+53+33)

4. Explain the different jump statements available in C++.

5. Write a program to produce the following output using nested loop:

A
A B
A B C
A B C D
A B C D E

8. Suppose you forgot to write the word else in an if…else statement. Discuss
how it will affect the output of your program?

1

lllll Array and its need

o Declaring arrays

o Memory allocation for

arrays

o Array initialization

o Accessing elements of

arrays

lllll Array operations

o Traversal

o Sorting

- Selection sort

- Bubble sort

o Searching

- Linear search

- Binary search

lllll Two dimensional (2D) arrays

o Declaring 2D arrays

o Matrices as 2D arrays

lllll Multi-dimensional arrays

Key Concepts We used variables in programs to refer data. If
the quantity of data is large, more variables are
to be used. This will cause difficulty in accessing
the required data. We learned the concept of data
types in Chapter 6 and we used basic data types
to declare variables and perform type
conversion. In this chapter, a derived data type
in C++, named 'array' is introduced. The word
‘array’ is not a data type name, rather it is a kind
of data type derived from fundamental data
types to handle large number of data easily. We
will discuss the creation and initialization of
arrays, and some operations like traversal,
sorting, and searching. We will also discuss two
dimensional arrays and their operations for
processing matrices.

8.1 Array and its need

An array is a collection of elements of the same
type placed in contiguous memory locations.
Arrays are used to store a set of values of the
same type under a single variable name. Each
element in an array can be accessed using its
position in the list, called index number or
subscript.

Why do we need arrays? We will illustrate this
with the help of an example. Let us consider a
situation where we need to store the scores of
20 students in a class and has to find their class
average. If we try to solve this problem by
making use of variables, we will need 20
variables to store students’ scores. Remembering

8

232

and managing these 20 variables is not an easy task and the program may become
complex and difficult to understand.

int a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t;

float avg;

cin>>a>>b>>c>>d>>e>>f>>g>>h>>i>>j>>k>>l>>m>>n>>o>>p>>q>>r>>s>>t;

avg = (a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t)/20.0;

As it is, this code is fine. However, if you want to modify it to deal with the scores
of a large number of students, say 1000, you have a very long and repetitive task at
hand. We have to find a way to reduce the complexity of this task.

The concept of array comes as a boon in such situations. As it is a collection of
elements, memory locations are to be allocated. We know that declaration statement

is needed for memory allocation. So, let us see how arrays are declared and used.

8.1.1 Declaring arrays

Just like the ordinary variable, the array is to be declared properly before it is used.
The syntax for declaring an array in C++ is as follows.

data_type array_name[size];

In the syntax, data_type is the type of data that the array variable can store,
array_name is an identifier for naming the array and the size is a positive integer
number that specifies the number of elements in the array. The following is an
example:

int num[10];

The above statement declares an array named num that can store 10 integer numbers.
Each item in an array is called an element of the array. The elements in the array
are stored sequentially as shown in Figure 8.1. The first element is stored in the first
location; the second element is stored in the second location and so on.

num[0] num[1] num[2] num[3] num[4] num[5] num[6] num[7] num[8] num[9]

Index→ 0 1 2 3 4 5 6 7 8 9

Fig. 8.1: Arrangement of elements in an array

Since the elements in the array are stored sequentially, any element can be accessed
by giving the array’s name and the element’s position. This position is called the
index or subscript value. In C++, the array index starts with zero. If an array is

8. Arrays

233

declared as int num[10]; then the possible index values are from 0 to 9. In this
array, the first element can be referenced as num[0] and the last element as num[9].
The subscripted variable, num[0], is read as “num of zero” or “num zero”. It’s a
shortened way of saying “the num array subscripted by zero”. So, the problem of
referring to the scores of 1000 students can be resolved by the following statement:

int score[1000];

The array, named score, can store the scores of 1000 students. The score of the
first student is referenced by score[0] and that of the last by score[999].

8.1.2 Memory allocation for arrays

The amount of storage required to hold an array is directly related to its type and
size. Figure 8.2 shows the memory allocation for the first five elements of array
num, assuming 1000 as the address of the first element. Since num is an integer type
array, size of each element is 4 bytes (in a system with 32 bit integer representation
using GCC) and it will be represented in memory as shown in Figure 2.2.

For a single dimensional array, the total size allocated can be computed using the
following formula:

total_bytes = sizeof(array_type) × size_of_array

For example, total bytes allocated for the array declared as float a[10]; will be
4 × 10 = 40 bytes.

8.1.3 Array initialisation

Array elements can be initialised in their declaration statements in the same manner
as in the case of variables, except that the values must be included in braces, as
shown in the following examples:

int score[5] = {98, 87, 92, 79, 85};

char code[6] = {‘s’, ‘a’, ‘m’, ‘p’, ‘l’, ‘e’};

float wgpa[7] = {9.60, 6.43, 8.50, 8.65, 5.89, 7.56, 8.22};

Initial values are stored in the order they are written, with the first value used to
initialize element 0, the second value used to initialize element 1, and so on. In the
first example, score[0] is initialized to 98, score[1] is initialized to 87, score[2]
is initialized to 92, score[3] is initialized to 79, and score[4] is initialized to 85.

Fig. 8.2: Memory allocation for an integer array

234

If the number of initial values is less than the size of the array, they will be stored in
the elements starting from the first position and the remaining positions will be
initialized with zero, in the case of numeric data types. For char type array, such
positions will be initialised with ' ' (space bar) character. When an array is initialized
with values, the size can be omitted. For example, the following declaration statement
will reserve memory for five elements:

int num[] = {16, 12, 10, 14, 11};

8. 1.4 Accessing elements of arrays

The array elements can be used anywhere in a program as we do in the case of
normal variables. We have seen that array is accessed element-wise. That is, only
one element can be accessed at a time. The element is specified by the array name
with the subscript. The following are some examples of using the elements of the
score array:

score[0] = 95;

score[1] = score[0] - 11;

cin >> score[2];

score[3] = 79;

cout << score[2];

sum = score[0] + score[1] + score[2] + score[3] + score[4];

The subscript in brackets can be a variable, a constant or an expression that evaluates
to an integer. In each case, the value of the expression must be within the valid
subscript range of the array. An important advantage of using variable and integer
expressions as subscripts is that, it allows sequencing through an array by using a
loop. This makes statements more structured keeping away from the inappropriate
usage as follows:

sum = score[0] + score[1] + score[2] + score[3] + score[4];

The subscript values in the above statement can be replaced by the control
variable of for loop to access each element in the array sequentially. The following
code segment illustrates this concept:

sum = 0;

for (i=0; i<5; i++)

sum = sum + score[i];

An array element can be assigned a value interactively by using an input statement,
as shown below:

for(int i=0; i<5; i++)

 cin>>score[i];

8. Arrays

235

When this loop is executed, the first value read is stored in the array element

score[0], the second in score[1] and the last in score[4].

Program 8.1 shows how to read 5 numbers and display them in the reverse order.

The program includes two for loops. The first one, allows the user to input array

values. After five values have been entered, the second for loop is used to display

the stored values from the last to the first.

Program 8.1: To input the scores of 5 students and display them in

reverse order

#include <iostream>

using namespace std;

int main()

{

int i, score[5];

for(i=0; i<5; i++) // Reads the scores

{

cout<<"Enter a score: ";

cin>>score[i];

}

for(i=4; i>=0; i--) // Prints the scores

cout<<"score[" << i << "] is " << score[i]<<endl;

return 0;

}

The following is a sample output of program 8.1:

Enter a score: 55

Enter a score: 80

Enter a score: 78

Enter a score: 75

Enter a score: 92

score[4] is 92

score[3] is 75

score[2] is 78

score[1] is 80

score[0] is 55

236

8.2 Array operations

The operations performed on arrays include traversal, searching, insertion, deletion,
sorting and merging. Different logics are applied to perform these operations. Let

us discuss some of them.

8.2.1 Traversal

Basically traversal means accessing each element of the array at least once. We can
use this operation to check the correctness of operations during operations like
insertion, deletion etc. Displaying all the elements of an array is an example of
traversal. If any operation is performed on all the elements in an array, it is a case of
traversal. The following program shows how traversal is performed in an array.

 Program 8.2: Traversal of an array

#include <iostream>

using namespace std;

int main()

{

int a[10], i;

cout<<"Enter the elements of the array :";

for(i=0; i<10; i++)

 cin >> a[i];

1. Write array declarations for the following:

(a) Scores of 100 students

(b) English letters

(c) A list of 10 years

(d) A list of 30 real numbers

2. Write array initialization statements for the following:

(a) An array of 10 scores: 89, 75, 82, 93, 78, 95, 81, 88, 77, and 82

(b) A list of five amounts: 10.62, 13.98, 18.45, 12.68, and 14.76

(c) A list of 100 interest rates, with the first six rates being 6.29,

6.95, 7.25, 7.35, 7.40 and 7.42.

(d) An array of 10 marks with value 0.

(e) An array with the letters of VIBGYOR.

(f) An array with number of days in each month.

3. Write C++ code segment to input values into the array: int ar[50];

4. Write C++ code fragment to display the elements in the even positions

of the array: float val[100];

Let us do

Reading array elements
from the user

8. Arrays

237

2 23 10 32 30

2 23 10 32 30

In Pass 2 excluding the first element,
the smallest element 10 is selected and
exchanged with the second element.

Pass 2

After Pass 1

for(i=0; i<10; i++)

 a[i] = a[i] + 1;

cout<<"\nEntered elements of the array are...\n";

for(i=0; i<10; i++)

 cout<< a[i]<< "\t";

return 0;

}

8.2.2 Sorting

Sorting is the process of arranging the elements of the array in some logical order.
This logical order may be ascending or descending in case of numeric values or
dictionary order in case of strings. There are many algorithms to do this task
efficiently. But at this stage, we will discuss two of the algorithms, known as “selection
sort” and “bubble sort”.

a. Selection sort

One of the simplest sorting techniques is the selection sort. To sort an array in
ascending order, the selection sort algorithm starts by finding the minimum value
in the array and moving it to the first position. At the same time, the element at the
first position is shifted to the position of the smallest element. This step is then
repeated for the second lowest value by moving it to the second position, and so
on until the array is sorted. The process of finding the smallest element and
exchanging it with the element at the respective position is known as a pass. For ‘n’
number of elements there will be ‘n – 1’ passes. For example, take a look at the list
of numbers given below.

32 23 10 2 30

32 23 10 2 30

In Pass 1, the smallest element 2 is
selected from the list. It is then
exchanged with the first element.

Pass 1

Initial list

A case of traversal

Another case of

traversal

238

2 10 23 32 30

2 10 23 32 30

In Pass 3 ignoring the first and second
elements, the smallest element 23 is
selected and exchanged with the third
element.

Pass 3

After Pass 2

2 10 23 32 30

In Pass 4 ignoring the 1st, 2nd and 3rd
elements, the smallest element 30 is
selected and exchanged with the fourth
element.

Pass 4

After Pass 3

2 10 23 32 30

2 10 23 30 32After Pass 4

Though each pass is intended for an exchange, no exchange is made in a pass if the
smallest value was already in the correct location.This situation is happened in the
Pass 3.

Algorithm for selection sort

Step 1. Start

Step 2. Accept a value in N as the number of elements of the array

Step 3. Accept N elements into the array AR

Step 4. Repeat Steps 5 to 9, (N – 1) times

Step 5. Assume the first element in the list as the smallest and store it in MIN

and its position in POS

Step 6. Repeat Step 7 until the last element of the list

Step 7. Compare the next element in the list with the value of MIN. If it is found

smaller, store it in MIN and its position in POS

Step 8. If the first element in the list and the value in MIN are not the same, then

swap the first element with the element at position POS

Step 9. Revise the list by excluding the first element in the current list

8. Arrays

239

Step 10. Print the sorted array AR

Step 11. Stop

Program 8.3 uses AR as an integer array which can store maximum of 25 numbers,
N as the number of elements to be sorted, MIN as the minimum value and POS as

the position or index of the minimum value.

Program 8.3: Selection sort for arranging elements in ascending order

#include <iostream>

using namespace std;

int main()

{ int AR[25], N, I, J, MIN, POS;

cout<<"How many elements? ";

cin>>N;

cout<<"Enter the array elements: ";

for(I=0; I<N; I++)

cin>>AR[I];

for(I=0; I < N-1; i++)

{

MIN=AR[I];

POS=I;

for(J = I+1; J < N; J++)

if(AR[J]<MIN)

{

MIN=AR[J];

POS=J;

}

if(POS != I)

{

AR[POS]=AR[I];

AR[I]=MIN;

}

}

cout<<"Sorted array is: ";

for(I=0; I<N; I++)

cout<<AR[I]<<"\t";

return 0;

}

A sample output of Program 8.3 is given below:

How many elements? 5

Enter the array elements: 12 3 6 1 8

Sorted array is: 1 3 6 8 12

240

b. Bubble sort

Bubble sort is a sorting algorithm that works by repeatedly stepping through lists
that need to be sorted, comparing each pair of adjacent items and swapping them
if they are in the wrong order. This passing procedure is repeated until no swaps
are required, indicating that the list is sorted. Bubble sort gets its name because
larger element bubbles towards the top of the list. To see a specific example,
examine the list of numbers.

23 12 7 11 4

23 12 7 11 4
The first comparison results in
exchanging the first two elements, 23
and 12.

Pass 1

Initial list

12 23 7 11 4
The second comparison results in
exchanging the second and third
elements 23 and 7 in the revised
list.

12 7 23 11 4
The third comparison results in
exchanging the third and fourth
elements 23 and 11 in the revised
list.

12 7 11 23 4
The fourth comparison results in
exchanging the fourth and fifth
elements 23 and 4 in the revised
list.

12 7 11 4 23
After the end of the first pass, the
largest element 23 is bubbled to the
last position of the list.

8. Arrays

241

7 11 4 12 23
In the third pass, we consider only
the three elements of the list,
excluding 23 and12. The same
process is continued as in the
above pass and as a result of it '11'
is bubbled to the 3rd position.

7 11 4 12 23

7 4 11 12 23

Pass 3

7 4 11 12 23

In the last pass we consider only
the two elements of the list,
excluding 23, 12 and 11. The same
process is continued as in the
above pass and as a result of it 7 is
bubbled to 2nd position and
eventually 4 is placed in the first
position.

4 7 11 12 23

Pass 4

12 7 11 4 23

In the second pass, we consider
only the four elements of the list,
excluding 23. The same process is
continued as in Pass 1 and as a
result of it 12 is bubbled to fourth
position, which is the second
largest element in the list.7 12 11 4 23

7 11 12 4 23

7 11 4 12 23

Pass 2

242

Now we get the sorted list of elements. In bubble sort, to sort a list of ‘N’ elements

we require (N-1) passes. In each pass the size of the revised list will be reduced by

one.

Algorithm for bubble sort

Step 1. Start

Step 2. Accept a value in N as the number of elements of the array

Step 3. Accept N elements into the array AR

Step 4. Repeat Steps 5 to 7, (N - 1) times

Step 5. Repeat Step 6 until the second last element of the list

Step 6. Starting from the first position, compare two adjacent elements in the

list. If they are not in proper order, swap the elements.

Step 7. Revise the list by excluding the last element in the current list.

Step 8. Print the sorted array AR

Step 9. Stop

Program 8.4 uses AR as an integer array to store maximum of 25 numbers, N as

the number of elements to be sorted.

Program 8.4: Bubble sort for arranging elements in ascending order

#include <iostream>

using namespace std;

int main()

{ int AR[25],N;

int I, J, TEMP;

cout<<"How many elements? ";

cin>>N;

cout<<"Enter the array elements: ";

for(I=0; I<N; I++)

cin>>AR[I];

for(I=1; I<N; I++)

for(J=0; J<N–I; J++)

if(AR[J] > AR[J+1])

{

TEMP = AR[J];

AR[J] = AR[J+1];

AR[J+1] = TEMP;

}

cout<<"Sorted array is: ";

for(I=0; I<N; I++)

cout<<AR[I]<<"\t";

}

8. Arrays

243

The following is a sample output of Program 8.4.
How many elements? 5

Enter the array elements: 23 10 -3 7 11

Sorted array is: -3 7 10 11 23

8.2.3 Searching

Searching is the process of finding the location of the given element in the array.
The search is said to be successful if the given element is found, that is the element
exists in the array; otherwise unsuccessful. There are basically two approaches to
search operation: linear search and binary Search.

The algorithm that one chooses generally depends on organization of the array
elements. If the elements are in random order, the linear search technique is used,
and if the array elements are sorted, it is preferable to use the binary search technique.
These two search techniques are described below:

a. Linear search

Linear search or sequential search is a method for finding a particular value in a list.
Linear search consists of checking each element in the list, one at a time in sequence
starting from the first element, until the desired one is found or the end of the list is
reached.

Assume that the element ‘45’ is to be searched from a sequence of elements 50, 18,
48, 35, 45, 26, 12. Linear search starts from the first element 50, comparing each
element until it reaches the 5th position where it finds 45 as shown in Figure 8.3.

Index List Comparison

0 50 50 == 45 : False

1 18 18 == 45 : False

2 48 48 == 45 : False

3 35 35 ==45 : False

4 45 45 ==45 : True

5 26

6 12

Algorithm for Linear Search

Step 1. Start

Step 2. Accept a value in N as the number of elements of the array

Step 3. Accept N elements into the array AR

Fig. 8.3: Linear search

244

Step 4. Accept the value to be searched in the variable ITEM

Step 5. Set LOC = -1

Step 6. Starting from the first position, repeat Step 7 until the last element

Step 7. Check whether the value in ITEM is found in the current position. If

found then store the position in LOC and Go to Step 8, else move to the

next position.

Step 8. If the value of LOC is less than 0 then display "Not Found", else display

the value of LOC + 1 as the position of the search value.

Step 9. Stop

Program 8.5 uses AR as an integer array to store maximum of 25 numbers, N as
the number of elements in the array, ITEM as the element to be searched and LOC

as the position or index of the search element.

Program 8.5: Linear search to find an item in the array

#include <iostream>

using namespace std;

int main()

{

int AR[25], N;

int I, ITEM, LOC=-1;

cout<<"How many elements? ";

cin>>N;

cout<<"Enter the array elements: ";

for(I=0; I<n; I++)

 cin>>AR[I];

 cout<<"Enter the item you are searching for: ";

cin>>ITEM;

for(I=0; I<N; I++)

if(AR[I] == ITEM)

{

LOC=I;

break;

}

if(LOC!=-1)

cout<<"The item is found at position "<<LOC+1;

else

cout<<"The item is not found in the array";

return 0;

}

8. Arrays

245

A sample output of program 8.5 is given below:

How many Elements? 7

Enter the array elements: 12 18 26 35 45 48 50

Enter the item you are searching for: 35

The item is found at position 4

The following output shows the other side:

How many Elements? 7

Enter the array elements: 12 18 26 35 45 48 50

Enter the item you are searching for: 25

The item is not found in the array

As noted previously, an advantage of the linear search method is that the list need

not be in sorted order to perform the search operation. If the search item is towards

the front of the list, only a few comparisons are enough. The worst case occurs

when the search item is at the end of the list. For example, for a list of 10,000

elements, maximum number of comparisons needed is 10,000.

b. Binary search

The linear search algorithm which we have seen is the most simple and convenient

for small arrays. But when the array is large and requires many repeated searches, it

makes good sense to have a more efficient algorithm. If the array contains a sorted

list then we can use a more efficient search algorithm called Binary Search which can

reduce the search time.

For example, suppose you want to find the meaning of the term ‘modem’ in a

dictionary. Obviously, we don’t search page by page. We open the dictionary in the

middle (roughly) to determine which half contains the term being sought. Then for

subsequent search one half is discarded and we search in the other half. This process

is continued till we locate the required term or it results in unsuccessful search. The

second case concludes that the term is not found in the dictionary. This search

method is possible in a dictionary because the words are in sorted order.

Binary search is an algorithm which uses minimum number of searches for locating

the position of an element in a sorted list, by checking the middle, eliminating half

of the list from consideration, and then performing the search on the remaining

half. If the middle element is equal to the searched value, then the position has been

found; otherwise the upper half or lower half is chosen for search, based on whether

the element is greater than or less than the middle element.

246

Algorithm for binary search

Step 1. Start

Step 2. Accept a value in MAX as the number of elements of the array

Step 3. Accept MAX elements into the array LIST

Step 4. Accept the value to be searched in the variable ITEM

Step 5. Store the position of the first element of the list in FIRST and that of the

last in LAST

Step 6. Repeat Steps 7 to 11 While (FIRST <= LAST)

Step 7. Find the middle position using the formula (FIRST + LAST)/2 and store it

in MIDDLE

Step 8. Compare the search value in ITEM with the element at the MIDDLE of

the list

Step 9. If the MIDDLE element contains the search value in ITEM then stop

search, display the position and go to Step 12.

Step 10. If the search value is smaller than the MIDDLE element

Then set LAST = MIDDLE - 1

Step 11. If the search value is larger than the MIDDLE element

Then set FIRST = MIDDLE + 1

Step 12. Stop

In Program 8.6, LIST is used as an integer array to store maximum of 25 numbers,
MAX as the number of elements in the array, ITEM as the element to be searched
and LOC as the position number or index of the search element. FIRST, LAST

and MIDDLE are used to the refer the first, last and middle positions respectively
of the list under consideration.

Program 8.6: Binary search to find an item in the sorted array

#include <iostream>

using namespace std;

int main()

{ int LIST[25],MAX;

int FIRST, LAST, MIDDLE, I, ITEM, LOC=-1;

cout<<"How many elements? ";

cin>>MAX;

cout<<"Enter array elements in ascending order: ";

for(I=0; I<MAX; I++)

cin>>LIST[I];

8. Arrays

247

cout<<"Enter the item to be searched: ";

cin>>ITEM;

FIRST=0;

LAST=MAX-1;

while(FIRST<=LAST)

{

MIDDLE=(FIRST+LAST)/2;

if(ITEM == LIST[MIDDLE])

{

LOC = MIDDLE;

break;

}

if(ITEM < LIST[MIDDLE])

LAST = MIDDLE-1;

else

FIRST = MIDDLE+1;

}

if(LOC != -1)

cout<<"The item is found at position "<<LOC+1;

else

cout<<"The item is not found in the array";

return 0;

 }

The following is a sample output of Program 8.6

How many elements? 7

Enter array elements in ascending order: 21 28 33 35 45 58 61

Enter the item to be searched: 35

The item is found at position 4

Let us consider the following sorted array with 7 elements to illustrate the working
of the binary search technique. Assume that the element to be searched is 45.

0 1 2 3 4 5 6

21 28 33 35 45 58 61
FIRST = 0

LAST = 6

0 1 2 3 4 5 6

21 28 33 35 45 58 61

MIDDLE = (FIRST+LAST)/2 = (0+6)/2 = 3
Here LIST[3] is not equal to 45 and
LIST[3] is less than search element
therefore, we take
FIRST = MIDDLE + 1 = 3 + 1 = 4, LAST = 6

As FIRST<=LAST, let’s start iteration

248

0 1 2 3 4 5 6

21 28 33 35 45 58 61

MIDDLE = (FIRST+LAST)/2 = (4+6)/2= 5
Here LIST[5] is not equal to 45 and
LIST[5] is greater than the search
element therefore, we take
FIRST = 4, LAST = MIDDLE - 1=5 -1 = 4,

As FIRST<=LAST, we start next iteration.

0 1 2 3 4 5 6

21 28 33 35 45 58 61
MIDDLE = (FIRST+LAST)/2 = (4+4)/2 = 4

Here LIST[4] is equal to 45 and the

search terminates successfully.

As FIRST<=LAST, we start next iteration

In Binary search, an array of 100,00,00,000 (hundred crores) elements requires a
maximum of only 30 comparisons to search an element. If the number of elements
in the array is doubled, only one more comparison is needed.

Table 8.1 shows how linear search method differs from binary search:

Linear search method Binary search method

• The elements need not be in any order • The elements should be in sorted order

• Takes more time for the process • Takes very less time for the process

• May need to visit all the elements • All the elements are never visited

• Suitable when the array is small • Suitable when the array is large

8. 3 Two dimensional (2D) arrays

Suppose we have to store marks of 50 students in six different subjects. Here we
can use six single dimensional arrays with 50 elements each. But managing these
data with this arrangement is not an easy task. In this situation we can use an array
of arrays or two dimensional arrays.

A two dimensional array is an array in which each element itself is an array. For
instance, an array AR[m][n] is a 2D array, which contains m single dimensional
arrays, each of which has n elements. Otherwise we can say that AR[m][n] is a table
containing m rows and n columns.

8.3.1 Declaring 2D arrays

The general form of a two dimensional array declaration in C+ + is as follows :

data_type array_name[rows][columns];

where data_type is any valid data type of C++ and elements of this 2D array will
be of this type. The rows refers to the number of rows in the array and columns

Table 8.1: Comparison of linear and binary search methods

8. Arrays

249

refers to the number of columns in the array. The indices (subscripts) of rows and
columns, start at 0 and ends at (rows–1) and (columns–1) respectively. The
following declaration declares an array named marks of size 5 × 4 (5 rows and 4
columns) of type integer.

int marks[5][4];

The elements of this array are referred to as marks[0][0], marks[0][1],

marks[0][2], marks[0][3], marks[1][0], marks[1][1], ..., marks[4][3]

as shown in Figure 8.4.

Columns

0 1 2 3

0

1

2

3

4

R
o

w
s

marks [1][2]

marks [4] [1]

Fig. 8.4:Structuire of a 2D array

The amount of storage required to hold a two dimensional array depends upon its
base type, number of rows and number of columns. The formula to calculate total
number of bytes required for a 2D array is as follows:

total_bytes = sizeof(base type) × number of rows × number of columns

For instance, the above declared array marks[5][4] requires 4×5×4=80 bytes.

8.3.2 Matrices as 2D arrays

Matrix is a useful concept in mathematics. We know that a matrix is a set of m × n
numbers arranged in the form of a table with m rows and n columns. Matrices can
be represented through 2D arrays. The following program illustrates some
operations on matrices. To process a 2D array, you need to use nested loops. One
loop processes the rows and other the columns. Normally outer loop is for rows
and inner loop is for columns. Program 8.7 creates a matrix mat with m rows and n
columns.

250

Program 8.7: To create a matrix with m rows and n columns

#include <iostream>

using namespace std;

int main()

{ int m, n, row, col, mat[10][10];

cout<< "Enter the order of matrix: ";

cin>> m >> n;

cout<<"Enter the elements of matrix\n";

for (row=0; row<m; row++)

for (col=0; col<n; col++)

cin>>mat[row][col];

cout<<"The given matrix is:";

for (row=0; row<m; row++)

{

cout<<endl;

for (col=0; col<n; col++)

cout<<mat[row][col]<<"\t";

}

return 0;

}

A sample output of Program 8.7 is given below:

Enter the order of matrix: 3 4

Enter the elements of matrix

1 2 3 4 2 3 4 5 3 4 5 6

The given matrix is:

1 2 3 4

2 3 4 5

3 4 5 6

Let us see a program that accepts the order and elements of two matrices and

displays their sum. Two matrices can be added only if their order is the same. The

elements of the sum matrix are obtained by adding the corresponding elements of

the operand matrices. If A and B are two operand matrices, each element in the

sum matrix C will be of the form C[i][j] = A[i][j] + B[i][j], where i indicates the row

position and j the column position.

Note that the elements of the matrix

are entered sequentially but the

output is given with the specified

matrix format.

Display the elements

in matrix format

Creation of the

matrix

8. Arrays

251

Program 8.8: To find the sum of two matrices if conformable

#include <iostream>

#include <cstdlib>

using namespace std;

int main()

{ int m1, n1, m2, n2, row, col;

int A[10][10], B[10][10], C[10][10];

cout<<"Enter the order of first matrix: ";

cin>>m1>>n1;

cout<<"Enter the order of second matrix: ";

cin>>m2>>n2;

if(m1!=m2 || n1!=n2)

{

cout<<"Addition is not possible";

exit(0);

}

cout<<"Enter the elements of first matrix\n";

for (row=0; row<m1; row++)

for (col=0; col<n1; col++)

cin>>A[row][col];

cout<<"Enter the elements of second matrix\n";

for (row=0; row<m2; row++)

for (col=0; col<n2; col++)

cin>>B[row][col];

for (row=0; row<m1; row++)

for (col=0; col<n1; col++)

C[row][col] = A[row][col] + B[row][col];

cout<<"Sum of the matrices:\n";

for(row=0; row<m1; row++)

{

cout<<endl;

for (col=0; col<n1; col++)

cout<<C[row][col]<<"\t";

}

}

A sample output of Program 8.8 is given below:
Enter the order of first matrix: 3 4

Enter the order of second matrix: 3 4

Enter the elements of first matrix

2 5 -3 7

5 12 4 9

-3 0 6 -5

To use exit()

function

Creation of first

matrix

Creation of

second matrix

Here the elements are
entered in matrix form.
But it is not essential

Program terminates

Matrix addition process.
Instead of m1 and n1, we

can use m2 and n2.

252

Enter the elements of second matrix

1 4 3 5

4 -5 7 13

3 -4 7 9

Sum of the matrices:

3 9 0 12

9 7 11 22

0 -4 13 4

The subtraction operation on matrices can be performed in the same fashion as in
Program 8.8 except that the formula is C[i][j] = A[i][j] – B[i][j].

Now, let us write a program to find the sum of the diagonal elements of a square
matrix. A matrix is said to be a square matrix, if the number of rows and columns
are the same. Though there are two diagonals for a square, here we mean the elements
mat[0][0], mat[1][1], mat[2][2], ..., mat[n–1][n–1], where mat
is the 2D array. These diagonal elements are called leading or major diagonal
elements. Program 8.9 can be used to find the sum of the major diagonal elements.

Program 8.9: To find the sum of major diagonal elements of a matrix

#include <iostream>

using namespace std;

int main()

{ int mat[10][10], n, i, j, s=0;

cout<<"Enter the rows/columns of square matrix: ";

cin>>n;

cout<<"Enter the elements\n";

for(i=0; i<n; i++)

for(j=0; j<n; j++)

cin>>mat[i][j];

cout<<"Major diagonal elements are\n";

for(i=0; i<n; i++)

{

cout<<mat[i][i]<<"\t";

s = s + mat[i][i];

}

cout<<"\nSum of major diagonal elements is: ";

cout<<s;

return 0;

}

Accesses only the
diagonal elements to

find the sum

8. Arrays

253

When Program 8.9 is executed the following output is obtained:

Enter the rows/columns of square matrix: 3

Enter the elements

3 5 -2

7 4 0

2 8 -1

Major diagonal elements are

3 4 -1

Sum of major diagonal elements is: 6

Each matrix has a transpose. It is obtained by converting row elements into column
elements or vice versa. Program 8.10 shows this process.

Program 8.10: To find the transpose of a matrix

#include <iostream>

using namespace std;

int main()

{ int ar[10][10], m, n, row, col;

cout<<"Enter the order of matrix: ";

cin>>m>>n;

cout<<"Enter the elements\n";

for(row=0; row<m; row++)

for(col=0; col<n; col++)

cin>>ar[row][col];

cout<<"Original matrix is\n";

for(row=0; row<m; row++)

{

cout<<"\n";

for(col=0; col<n; col++)

cout<<ar[row][col]<<"\t";

}

cout<<"\nTranspose of the entered matrix is\n";

for(row=0; row<n; row++)

{

cout<<"\n";

for(col=0; col<m; col++)

cout<<ar[col][row]<<"\t";

}

return 0;

}

Note that the
positions of row size
and column size are

changed in loops

Subscripts also changed
their positions

254

A sample output of Program 8.10 is given below:

Enter the order of matrix: 4 3

Enter the elements

3 5 -1

2 12 0

6 8 4

7 -5 6

Original matrix is

3 5 -1

2 12 0

6 8 4

7 -5 6

Transpose of the entered matrix is

3 2 6 7

5 12 8 -5

-1 0 4 6

When data is arranged in tabular form, in some situations, we may need sum of
elements of each row as well as each column. Program 8.11 helps the computer to
perform this task.

Program 8.11: To find the row sum and column sum of a matrix

#include <iostream>

using namespace std;

int main()

{

int ar[10][10], rsum[10]={0}, csum[10]={0};

int m, n, row, col;

cout<<"Enter the number of rows & columns in the array: ";

cin>>m>>n;

cout<<"Enter the elements\n";

for(row=0; row<m; row++)

for(col=0; col<n; col++)

cin>>ar[row][col];

for(row=0; row<m; row++)

for(col=0; col<n; col++)

{

rsum[row] += ar[row][col];

csum[col] += ar[row][col];

}

cout<<"Row sum of the 2D array is\n";

Row elements
and column elements are

added separately and each
sum is stored in respective

locations of the arrays
concerned

These elements can
be entered in a

single line

8. Arrays

255

for(row=0; row<m; row++)

cout<<rsum[row]<<"\t";

cout<<"\nColumn sum of the 2D array is\n";

for(col=0; col<n; col++)

cout<<csum[col]<<"\t";

return 0;

}

A sample output of Program 8.11 is given below:

Enter the number of rows & columns in the array: 3 4

Enter the elements

3 12 5 0

4 -6 2 1

5 7 -6 2

Row sum of the 2D array is

20 1 8

Column sum of 2D array is

12 13 1 3

8.4 Multi-dimensional arrays

Each element of a 2D array may be another array. Such an array is called 3D (Three
Dimensional) array. Its declaration is as follows:

data_type array_name[size_1][size_2][size_3];

The elements of a 3D array are accessed using three subscripts. If ar[10][5][3] is
declared as a 3D array in C++, the first element is referenced by ar[0][0][0] and the
last element by ar[9][4][2]. This array can contain 150 (10 × 5 × 3) elements. Similarly
more sizes can be specified while declaring arrays so that multi-dimensional arrays
are formed.

Array is a collection of elements placed in contiguous memory locations
identified by a common name. Each element in an array is referenced by
specifying its subscript with the array name. Array elements are accessed easily
with the help of for loop. Operations like traversing, sorting and searching
are performed on arrays. Bubble sort and selection sort methods are used to
sort the elements. Linear search and binary search techniques are applied to
search an element in an array. Two dimensional arrays are used to solve matrix
related problems. We need two subscripts to refer to an element of 2D array.
Besides 2D arrays, it is possible to create multidimensional arrays in C++.

Let us sum up

256

After the completion of this chapter learner will be able to

l identify scenarios where an array can be used.

l declare and initialize single dimensional and 2D arrays.

l develop logic to perform various operations on arrays like sorting and
searching.

l solve matrix related problems with the help of 2D arrays.

1. Write a C++ program to input the amount of sales for 12 months into an
array named SalesAmt. After all the input, find the total and average amount
of sales.

2. Write a C++ program to create an array of N numbers, find the average
and display those numbers greater than the average.

3. Write a C++ program that specifies three one-dimensional arrays named price,
quantity and amount. Each array should be capable of holding 10 elements.
Use a for loop to input values to the arrays price and quantity. The entries in
the array amount should be the product of the corresponding values in the

arrays price and quantity (i.e. amount[i] = price[i] ×quantity[i]). After all the

data has been entered, display the following output, with the corresponding
value under each column heading as follows:

Price Quantity Amount

——— ——— ———

——— ——— ———

4. Write a C++ program to input 10 integer numbers into an array and determine
the maximum and minimum values among them.

5. Write a C++ program which reads a square matrix of order n and prints the
upper triangular elements. For example, if the matrix is

2 3 1
7 1 5
2 5 1

The output should be 2 3 1
1 5

1

Lab activity

Learning outcomes

8. Arrays

257

123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678

Sample questions

Very short answer type

1. All the elements in an array must be _______ data type.

2. The elements of an array with ten elements are numbered from ____ to ____.

3. An array element is accessed using _____.

4. If AR is an array, which element will be referenced using AR[7]?

5. Consider the array declaration int a[3]={2,3,4}; What is the value of
a[1]?

6. Consider the array declaration int a[]={1,2,4}; What is the value of
a[1]?

7. Consider the array declaration int a[5]={1,2,4}; What is the value of
a[4]?

8. Write array initialization statements for an array of 6 scores: 89, 75, 82, 93, 78,
95.

9. Printing all the elements of an array is an example for _____ operation.

10. How many bytes are required to store the array int a[2][3];?

11. In an array of m elements, Binary search required maximum of n search for
finding an element. How many search required if the number of elements is
doubled?

6. Write a program which reads a square matrix of order n and prints the lower
triangular elements. For instance, if the matrix is

2 3 1
7 1 5
2 5 7

The output will be 2
7 1

2 5 7

7. Write a C++program to find the sum of leading diagonal elements of a matrix.

8. Write a C++ program to find the sum of off diagonal elements of a matrix.

9. Write a program to print the Pascal’s triangle as shown below:

1

1 2 1

1 3 3 1

1 4 6 4 1

258

12. Write the statement to initialize an array of 10 marks with value 0.

13. State True or false: The compiler will complain if you try to access array element
16 in a ten-element array.

Short answer type

1. Define an Array.

2. What does the declaration int studlist[1000]; mean?

3. How is memory allocated for a single dimensional array?

4. Write C++ statements to accept an array of 10 elements and display the count
of even and odd numbers in it.

5. Write the initialization statement for an array num with values 2, 3, 4, 5.

6. What is meant by traversal?

7. Define sorting.

8. What is searching?

9. What is bubble sort?

10. What is binary search?

11. Define a 2D array.

12. How is memory allocated for a 2D array?

Long answer type

1. An array AR contains the elements 25, 81, 36, 15, 45, 58, 70. Illustrate the
working of binary search technique for searching an element 45.

2. Write C++ statements to accept two single dimensional array of equal length
and find the difference between corresponding elements.

3. Illustrate the working of bubble sort method for sorting the elements 32, 25,
44, 16, 37, 12.

4. If 24, 45, 98, 56, 76, 24, 15 are the elements of an array, illustrate the working
of selection sort for sorting.

5. Write a program to find the difference between two matrices.

6. Write a program to find the sum and average of elements in a 2D array.

7. Write a program to find the largest element in a 2D array.

1

lllll String handling using arrays

lllll Memory allocation for

strings

lllll Input/output operations on

strings

lllll Console functions for

Character I/O

o getchar()

o putchar()

lllll Stream functions for I/O

operations

o Input functions - get(),

getline()

o Output functions - put(),

write()

Key Concepts

We have learnt that array is the effective
mechanism to handle large number of
homogeneous type of data. Most of the
programs that we discussed are used to process
numeric type data. We know that there are
string type data also. In this chapter we will see
how string data are stored and processed. Also
we will discuss some built-in functions to
perform input/output operations on string
and character data.

9.1 String handling using arrays

We know that string is a kind of literal in C++
language. It appears in programs as a sequence
of characters within a pair of double quotes.
Imagine that you are asked to write a program
to store your name and display it. You have
learned that variables are required to store data.
Let us take the identifier my_name as the
variable. Remember that in C++, a variable is
to be declared before it is used. A declaration
statement is required for this and it begins with
a data type. Which data type should be used to
declare a variable to hold string data? There is
no basic data type to represent string data. You
may think of char data type. But note that the
variable declared using char can hold only one
character. Here we have to input string which
is a sequence of characters.

9

260

Let us consider a name “Niketh”. It is a string consisting of six characters. So it
cannot be stored in a variable of char type. But we know that an array of char
type can hold more than one character. So, we declare an array as follows:

char my_name[10];

It is sure that ten contiguous locations, each with one byte size, will be allocated for
the array named my_name. If we follow the usual array initialization method, we
can store the characters in the string “Niketh” as follows:

char my_name[10]={'N', 'i', 'k', 'e', 't', 'h'};

Figure 9.1 shows the memory allocation for the above declared character array.
Note that we store the letters in the string, separated by commas. If we want to
input the same data, the following C++ statement can be used:

for (int i=0; i<6; i++)

 cin >> my_name[i];

During the execution of this statement, we have to input six letters of “Niketh”
one after the other separated by Space bar, Tab or Enter key. The memory allocation
in both of these cases may be shown as follows:

So, let us conclude that a character array can be used to store a string, since it is a
sequence of characters. However, it is true that we do not get the feel of inputting
a string. Instead, we input the characters constituting the string one by one.

In C++, character arrays have some privileges over other arrays. Once we declare a
character array, the array name can be considered as an ordinary variable that can
hold string data. Let’s say that a character array name is equivalent to a string variable.
Thus your name can be stored in the variable my_name (the array name) using the
following statement:

cin >> my_name;

It is important to note that this kind of usage is wrong in the case of arrays of other
data types. Now let us complete the program. It will be like the one given in Program
9.1.

Fig. 9.1 : Memory allocation for the character array

my_name

N i k e t h

0 1 2 3 4 5 6 7 8 9

Subscripts

Elements

Array Name

9. String Handling and I/O Functions

261

Program 9.1: To input a string and display

#include <iostream>

using namespace std;

int main()

{

char my_name[10];

cout << "Enter your name: ";

cin >> my_name;

cout << "Hello " << my_name;

}

On executing this program you will get the output as shown below.

Enter your name: Niketh

Hello Niketh

Note that the string constant is not "Hello", but "Hello " (a white space is

given after the letter o).

Note that a null character '\0' is stored at the end of the string. This character is

used as the string terminator and added at the end automatically. Thus we can say

that memory required to store a string will be equal to the number of characters in

the string plus one byte for null character. In the above case, the memory used to

store the string Niketh is seven bytes, but the number of characters in the string is

only six.

Run Program 9.1 and input your full name by expanding the initials

if any, and check whether the output is correct or not. If your name

contains more than 10 characters, increase the size of the array as

needed.Let us do

9.2 Memory allocation for strings

We have seen how memory is allocated for an array of characters. As Figure 9.1

shows, the memory required depends upon the number of characters stored. But if

we input a string in a character array, the scene will be different. If we run Program

9.1 and input the string Niketh, the memory allocation will be as shown in Figure

9.2.
Null character '\0' is stored

at the end of the string

Fig. 9.2 : Memory allocation for the character array

my_name

N i k e t h \0

0 1 2 3 4 5 6 7 8 9

Array Name

262

As in the case of variable initialization, we can initialize a character array with a
string as follows:

char my_name[10] = "Niketh";

char str[] = "Hello World";

In the first statement 10 memory locations will be allocated and the string will be
stored with null character as the delimiter. The last three bytes will be left unused.
But for the second statement, size of the array is not specified and hence only 12
bytes will be allocated (11 bytes for the string and 1 for '\0').

9.3 Input/Output operations on strings

Program 9.1 contains input and output statements for string data. Let us modify
the declaration statement by changing the size of the array to 20. If we run the
program by entering the name Maya Mohan, the output will be as follows:

Enter your name: Maya Mohan

Hello Maya

Note that though there is enough size for the array, we get only the word "Maya"
as the output. Why does this happen?

Let us have a close look at the input statement: cin>>my_name;. We have
experienced that only one data item can be input using this statement. A white
space is treated as a separator of data. Thus, the input Maya Mohan is treated as
two data items, Maya and Mohan separated by white space. Since there is only one
input operator (>>) followed by a variable, the first data (i.e., Maya) is stored. The
white space after "Maya" is treated as the delimiter.

So, the problem is that we are unable to input strings containing white spaces. C++
language gives a solution to this problem by a function, named gets(). The function
gets() is a console input function used to accept a string of characters including
white spaces from the standard input device (keyboard) and store it in a character
array.

The string variable (character array name) should be provided to this function as
shown below:

gets(character_array_name);

When we use this function, we have to include the library file stdio.h in the
program. Let us modify Program 9.1, by including the statement
#include<cstdio>, and replacing the statement cin>>my_name; by
gets(my_name);. After executing the modified program, the output will be as follows:

Enter your name: Maya Mohan

Hello Maya Mohan

9. String Handling and I/O Functions

263

Header file for

using gets()

function

Condition will be true as

long as the null character is

not retrieved

Each character in the array will

be compared with the constants

for matching

The output shows the entire string that we input. See the difference between gets()
and cin.

Though we are not using the concept of subscripted variable for the input and
output of strings, any element in the array can be accessed by specifying its subscript
along with the array name. We can access the first character of the string by
my_name[0], fifth character by my_name[4] and so on. We can even access the
null character ('\0') by its subscript. The following program illustrates this idea.

Program 9.2: To input a string and count the vowels in a string

#include <iostream>

#include <cstdio>

using namespace std;

int main()

{

 char str[20];

 int vow=0;

 cout<<"Enter a string: ";

 gets(str);

 for(int i=0; str[i]!='\0'; i++)

switch(str[i])

 {

case 'a':

case 'e':

case 'i':

case 'o':

case 'u': vow++;

}

 cout<<"No. of vowels in the string "<<str<<" is "<<vow;

 return 0;

}

If we run Program 9.2 by inputting the string “hello guys”, the following output
can be seen:

Enter a string: hello guys

No. of vowels in the string hello guys is 3

Now, let us analyse the program and see how it works to give this output.

l In the beginning, the gets() function is used and so we can input the string
"hello guys".

l The body of the for loop will be executed as long as the element in the array,
referenced by the subscript i, is not the null character ('\0'). That is, the
body of the loop will be executed till the null character is referenced.

264

l The body of the loop contains only a switch statement. Note that, no statements

are given against the first four cases of the switch. In the last case, the variable

vow is incremented by 1. You may think that this is required for all the cases.

Yes, you are right. But you should use the break statement for each case to

exit the switch after a match. In this program the action for all the cases are

the same and that is why we use this style of code.

l While the for loop iterates, the characters will be retrieved one by one for

matching against the constants attached to the cases. Whenever a match is found,

the variable vow is incremented by 1.

l As per the input string, matches occur when the value of i becomes 1, 4 and 7.

Thus, the variable vow is incremented by 1 three times and we get the correct

output.

We have seen how gets() function facilitates input of strings. Just like the other

side of a coin, C++ gives a console function named puts() to output string data.

The function puts() is a console output function used to display a string data on

the standard output device (monitor). Its syntax is:

puts(string_data);

The string constant or variable (character array name) to be displayed should be
provided to this function. Observe the following C++ code fragment:

char str[10] = "friends";

puts("hello");

puts(str);

The output of the above code will be as follows:

hello

friends

Note that the string "friends" in the character array str[10] is displayed in a

new line. Try this code using cout<<“hello”; and cout<<str; instead of the

puts() functions and see the difference. The output will be in the same line without

a space in between them in the case of cout statement.

Predict the output, if the input is “HELLO GUYS” in Program 9.2.

Execute the program with this input and check whether you get

correct output. Find out the reason for difference in output. Modify

the program to get the correct output for any given string.Let us do

9. String Handling and I/O Functions

265

9.4 Console functions for character I/O

We have discussed functions for input/output operations on strings. C++ also
provides some functions for performing input/ouput operations on characters.
These functions require the inclusion of header file cstdio (stdio.h in Turbo
C++ IDE) in the program.

getchar()

This function returns the character that is input through the keyboard. The character
can be stored in a variable as shown in the example given below:

char ch = getchar();

We have seen puts() function and its advantage in string output. Let us have a
look at a function used to output character data.

putchar()

This function displays the character given as the argument on the standard output
unit (monitor). The argument may be a character constant or a variable. If an integer
value is given as the argument, it will be considered as an ASCII value and the
corresponding character will be displayed. The following code segment illustrates
the use of putchar() function.

char ch = 'B'; //assigns 'B' to the variable ch

putchar(ch); //displays 'B' on the screen

putchar('c'); //displays 'c' on the screen

putchar(97); //displays 'a' on the screen

Program 9.3 illustrates the working of these functions. This program allows inputting
a string and a character to be searched. It displays the number of occurrences of a
character in the string.

Program 9.3: To search for a character in a string using console functions

#include <iostream>

#include <cstdio>

using namespace std;

int main()

{

char str[20], ch;

int i, num=0;

puts("Enter a string:"); //To print '\n' after the string

gets(str);//To accept a string with white spaces

266

1. Which character is used to delimit the string in memory?

2. Write the statement to declare a variable for storing "Save Earth".

3. Name the header file required for using console I/O functions.

4. How many bytes are required to store the string "Be Positive"?

5. How does puts("hello"); differ from cout<<"hello";?

Check yourself

cout<<"Enter the character to be searched: ";

ch=getchar(); //To input the character to be searched

/* A loop to search for the character and count its

occurrences in the string. Search will be

terminated when a null character is found */

for(i=0; str[i]!='\0'; i++)

if (str[i]==ch)

num++;

cout<<"The string \'"<<str<<"\' uses the character \'";

putchar(ch);

cout<<"\' ")<<num<<" times";

return 0;

}

Program 9.3 uses all the console functions we have discussed. The following is a
sample output of this program:

Enter a string:

I have a Dream

Enter the character to be searched: a

The string 'I have a Dream' uses the character 'a' 3 times

9.5 Stream functions for I/O operations

C++ provides another facility to perform input/output operations on character
and strings. It is in the form of functions that are available in the header file iostream.
These functions are generally called stream functions since they allow a stream of
bytes (data) to flow between memory and objects. Devices like the keyboard and
the monitor are referenced as objects in C++. Let us discuss some of these functions.

A. Input functions

These functions allow the input of character and string data. The input functions
such as get() and getline() allow a stream of bytes to flow from input object
into the memory. The object cin is used to refer to keyboard and hence whenever

9. String Handling and I/O Functions

267

we input data using keyboard, these functions are called or invoked using this object
as cin.get() and cin.getline(). Note that a period symbol (.), called dot
operator is used between the object cin and the function.

i. get()

It can accept a single character or multiple characters (string) through the keyboard.
To accept a string, an array name and size are to be given as arguments. Following
code segment illustrates the usage of this function.

char ch, str[10];

ch=cin.get(ch); //accepts a character and stores in ch
cin.get(ch); //equivalent to the above statement

cin.get(str,10); //accepts a string of maximum 10 characters

ii. getline()

It accepts a string through the keyboard. The delimiter will be Enter key, the number
of characters or a specified character. This function uses two syntaxes as shown in
the code segment given below.

char ch, str[10];

int len;

cin.getline(str,len); // With 2 arguments

cin.getline(str,len,ch); // With 3 arguments

In the first usage, getline() function has two arguments - a character array (here
it is, str) and an integer (len) that represents maximum number of characters that
can be stored. In the second usage, a delimiting character (content of ch) can also
be given along with the number of characters. While inputting the string, only
(len–1) characters, or characters upto the specified delimiting character, whichever
occurs first will be stored in the array.

B. Output functions

Output functions like put() and write() allow a stream of bytes to flow from
memory into an output object. The object cout is used with these functions since
we use the monitor for the output.

i. put()

It is used to display a character constant or the content of a character variable given
as argument.

char ch='c';

cout.put(ch); //character 'c' is displayed

cout.put('B'); //character 'B' is printed

cout.put(65); //character 'A' is printed

268

ii. write()

This function displays the string contained in the argument. For illustration see the
example given below.

char str[10]="hello";

cout.write(str,10);

The above code segment will dispaly the string hello followed by 5 white spaces,
since the second argument is 10 and the number of characters in the string is 5.

Program 9.4: To illustrate the working of stream input/output functions

#include <iostream>

#include <cstring> //To use strlen() function

using namespace std;

int main()

{

char ch, str[20];

cout<<"Enter a character: ";

cin.get(ch); //To input a character to the variable ch

cout<<"Enter a string: ";

cin.getline(str,10,'.'); //To input the string

cout<<"Entered character is:\t";

cout.put(ch); //To display the character

cout.write("\nEntered string is:",20);

cout.write(str,strlen(str));

return 0;

}

On executing Program 9.4, the following output will be obtained:

Enter a character: p

Enter a string: hello world

Entered character is: p

Entered string is:

hello wo

Let us discuss what happens when the program is executed. In the beginning, get()
function allows to input a character, say p. When the function getline() is
executed, we can input a string, say hello world. The put() function is then
executed to display the character p. Observe that the write() function displays
only hello wo in a new line. In the getline() function, we specified the integer
10 as the maximum number of characters to be stored in the array str. Usually 9
characters will be stored, since one byte is reserved for '\0' character as the string

9. String Handling and I/O Functions

269

terminator. But the output shows only 8 characters including white space. This is
because, the Enter key followed by the character input (p) for the get() function,
is stored as the '\n' character in the first location of str. That is why, the string,
hello wo is displayed in a new line.

If we run the program, by giving the input hello.world, the output will be as
follows: Observe the change in the content of str.

Enter a character: a

Enter a string: hello.world

Entered character is: a

Entered string is:

hello

The change has occurred because the getline() function accepts only the
characters that appear before the dot symbol.

Be careful while using these functions, because pressing of any

key does matter a lot in the input operation. So you may not get

the outputs as you desire. Another point you have to notice is

that, strlen() function is used in the write() function. Instead

of using this function, you can provide a number like 10 or 20. But the output

will be the string you input, followed by some ASCII characters, if the

number of characters is less than the given number. When you use strlen(),

you are actually specifying the exact number of characters in the string.

More about this function will be discussed in chapter 10. You can use this

function only if you include cstring file.

Let us do

Comparison Aspect Console Functions Stream Functions

Header file required

Usage format

Device reference

Examples

..............................

Mention the function name
with required data or variable
within parentheses

Use object name followed by
dot operator and function name
with required data or variable.

Keyboard or monitor is not
mentioned

..............................

..............................

The following table compares the stream functions. But it is not

complete. Fill up the table and check whether your entries are correct

by comparing with that of your friends.

Note the dot
character (.)

270

1. Write a program to input a string and find the number of uppercase letters,

lowercase letters, digits, special characters and white spaces.

2. Write a program to count the number of words in a sentence.

3. Write a program to input a string and replace all lowercase vowels by the

corresponding uppercase letters.

4. Write a program to input a string and display its reversed string using console

I/O functions only. For example, if the input is "AND", the output should be

"DNA".

Lab activity

After the completion of this chapter the learner will be able to

l use character arrays for string handling.

l use various built-in functions for I/O operations on character and string data.

l compare console functions and stream functions.

Array of characters is used to handle strings in C++ programs. While
allocating memory for string, a null character ('\0') is placed as the delimiter.
Different console functions are available to perform input/output operations
on strings. These functions are available in the header file cstdio. The header
file iostream provides some stream function for the input and output of
strings.

Let us sum up

Learning outcomes

1. Name the stream function to input a character data.

2. Write a C++ statement to display the string "Smoking is injurious to

health" using write() function.

3. Name the header file required for using stream I/O functions.

4. Write down the syntax of getline() function.

Check yourself

9. String Handling and I/O Functions

271

123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678

Sample questions

Very short answer type

1. What will the output of the statement: putchar(97); be?

2. Distinguish between console functions and stream functions.

3. Write a C++ statement to input the string “Computer” using get() function.

4. Write down the output of the following code segment:

puts(“hello”);

puts(“friends”);

Short answer type

1. Predict the output of the following code segment:

char str[] = “Program”;

for (int i=0; str[i] != ‘\0’; ++i)

{

putchar(str[i]);

putchar(‘–’);

}

5. Write a program to input a word (say COMPUTER) and create a triangle as
follows:

C
C O
C O M
C O M P
C O M P U
C O M P U T
C O M P U T E
C O M P U T E R

6. Write a program to input a line of text and display the first characters of each
word. Use only console I/O functions. For example, if the input is "Save Water,
Save Nature", the output should be "SWSN"

7. Write a program to check whether a string is palindrome or not. (A string is
said to be plaindrome if it is the same as the string constituted by reversing the
characters of the original string. eg. "MALAYALAM")

272

2. Identify the errors in the following program and give reason for each.

#include<iostream>

using namespace std;

int main()

{

char ch, str[10];

write(“Enter a character”);

ch=getchar();

puts(“Enter a string”);

cin.getline(str);

cout<< “The data entered are “ <<ch;

putchar(str);

}

3. Observe the following functions. If the statement is valid, explain what happens
when they are executed. If invalid, state reasons for it. (Assume that the variables

are valid)

(a) getchar(ch); (b) gets(str[5]);

(c) putchar(“hello”); (d) cin.getline(name, 20, ‘,’);

 (e) cout.write(“hello world”, 10);

4. Read the following statements:

char name[20];

cin>>name;

cout<<name;

What will be the output if you input the string “Sachin Tendulkar”? Justify
your answer. Modify the code to get the entered string as the output.

Long answer type

1. Explain the console I/O functions with examples.

2. Briefly describe the stream I/O functions with examples.

• Concept of modular

programming

• Functions in C++

• Predefined functions

o String functions

o Mathematical functions

o Character functions

o Conversion functions

o I/O manipulating

functions

• User-defined functions

o Creating user-defined

functions

o Prototype of functions

o Arguments of functions

o Functions with default

arguments

o Methods of calling

functions

• Scope and life of variables

and functions

• Recursive functions

• Creation of header Files

Key Concepts We discussed some simple programs in the
previous chapters. But to solve complex
problems, larger programs running into
thousands of lines of code are required. As
discussed in Chapter 4, complex problems are
divided into smaller ones and programs to solve
each of these sub problems are written. In other
words, we break the larger programs into
smaller sub programs. In C++, function is a way
to divide large programs into smaller sub
programs. We have already seen functions like
main(), sqrt(), gets(), getchar(), etc.
The functions, except main(), are assigned
specific tasks and readily available for use. So,
these functions are known as built-in functions
or predefined functions. Besides such functions,
we can define functions for a specific task. These
are called user-defined functions. In this chapter
we will discuss more predefined functions and
learn how to define our own functions. Before
going into these, let us familiarise ourselves with
a style of programming called modular
programming.

10.1 Concept of modular
programming

Let us consider the case of a school management
software. It is a very large and complex software
which may contain many programs for different
tasks. The complex task of school management
can be divided into smaller tasks or modules
and developed in parallel, and later integrated
to build the complete software as shown in
Figure 10.1.

10

274

In programming, the entire problem will be divided into small sub problems that
can be solved by writing separate programs. This kind of approach is known as
modular programming. Each sub task will be considered a module and we write
programs for each module. The process of breaking large programs into smaller
sub programs is called modularisation. Computer programming languages have
different methods to implement modularization. The sub programs are generally
called functions. C++ also facilitates modular programming with functions.

Merits of modular programming

The modular style of programming has several advantages. It reduces the complexity
and size of the program, makes the program more readable, improves re-usability
and makes the debugging process easy. Let us discuss these features in detail:

Reduces the size of the program: In some cases, certain instructions in a program
may be repeated at different points of the program. Consider the expression

yx

yx

+

+
75

. To evaluate this expression for the given values of x and y, we have to

use instructions for the following:

1. find the 5th power of x

2. find the 7th power of y

3. add the results obtained in steps 1 and 2

4. find the square root of x

5. find the square root of y

6. add the results obtained in steps 4 and 5

7. divide the result obtained in step 3 by that in step 6

We know that separate loops are needed to find the results of step 1 and 2. Can you
imagine the complexity of the logic to find the square root of a number? It is clear
that the program requires the same instructions to process different data at different

Fig. 10.1: Modular programming style

10. Functions

275

points. The modular approach helps to isolate the repeating task and write
instructions for this. We can assign a name to this set of instructions and this can be
invoked by using that name. Thus program size is reduced.

Less chances of error: When the size of the program is reduced, naturally syntax
errors will be less in number. The chances of logical error will also be minimized.
While solving complex problems we have to consider all the aspects of the problem,
and hence the logic of the solution will also be complex. But in a modularized
program, we need to concentrate only on one module at a time. If any error is
identified in the output, we can identify the module concerned and rectify the error
in that module only.

Reduces programming complexity: The net result of the two advantages
discovered above is reducing programming complexity. If we properly divide the
problem into smaller conceptual units, the development of logic for the solution
will be simpler. Thus modularization reduces the programming complexity by
bringing down our mind to a simplified task at a time, reducing the program size
and making the debugging process easy.

Improves reusability: A function written once may be used later in many other
programs, instead of starting from scratch. This reduces the time taken for program
development.

Demerits of modular programming

Though there are significant merits in modular programming, proper breaking down
of the problem is a challenging task. Each sub problem must be independent of
the others. Utmost care should be taken while setting the hierarchy of the execution

of the modules.

10.2 Functions in C++

Let us consider the case of a coffee making machine and
discuss its functioning based on Figure 10.2. Water, milk,
sugar and coffee powder are supplied to the machine. The
machine processes it according to a set of predefined
instructions stored in it and returns the coffee which is
collected in a cup. The instruction-set may be as follows:

1. Get 60 ml milk, 120 ml water, 5 gm coffee powder and
20 gm sugar from the storage of the machine.

2. Boil the mixture

3. Pass it to the outlet.

Fig. 10.2 : Functioning of
a coffee making machine

276

Usually there will be a button in the machine to invoke this procedure. Let us name
the button with the word “MakeCoffee”. Symbolically we can represent the
invocation as:

Cup = MakeCoffee (Water, Milk, Sugar, Coffee Powder)

We can compare all these aspects with functions in programs. The word
“MakeCoffee” is the name of the function, “Water”, “milk”, “sugar” and “coffee
powder” are parameters for the function and “coffee” is the result returned. It is
stored in a “Cup”. Instead of cup, we can use a glass, tumbler or any other container.

Similarly, a C++ function accepts parameters, processes it and
returns the result. Figure 10.3 can be viewed as a function Add

that accepts 3, 5, 2 and 6 as parameters, adds them and returns
the value which is stored in the variable C. It can be written as:

C = Add (3, 5, 2, 6)

We can say that function is a named unit of statements in a
program to perform a specific task as part of the solution. It is
not necessary that all the functions require some parameters and
all of them return some value. C++ provides a rich collection
of functions ready to use for various tasks. The functions clrscr(), getch(),
sqrt(), etc. are some of them. The tasks to be performed by each of these are
already written, debugged and compiled, their definitions alone are grouped and
stored in files called header files. Such ready-to-use sub programs are called
predefined functions or built-in functions.

While writing large programs, the predefined functions may not suffice to apply
modularization. C++ provides the facility to create our own functions for some
specific tasks. Everything related to a function such as the task to be carried out, the
name and data required are decided by the user and hence they are known as user-

defined functions.

What is the role of main() function then? It may be considered as user-defined in
the sense that the task will be defined by the user. We have learnt that it is an essential
function in a C++ program because the execution of a program begins in main().
Without main(), C++ program will not run. All other functions will be executed

when they are called or invoked (or used) in a statement.

10.3 Predefined functions

C++ provides a number of functions for various tasks. We will discuss only the
most commonly used functions. While using these functions, some of them require
data for performing the task assigned to it. We call them parameters or arguments

Fig. 10.3. Addition
function

C

10. Functions

277

and are provided within the pair of parentheses of the function name. There are
certain functions which give results after performing the task. This result is known
as value returned by the function. Some functions do not return any value, rather
they perform the specified task. In the following sections, we discuss functions for
manipulating strings, performing mathematical operations and processing character
data. While using these functions the concerned header files are to be included in
the program.

10.3.1 String Functions

Several string functions are available in C++ for the manipulation of strings. As
discussed in Chapter 9, C++ does not have a string data type and hence an array of
characters is used to handle strings. So, in the following discussion, wherever the
word string comes, assume that it is a character array. Following are the commonly
used string functions. We should include the header file cstring (string.h in
Turbo C++) in our C++ program to use these functions.

a. strlen()

This function is used to find the length of a string. Length of a string means the
number of characters in the string. Its syntax is:

int strlen(string);

This function takes a string as the argument and gives the length of the string as the
result. The following code segment illustrates this.

char str[] = "Welcome";

int n;

n = strlen(str);

cout << n;

Here, the argument for the strlen() function is a string variable and it returns the
number of characters in the string, i.e. 7 to the variable n. Hence the program code
will display 7 as the value of the variable n. The output will be the same even
though the array declaration is as follows.

char str[10] = "Welcome";

Note that the array size is specified in the declaration. The argument may be a string
constant as shown below:

n = strlen("Computer");

The above statement returns 8 and it will be stored in n.

b. strcpy()

This function is used to copy one string into another. The syntax of the function is:

strcpy(string1, string2);

278

The function will copy string2 to string1. Here string1 and string2 are

array of characters or string constants. These are the arguments for the execution
of the function. The following code illustrates its working:

char s1[10], s2[10] = "Welcome";

strcpy(s1,s2);

cout << s1;

The string "Welcome" contained in the string variable s1 will be displayed on
the screen. The second argument may be a string constant as follows:

strcpy(str,"Welcome");

Here, the string constant "Welcome" will be stored in the variable str. The

assignment statement, str = "Welcome"; is wrong. But we can directly assign

value to a character array at the time of declaration as:

char str[10] = "Welcome";

c. strcat()

This function is used to append one string to another string. The length of the
resultant string is the total length of the two strings. The syntax of the functions is:

strcat(string1, string2);

Here string1 and string2 are array of characters or string constants. string2

is appended to string1. So, the size of the first argument should be able to
accommodate both the strings together. Let us see an example showing the usage
of this function:

char s1[20] = "Welcome", s2[10] = " to C++";

strcat(s1,s2);

cout << s1;

The above program code will display "Welcome to C++" as the value of the
variable s1. Note that the string in s2 begins with a white space.

d. strcmp()

This function is used to compare two strings. In this comparison, the alphabetical
order of characters in the strings is considered. The syntax of the function is:

strcmp(string1, string2)

The function returns any of the following values in three different situations.

• Returns 0 if string1 and string2 are same.

• Returns a –ve value if string1 is alphabetically lower than string2.

• Returns a +ve value if string1 is alphabetically higher than string2.

10. Functions

279

Header file essential

for using string

manipulating functions

The following code fragment shows the working of this function.

char s1[]="Deepthi", s2[]="Divya";

int n;

n = strcmp(s1,s2);

if(n==0)

cout<<"Both the strings are same";

else if(n < 0)

cout<<"s1 < s2";

else

cout<<"s1 > s2";

It is clear that the above program code will display "s1 < s2" as the output.

e. strcmpi()

This function is used to compare two strings ignoring cases. That is, the function
will treat both the upper case and lower case letters as the same for comparison.
The syntax and working of the function are the same as that of strcmp() except
that strcmpi() is not case sensitive. This function also returns values as in the
case of strcmp(). Consider the following code segment:

char s1[]="SANIL", s2[]="sanil";

int n;

n = strcmpi(s1,s2);

if(n==0)

cout<<"strings are same";

else if(n < 0)

cout<<"s1 < s2";

else

cout<<"s1 > s2";

The above program code will display "strings are same" as the output because
the uppercase and lowercase letters will be treated as the same during the comparison.

Program 10.1 compares and concatenates two strings. The length of the newly
formed string is also displayed.

Program 10.1: To combine two strings if they are different and find its length

#include <iostream>

#include <cstring>

using namespace std;

int main()

{

char s1[20], s2[20], s3[20];

cout<<"Enter two strings: ";

280

cin>>s1>>s2;

int n=strcmp(s1, s2);

if (n==0)

cout<<"\nThe input strings are same";

else

{

cout<<"\nThe input strings are not same";

strcpy(s3, s1);//Copies the string in s1 into s3

strcat(s3, s2); //Appends the string in s2 to that in s3

cout<<"\nString after concatenation is: "<<s3;

cout<<"\nLength of the new string is: "<<strlen(s3);

}

return 0;

}

10.3.2 Mathematical functions

Now, let us discuss the commonly used mathematical functions available in C++.
We should include the header file cmath (math.h in Turbo C++) to use these
functions in the program.

a. abs()

It is used to find the absolute value of an integer. It takes an integer as the argument

(+ve or –ve) and returns the absolute value. Its syntax is:

int abs(int)

The following is an example to show the output of this function:

int n = -25;

cout << abs(n);

The above program code will display 25. If we want to find the absolute value of a

floating point number, we can use fabs() function as used above. It will return the

floating point value.

b. sqrt()

It is used to find the square root of a number. The argument to this function can be

of type int, float or double. The function returns the non-negative square

root of the argument. Its syntax is:

double sqrt(double)

The following code snippet is an example. This code will display 5.

int n = 25;

float b = sqrt(n);

cout << b;

10. Functions

281

c. pow()

This function is used to find the power of a number. It takes two arguments x and
y. The argument x and y are of type int, float or double. The function
returns the value of xy. Its syntax is:

double pow(double, int)

The following example shows the working of this function.

int x = 5, y = 4, z;

z = pow(x, y);

cout << z;

The above program code will display 625.

d. sin()

It is a trigonometric function and it finds the sine value of an angle. The argument
to this function is double type data and it returns the sine value of the argument.
The angle must be given in radian measure. Its syntax is:

double sin(double)

The sine value of ∠30° (angle 30 degree) can be found out by the following code.

float x = 30*3.14/180; //To convert angle into radians

cout << sin(x);

The above program code will display 0.4999770

e. cos()

The function is used to find the cosine value of an angle. The argument to this
function is double type data and it returns the cosine value of the argument. In
this case also, the angle must be given in radian measure. The syntax is:

double cos(double)

The cosine value of ∠30° (angle 30 degree) can be found out by the following code.

double x = cos(30*3.14/180);

cout << x;

Note that the argument provided is an expression that converts angle in degree
into radians. The above code will display 0.866158.

Program 10.2 uses different mathematical functions to find the length of the sides

of a right angled triangle, if an angle and length of one side is given. We use the

following formula for solving this problem.

Sin θ = , Cos θ = , Tan θ =

(Hypotenuse)2 = (Base)2 + (Altitude)2

Opposite side

Hypotenuse

Adjacent side

Hypotenuse

Opposite side

Adjacent side

282

Program 10.2: To find the length of the sides of a right angled triangle

using mathematical functions

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

const float pi=22.0/7;

int angle, side;

float radians, length, opp_side, adj_side, hyp;

cout<<"Enter the angle in degree: ";

cin>>angle;

radians=angle*pi/180;

cout <<"\n1. Opposite Side"

 <<"\n2. Adjacent Side"

 <<"\n3. Hypotenuse";

cout <<"\nInput 1, 2 or 3 to specify the side: ";

cin>>side;

cout<<"Enter the length: ";

cin>>length;

switch(side)

{

case 1: opp_side=length;

adj_side=opp_side / tan(radians);

hyp= sqrt(pow(opp_side,2) + pow(adj_side,2));

break;

case 2: adj_side=length;

hyp=adj_side / cos(radians);

opp_side=sqrt(pow(hyp,2) - pow(adj_side,2));

break;

case 3: hyp=length;

opp_side=hyp * sin(radians);

adj_side=sqrt(pow(hyp,2) - pow(opp_side,2));

}

cout<<"Angle in degree = "<<angle;

cout<<"\nOpposite Side = "<<opp_side;

cout<<"\nAdjacent Side = "<<adj_side;

cout<<"\nHypotenuse = "<<hyp;

return 0;

}

Conversion

of angle in degree

into radians

Header file essential

for using mathematical

functions

10. Functions

283

The following is a sample output of the above program:

Enter the angle in degree: 30

1. Opposite Side

2. Adjacent Side

3. Hypotenuse

Input 1, 2 or 3 to specify the side: 1

Enter the length: 6

Angle in degree = 30

Opposite Side = 6

Adjacent Side = 10.38725

Hypotenuse = 11.995623

10.3.3 Character functions

These functions are used to perform various operations of characters. The following

are the various character functions available in C++. The header file cctype

(ctype.h for Turbo C++) is to be included to use these functions in a program.

a. isupper()

This function is used to check whether a character is in the upper case or not. The

syntax of the function is:

int isupper(char c)

The function returns 1 if the given character is in the uppercase, and 0 otherwise.

The following statement assigns 0 to the variable n.

int n = isupper('x');

Consider the following statements:

char c = 'A';

int n = isupper(c);

The value of the variable n, after the execution of the above statements will be 1,

since the given character is in upper case.

b. islower()

This function is used to check whether a character is in the lower case or not. The

syntax of the function is:

int islower(char c)

The function returns 1 if the given character is in the lower case, and 0 otherwise.

284

After executing the following statements, the value of the variable n will be 1 since
the given character is in the lower case.

char ch = 'x';

int n = islower(ch);

But the statement given below assigns 0 to the variable n, since the given character
is in the uppercase.

int n = islower('A');

c. isalpha()

This function is used to check whether the given character is an alphabet or not.
The syntax of the function is:

int isalpha(char c)

The function returns 1 if the given character is an alphabet, and 0 otherwise.

The following statement assigns 0 to the variable n, since the given character is not
an alphabet.

int n = isalpha('3');

But the statement given below displays 1, since the given character is an alphabet.

cout << isalpha('a');

d. isdigit()

This function is used to check whether the given character is a digit or not. The
syntax of the function is:

int isdigit(char c)

The function returns 1 if the given character is a digit, and 0 otherwise.

After executing the following statement, the value of the variable n will be 1 since
the given character is a digit.

n = isdigit('3');

When the following statements are executed, the value of the variable n will be 0,
since the given character is not a digit.

char c = 'b';

int n = isdigit(c);

e. isalnum()

This function is used to check whether a character is an alphanumeric or not. The
syntax of the function is:

int isalnum (char c)

10. Functions

285

The function returns 1 if the given character is an alphanumeric, and 0 otherwise.

Each of the following statements returns 1 after the execution.

n = isalnum('3');

cout << isalnum('A');

But the statements given below assigns 0 to the variable n, since the given character
is neither an alphabet nor a digit.

char c = '-';

int n = isalnum(c);

f. toupper()

This function is used to convert the given character into its uppercase. The syntax
of the function is:

char toupper(char c)

The function returns the upper case of the given character. If the given character is
in the upper case, the output will be the same.

The following statement assigns the character constant 'A' to the variable c.

char c = toupper('a');

But the output of the statement given below will be 'A' itself.

cout << (char)toupper('A');

Note that type conversion using (char) is used in this statement. If conversion
method is not used, the output will be 65, which is the ASCII code of 'A'.

g. tolower()

This function is used to convert the given character into its lower case. The syntax
of the function is:

char tolower(char c)

The function returns the lower case of the given character. If the given character is
in the lowercase, the output will be the same.

Consider the statement: c = tolower('A');

After executing the above statement, the value of the variable c will be 'a'. But
when the following statements are executed, the value of the variable c will be 'a'.

char x = ‘a’;

char c = tolower(x) ;

In the case of functions tolower() and toupper(), if the argument is other

than an alphabet, the given character itself will be returned on execution.

286

Program 10.3 illustrates the use of character functions. This program accepts a line
of text and counts the lowercase letters, uppercase letters and digits in the string. It
also displays the entire string both in the upper and lower cases.

Program 10.3: To count different types of characters in the given string

#include <iostream>

#include <cstdio>

#include <cctype>

using namespace std;

int main()

{

char text[80];

int Ucase=0, Lcase=0, Digit=0, i;

cout << "Enter a line of text: ";

gets(text);

for(i=0; text[i]!='\0'; i++)

if (isupper(text[i])) Ucase++;

else if (islower(text[i])) Lcase++;

else if (isdigit(text[i])) Digit++;

cout << "\nNo. of uppercase letters = " << Ucase;

cout << "\nNo. of lowercase letters = " << Lcase;

cout << "\nNo. of digits = " << Digit;

cout << "\nThe string in uppercase form is\n";

i=0;

while (text[i]!='\0')

{

putchar(toupper(text[i]));

i++;

}

cout << "\nThe string in lowercase form is\n";

i=0;

do

{

putchar(tolower(text[i]));

i++;

} while(text[i]!='\0');

return 0;

}

Loop will be

terminated when the

value of i points to the

null character is

reached

If cout<< is used

 instead of putchar(),

the ASCII code of the

characters will be

displayed

10. Functions

287

A sample output is given below:

Enter a line of text : The vehicle ID is KL01 AB101

No. of uppercase letters = 7

No. of lowercase letters = 11

No. of digits = 5

The string in uppercase form is

THE VEHICLE ID IS KL01 AB101

The string in lowercase form is

the vehicle id is kl01 ab101

10.3.4 Conversion functions

These functions are used to convert a string to integer and an integer to string.
Following are the different conversion functions available in C++. The header file
cstdlib (stdlib.h in Turbo C++) is to be included to use these functions in a program.

a. itoa()

This function is used to convert an integer value to string type. The syntax of the
function is:

itoa(int n, char c[], int len)

From the syntax, we can see that the function requires three arguments. The first
one is the number to be converted. The second argument is the character array
where the converted string value is to be stored and the last argument is the size of
the character array. The following code segment illustrates this function:

int n = 2345;

char c[10];

itoa(n, c, 10);

cout << c;

The above program code will display "2345" on the screen.

b. atoi()

This function is used to convert a string value to integer. The syntax of the function
is:

int atoi(char c[]);

The function takes a string as argument returns the integer value of the string. The
following code converts the string "2345" into integer number 2345.

int n;

char c[10] = "2345";

n = atoi(c);

cout << n;

The input by

the user

288

If the string consists of characters other than digits, the output will be 0. But if the
string begins with digits, only that part will be converted into integer. Some usages
of this function and their outputs are given below:

(i) atoi("Computer") returns 0

(ii) atoi("12.56") returns 12

(iii) atoi("a2b") returns 0

(iv) atoi("2ab") returns 2

(v) atoi(".25") returns 0

(vi) atoi("5+3") returns 5

Program 10.4 illustrates the use of these functions in problem solving. It accepts
the three parts (day, month and year) of a date of birth and displays it in date
format.

 Program 10.4: To display date of birth in date format

#include <iostream>

#include <cstring>

#include <cstdlib>

using namespace std;

int main()

{

char dd[10], mm[10], yy[10], dob[30];

int d, m, y;

cout<<"Enter day, month and year in your Date of Birth: ";

cin>>d>>m>>y;

itoa(d, dd, 10);

itoa(m, mm, 10);

itoa(y, yy, 10);

strcpy(dob, dd);

strcat(dob, "-");

strcat(dob, mm);

strcat(dob, "-");

strcat(dob, yy);

cout<<"Your Date of Birth is "<<dob;

return 0;

}

A sample output of Program10.4 is given below:

Enter day, month and year in your Date of Birth: 26 11 1999

Your Date of Birth is 26-11-1999

10. Functions

289

10.3.5 I/O Manipulating function

These functions are used to manipulate the input and output operations in C++.
The header file ciomanip is to be included to use these functions in a program.

setw()

This function is used to set the width for the subsequent string. The following code
shows its impact in the output:

char s[]="hello";

cout<<setw(10)<<s<<setw(10)<<"friends";

The output of the above code will be as follows:

 hello friends

The word hello will be displayed right aligned within a span of 10 character
positions. Similarly, the word friends will also be displayed right aligned within
a span of 10 character positions.

Prepare a chart in the following format and fill up the columns with

all predefined functions we have discussed so far.

Function Usage Syntax Example Output
Let us do

1. What is modular programming?

2. What is a function in C++?

3. Name the header file required for using character functions.

4. Name the function that displays the subsequent data in the specified width.

5. Pick the odd one out and give reason:

(a) strlen() (b) itoa() (c) strcpy() (d) strcat()

Check yourself

10.4 User-defined functions

All the programs that we have discussed so far contain a function named main().
We know that the first line is a pre-processor directive statement. The remaining
part is actually the definition of a function. The void main() in the programs
is called function header (or function heading) of the function and the statements
within the pair of braces immediately after the header is called its body.

290

The syntax of a function definition is given below:

data_type function_name(argument_list)

{

statements in the body;

}

The data_type is any valid data type of C++. The function_name is a user-
defined word (identifier). The argument_list, which is optional, is a list of
parameters, i.e. a list of variables preceded by data types and separated by commas.
The body comprises C++ statements required to perform the task assigned to the
function. Once we have decided to create a function, we have to answer certain
questions.

(i) Which data type will be used in the function header?

(ii) How many arguments are required and what should be the preceding data
type of each?

Let us recollect how we have used the predefined functions getchar(), strcpy()
and sqrt(). We have seen that these functions will be executed when they are
called (or used) in a C++ statement. The function getchar() does not take any
argument. But for strcpy(), two strings are provided as arguments or parameters.
Without these arguments this function will not work, because it is defined with two
string (character array) arguments. In the case of sqrt(), it requires a numeric
data as argument and gives a result (of double type) after performing the predefined
operations on the given argument. This result, as mentioned earlier, is called the
return-value of the function. The data type of a function depends on this value. In
other words, we can say that the function should return a value which is of the same
data type of the function. So, the data type of a function is also known as the return
type of the function. Note that we use return 0; statement in main() function,
since it is defined with int data type as per the requirement of GCC.

The number and type of arguments depend upon the data required by the function
for processing. But some functions like setw() and gets() do not return any
value. The header of such functions uses void as the return type. A function either
returns one value or nothing at all.

10.4.1 Creating user-defined functions

Based on the syntax discussed above, let us create some functions. The following is
a function to display a message.

void saywelcome()

{

cout<<"Welcome to the world of functions";

}

10. Functions

291

The name of the function is saywelcome(), its data type (return type) is void
and it does not have any argument. The body contains only one statement.

Now, let us define a function to find the sum of two numbers. Four different types
of definitions are given for the same task, but they vary in definition style and hence
the usage of each is different from others.

Table 10.1 : Analysis of functions

Name Arguments Return value

sum1() No arguments Does not return any value

sum2() No arguments Returns an integer value

sum3() Two integer arguments Does not return any value

sum4() Two integer arguments Returns an integer value

Let us analyse these functions and see how they are different. The task is the same in
all these functions, but they differ in the number of parameters and return type.

Table 10.1 shows that the function defined with a data type other than void should
return a value in accordance with the data type. The return statement is used for
this purpose (Refer functions 2 and 4). The return statement returns a value to
the calling function and transfers the program control back to the calling function.
So, remember that if a return statement is executed in a function, the remaining
statements within that function will not be executed. In most of the functions,

void sum1()

{

int a, b, s;

cout<<"Enter 2 numbers: ";

cin>>a>>b;

s=a+b;

cout<<"Sum="<<s;

}

int sum2()

{

int a, b, s;

cout<<"Enter 2 numbers: ";

cin>>a>>b;

s=a+b;

return s;

}

Function 1 Function 2

void sum3(int a, int b)

{

int s;

s=a+b;

cout<<"Sum="<<s;

}

int sum4(int a, int b)

{

int s;

s=a+b;

return s;

}

Function 3 Function 4

292

return is placed at the end of the function. The functions defined with void data
type may have a return statement within the body, but we cannot provide any
value to it. The return type of main() function is either void or int.

Now, let us see how these functions are to be called and how they are executed. We
know that no function other than main()is executed automatically. The sub
functions, either predefined or user-defined, will be executed only when they are
called from main() function or other user-defined function. The code segments
within the rectangles of the following program shows the function calls. Here the
main() is the calling function and sum1(), sum2(), sum3(), and sum4()are the
called functions.

int main()

{

int x, y, z=5, result;

cout << "\nCalling the first function\n";

sum1();

cout << "\nCalling the second function\n";

result = sum2();

cout << "Sum given by function 2 is " << result;

cout << "\nEnter values for x and y : ";

cin >> x >> y;

cout << "\nCalling the third function\n";

sum3(x,y);

cout << "\nCalling the fourth function\n";

result = sum4(z,12);

cout << "Sum given by function 4 is " << result;

cout << "\nEnd of main function"

}

The output of the program is as follows:

Calling the first function

Enter 2 numbers: 10 25

Sum=35

Calling the second function

Enter 2 numbers: 5 7

Sum given by function 2 is 12

Enter values for x and y : 8 13

Calling the third function

Sum=21

Calling the fourth function

Sum given by function 4 is 17

End of main function

Input for a and b

of sum1()

Input for a and b

of sum2()

Input for x and y

of main()

10. Functions

293

Function before main() Function after main()

#include <iostream>

using namespace std;

int sumfact(int N)

{ int i, s = 0;

for(i=1; i<=N/2; i++)

 if (N%i == 0)

 s = s + i;

return s;

}

//Definition above main()

int main()

{

 int num;

cout<<"Enter the Number: ";

cin>>num;

if (num==sumfact(num))

 cout<<"Perfect number";

else

 cout<<"Not Perfect";

return 0;

}

#include <iostream>

using namespace std;

int main()

{

int num;

cout<<"Enter the Number: ";

cin>>num;

if (num==sumfact(num))

 cout<<"Perfect number";

else

 cout<<"Not Perfect";

return 0;

}

//Definition below main()

int sumfact(int N)

{ int i, s = 0;

for(i=1; i<=N/2; i++)

 if (N%i == 0)

 s = s + i;

return s;

}

Program 10.5 - Perfect number checking - Program 10.6

Function 4 requires two numbers for the task assigned and hence we provide two

arguments. The function performs some calculations and gives a result. As there is

only one result, it can be returned. Comparatively this function is a better option to

find the sum of any two numbers.

Now, let us write a complete C++ program to check whether a given number is

perfect or not. A number is said to be perfect if it is equal to the sum of its factors

other than the number itself. For example, 28 is a perfect number, because the

factors other than 28 are 1, 2, 4, 7 and 14. Sum of these factors is 28. For solving

this problem, let us define a function that accepts a number as argument and returns

the sum of its factors. Using this function, we will write the program. But where do

we write the user-defined function in a C++ program? The following table shows

two styles to place the user-defined function:

When we compile Program 10.5, there will be no error and we will get the following
output on execution:

 Enter the Number: 28
 Perfect number

294

If we compile Program 10.6, there will be an error 'sumfact was not declared

in this scope'. Let us see what this error means.

10.4.2 Prototype of functions

We have seen that a C++ program can contain any number of functions. But it

must have a main() function to begin the execution. We can write the definitions

of functions in any order as we wish. We can define the main() function first and

all other functions after that or vice versa. Program 10.5 contains the main()

function after the user-defined function, but in Program 10.6, the main() is defined

before the user-defined function. When we compile this program, it will give an

error - "sumfact was not declared in this scope". This is because the

function sumfact() is called in the program, before it is defined. During the

compilation of the main() function, when the compiler encounters the function

call sumfact(), it is not aware of such a function. Compiler is unable to check

whether there is such a function and whether its usage is correct or not. So it reports

an error arising out of the absence of the function prototype. A function prototype

is the declaration of a function by which compiler is provided with the information

about the function such as the name of the function, its return type, the number and

type of arguments, and its accessibility. This information is essential for the compiler

to verify the correctness of the function call in the program. This information is

available in the function header and hence the header alone will be written as a

statement before the function call. The following is the format:

data_type function_name(argument_list);

In the prototype, the argument names need not be specified.

So, the error in Program 10.6 can be rectified by inserting the following statement

before the function call in the main() function.

int sumfact(int);

Like a variable declaration, a function must be declared before it is used in the

program. If a function is defined before it is used in the program, there is no need

to declare the function separately. The declaration statement may be given outside

the main() function. The position of the prototype differs in the accessibility of

the function. We will discuss this later in this chapter. Wherever be the position of

the function definition, execution of the program begins in main().

10. Functions

295

10.4.3 Arguments of functions

We have seen that functions have arguments or parameters for getting data for

processing. Let us see the role of arguments in function call.

Consider the function given below:

float SimpleInterest(long P, int N, float R)

{

float amt;

amt = P * N * R / 100;

return amt;

}

This function gives the simple interest of a given principal amount for a given period

at a given rate of interest.

The following code segment illustrates different function calls:

cout << SimpleInterest(1000,3,2);//Function call 1

int x, y; float z=3.5, a;

cin >> x >> y;

a = SimpleInterest(x, y, z); //Function call 2

When the first statement is executed, the values 1000, 3 and 2 are passed to the

argument list in the function definition. The arguments P, N and R get the values

1000, 3 and 2 respectively. Similarly, when the last statement is executed, the values

of the variables x, y and z are passed to the arguments P, N and R.

The variables x, y and z are called actual (original) arguments or actual parameters

since they are the actual data passed to the function for processing. The variables

P, N and R used in the function header are known as formal arguments or formal

parameters. These arguments are intended to receive data from the calling function.

Arguments or parameters are the means to pass values from the calling function

to the called function. The variables used in the function definition as arguments are

known as formal arguments. The constants, variables or expressions used in the

function call are known as actual (original) arguments. If variables are used in

function prototype, they are known as dummy arguments.

Now, let us write a program that uses a function fact() that returns the factorial

of a given number to find the value of nCr. As we know, factorial of a number N is

the product of the first N natural numbers. The value of nCr is calculated by the

 formula where n! denotes the factorial of n.
n!

r!(n - r)!

296

Program 10.7: To find the value of nCr

#include<iostream>

using namespace std;

int fact(int);

int main()

{

int n,r;

int ncr;

cout<<"Enter the values of n and r : ";

cin>>n>>r;

ncr=fact(n)/(fact(r)*fact(n-r));

cout<<n<<"C"<<r<<" = "<<ncr;

return 0;

}

int fact(int N)

{

int f;

for(f=1; N>0; N--)

f=f*N;

return f;

}

The following is a sample output:
Enter the values of n and r : 5 2

5C2 = 10

10.4.4 Functions with default arguments

Let us consider a function TimeSec() with the argument list as follows. This function
accepts three numbers that represent time in hours, minutes and seconds. The
function converts this into seconds.

long TimeSec(int H, int M=0, int S=0)

{

long sec = H * 3600 + M * 60 + S;

return sec;

}

Note that the two arguments M and S are given default value 0. So, this function can
be invoked in the following ways.

long s1 = TimeSec(2,10,40);

long s2 = TimeSec(1,30);

long s3 = TimeSec(3);

Function call

according to the

formula

Actual

argumentsFormal

argument

Function

header

Function

prototype

Factorial

is returned

User inputs

10. Functions

297

It is important to note that all the default arguments must be placed from the right

to the left in the argument list. When a function is called, actual arguments are

passed to the formal arguments from left onwards.

When the first statement is executed, the function is called by passing the values 2,

10 and 40 to the formal parameters H, M and S respectively. The initial values of M

and S are over-written by the actual arguments. During the function call in the

second statement, H and M get values from actual arguments, but S works with its

default value 0. Similarly, when the third statement is executed, H gets the value

from calling function, but M and S use the default values. So, after the function calls,

the values of s1, s2 and s3 will be 7840, 5400 and 10800 respectively.

We have seen that functions can be defined with arguments assigned with initial

values. The initialized formal arguments are called default arguments which allow

the programmer to call a function with different number of arguments. That is, we

can call the function with or without giving values to the default arguments.

10.4.5 Methods of calling functions

Suppose your teacher asks you to prepare invitation letters for the parents of all

students in your class, requesting them to attend a function in your school. The

teacher can give you a blank format of the invitation letter and also a list containing

the names of all the parents. The teacher can give you the list of names in two ways.

She can take a photocopy of the list and give it to you. Otherwise, she can give the

original list itself. What difference would you feel in getting the name list in these

two ways? If the teacher gives the original name list, you will be careful not to mark

or write anything in the name list because the teacher may want the same name list

for future use. But if you are given a photocopy of the list, you can mark or write in

the list, because the change will not affect the original name list.

Let us consider the task of preparing the invitation letter as a function. The name

list is an argument for the function. The argument can be passed to the function in

two ways. One is to pass a copy of the name list and the other is to pass the original

name list. If the original name list is passed, the changes made in the name list, while

preparing the invitation letter, will affect the original name list. Similarly, in C++,

an argument can be passed to a function in two ways. Based on the method of

passing the arguments, the function calling methods can be classified as Call by

Value method and Call by Reference method. The following section describes the

methods of argument passing in detail.

298

a. Call by value (Pass by value) method

In this method, the value contained in the actual argument is passed to the formal
argument. In other words, a copy of the actual argument is passed to the function.
Hence, if the formal argument is modified within the function, the change is not
reflected in the actual argument at the calling place. In all previous functions, we
passed the argument by value only. See the following example:

void change(int n)

{

n = n + 1;

cout << "n = " << n << '\n';

}

int main()

{

int x = 20;

change(x);

cout << "x = " << x;

}

When we pass an argument as specified in the above program segement, only a
copy of the variable x is passed to the function. In other words, we can say that only
the value of the variable x is passed to the function. Thus the formal parameter n in
the function will get the value 20. When we increase the value of n, it will not affect
the value of the variable x. The following will be the output of the above code:

n = 21

x = 20

Table 10.2 shows what happens to the arguments when a function is called using
call-by-value method:

The parameter n has its

own memory location to

store the value 20 in

change().

The value of x is

passed to n in

change()

main() x

{

.......

.......

}

change(int n)

{

........

}

20

n

main() x

{

.......

.......

}

change(int n)

{

........

}

20

n

20

main() x

{

.......

.......

}

change(int n)

{

........

}

20

n

21

Before function call After function call After function execution

Table 10.2: Call by value procedure

10. Functions

299

b. Call by reference (Pass by reference) method

When an argument is passed by reference, the reference of the actual argument is
passed to the function. As a result, the memory location allocated to the actual
argument will be shared by the formal argument. So, if the formal argument is
modified within the function, the change will be reflected in the actual argument at
the calling place. In C++, to pass an argument by reference we use reference variable
as formal parameter. A reference variable is an alias name of another variable.
An ampersand symbol (&) is placed in between the data type and the variable in
the function header. Reference variables will not be allocated memory exclusively
like the other variables. Instead, it will share the memory allocated to the actual
arguments. The following function uses reference variable as formal parameter and
hence call by reference method is implemented for function call.

void change(int & n)

{

n = n + 1;

cout << "n = " << n << '\n';

}

int main()

{

int x=20;

change(x);

cout << "x = " << x;

}

Note that the only change in the change() function is in the function header. The

& symbol in the declaration of the parameter n means that the argument is a reference

variable and hence the function will be called by passing reference. Hence when the

argument x is passed to the change() function, the variable n gets the address of

x so that the location will be shared. In other words, the variables x and n refer to

the same memory location. We use the name x in the main() function, and the

name n in the change() function to refer the same storage location. So, when we

change the value of n, we are actually changing the value of x. If we run the above

program, we will get the following output:

n = 21

x = 21

Table 10.3 depicts the changes in the arguments when call-by-reference is applied
for the function call.

The parameter n is a

reference variable and hence

there is no exclusive memory

allocation for it

The reference of x will be

passed to n of the change()

function, which results into

the sharing of memory.

300

These two methods of function call differ as shown in Table 10.4.

Table 10.4 : Call by value v/s Call by reference

Let us discuss a typical example for call by reference method. This program uses a
function that can be called by reference method for exchanging the values of the
two variables in the main() function. The process of exchanging values of two
variables is known as swapping.

Program 10.8: To swap the values of two variables

#include <iostream>

using namespace std;

void swap(int & x, int & y)

{

int t = x;

x = y;

y = t;

}

Call by Reference Method

• Reference variables are used as

formal parameters.

• Actual parameters will be variables

only.

• The changes made in the formal

arguments are reflected in actual

arguments.

• Memory of actual arguments is

shared by formal arguments.

Call by Value Method

• Ordinary variables are used as formal

parameters.

• Actual parameters may be constants,

variables or expressions.

• The changes made in the formal

arguments are not reflected in actual

arguments.

• Exclusive memory allocation is

required for the formal arguments.

main() x

{

.......

.......

}

change(int &n)
{

........

}

20

main() x

{

.......

.......

}

change(int &n)
{

........

}

20
n

main() x

{

.......

.......

}

change(int &n)
{

........

}

21
n

Before function call After function call After function execution

Table 10.3: Call by reference procedure

10. Functions

301

int main()

{

int m, n;

m = 10;

n = 20;

cout<<"Before swapping m= "<< m <<" and n= "<<n;

swap(m, n);

cout<<"\nAfter swapping m= "<< m <<" and n= "<<n;

return 0;

}

Let us go through the statements in Program 10.8. The actual arguments m and n
are passed to the function by reference. Within the swap() function, the values of
x and y are interchanged. When the values of x and y are changed, actually the
change takes place in m and n. Therefore the output of the above program code is:

Before swapping m= 10 and n= 20

After swapping m= 20 and n= 10

Modify the above program by replacing the formal arguments with ordinary
variables and predict the output. Check your answer by executing the code in the
lab.

1. Identify the most essential function in C++ programs.

2. List the three elements of a function header.

3. What is function prototype?

4. Which component is used for data transfer from calling function to

called function?

5. What are the two parameter passing techniques used in C++?

Check yourself

10.5 Scope and life of variables and functions

We have discussed C++ programs consisting of more than one function. Predefined

functions are used by including the header file concerned. User-defined functions

are placed before or after the main() function. We have seen the relevance of

function prototypes while defining functions. We have also used variables in the

function body and as arguments. Now, let us discuss the availability or accessibility

of the variables and functions throughout the program. Program 10.9 illustrates
the accessibility of local variables in a program.

302

Program 10.9: To illustrate the scope and life of variables

#include <iostream>

using namespace std;

int cube(int n)

{

int cb;

cout<< "The value of x passed to n is " << x;

cb = n * n * n;

return cb;

}

int main()

{

int x, result;

cout << "Enter a number : ";

cin >> x;

result = cube(x);

cout << "Cube = " << result;

cout << "\nCube = "<<cb;

}

When we compile the program, there will be two errors because of the reasons
shown in the call-outs. The concept of availability or accessibility of variables and
functions is termed as their scope and life time. Scope of a variable is that part of
the program in which it is used. In the above program, scope of the variable cb is
in the cube() function because it is declared within that function. Hence this
variable cannot be used outside the function. This scope is known as local scope.
On completing the execution of a function, memory allocated for all the variables
within a function is freed. In other words, we can say that the life of a variable,
declared within a function, ends with the execution of the last instruction of the
function. So, if we use a variable n within the main(), that will be different from
the argument n of a called function or a variable n within the called function. The
variables used as formal arguments and/or declared within a function have local
scope.

Just like variables, functions also have scope. A function can be used within the
function where it is declared. That is the function is said to have local scope. If it is
declared before the main() function and not within any other function, the scope
of the function is the entire program. That is the function can be used at any place
in the program. This scope is known as global scope. Variables can also be declared
with global scope. Such declarations will be outside all the functions in the program.

Look at Program 10.10 to get more clarity on the scope and life of variables and
functions throughout the program.

This is an error because

the variable cb is declared

within the cube() function.

So it cannot be used in other

functions.

This is an error because the

variable x is declared within the

main() function. So it cannot

be used in other functions.

10. Functions

303

Program 10.10 : To illustrate the scope and life of variables and functions

#include <iostream>

using namespace std;

int cb; //global variable

void test()//global function since defined above other functions

{

int cube(int n); //It is a local function

cb=cube(x); //Invalid call. x is local to main()

cout<<cb;

}

int main() // beginning of main() function

{

int x=5; //local variable

test(); //valid call since test() is a global function

cb=cube(x); //Invalid call. cube() is local to test()

cout<<cb;

}

int cube(int n)//Argument n is local variable

{

int val= n*n*n; //val is local variable

return val;

}

Variables

Functions

• Declared within a function or a

block of statements.

• Available only within that

function or block.

• Memory is allocated when the

function or block is active and

freed when the execution of the

function or block is completed.

• Declared within a function or a

block of statements and defined

after the calling function.

• Accessible only within that

function or the block.

• Declared outside all the

functions.

• Available to all the functions of

the program.

• Memory is allocated just before

the execution of the program and

freed when the program stops

execution.

• Declared or defined outside all

other functions.

• Accessible by all the functions

in the program

Table 10.5 : Scope and life of variables and functions

Scope &

life

Local Global

304

The given call-outs explain the scope and life of functions. A function which is
declared inside the function body of another function is called a local function as
it can be used within that function only. A function declared outside the function
body of any other function is called a global function. A global function can be
used throughout the program. In other words, the scope of a global function is the
entire program and that of a local function is only the function where it is declared.
Table 10.5 summarises the scope and life time of variables and functions.

10.6 Recursive functions

Usually a function is called by another function. Now let us define a function that
calls itself. The process of calling a function by itself is known as recursion and the
function is known as recursive function. Some of the complex algorithms can be
easily simplified by using the method of recursion. A typical recursive function will
be as follows:

int function1()

{

............

............

int n = function1(); //calling itself

............

............

}

In recursive functions, the function is usually called based on some condition only.
Following is an example for recursive function by which the factorial of a number
can be found. Note that factorial of a negative number is not defined. Therefore 'n'
can take the value either zero or a positive integer.

int factorial(int n)

{

if((n==1)||(n==0))

return 1;

else if (n>1)

return (n * factorial(n-1));

else

return 0;

}

Let us discuss how this function is executed when the user calls this function as:

f = factorial(3);

When the function is called for the first time, the value of the parameter n is 3. The
condition in the if statement is evaluated to be false. So, the else block is executed.

10. Functions

305

When the value of n is 3, the instruction in the else block becomes

return (3 * factorial(3-1));

which is simplified as: return (3 * factorial(2)); …………. (i)

In order to find 3 * factorial(2), it needs to find the value of factorial(2).

The factorial() function is called again with 2 as the argument. The function is

called within the same function. When the factorial() function is executed with

2 as the value of the parameter n, the condition in the if block becomes false. So

only the else block is executed. The instruction in the else block is:

return (2 * factorial(2-1));

which is simplified as: return (2 * factorial(1)); …………. (ii)

In order to find this returning value, it calls the factorial() function again with

1 as the value of the parameter n. Now, the condition in the if statement becomes

true, hence it will return 1 as the value of the function call factorial(1);

Now, the program can find the return value in the instruction numbered (ii). The

instruction (ii) will become: return 2 * 1;

which is same as: return 2;

That is, the value 2 is returned as the value of the function call factorial(2) in

the instruction numbered (i). Thus the instruction (i) becomes: return 3 * 2;

which is same as: return 6;

Now the value 6 is returned as the value of the function call factorial(3);.

The execution of the instruction f=factorial(3); is summarised in Figure 10.4.

The execution of the function call factorial(3) is delayed till it gets the value

of the function factorial(2). The execution of this function is delayed till it

gets the value of the function factorial(1). Once this function call gets 1 as its

return value, it returns the value to the previous function calls. Figure 10.4 shows

what happens to the arguments and return value on each call of the function.

Fig. 10.4: Control flow in a recursive function call

(((

(((

;

; ;

;

;

;

306

Note that if we call the function factorial()with a negative integer as argument,
the function will return 0. It doesn't mean that the factorial of a negative number is
0. In mathematics the factorial of a negative number is undefined. So, for example,
the value returned by the function call factorial(-3) should be interpreted as
an invalid call in the calling function.

The procedure that takes place when the function factorial() is called with 5 is
shown in Figure 10.5.

Fig. 10.5: Recursion process for factorial(5)

A function to find the factorial of a number can also be defined as follows, without
using recursion.

int factorial(int n)

{

int f=1;

/* The formula n×(n-1)×(n-2)× ... ×2×1 is appliled

instead of 1 × 2 × 3× ... ×(n-1)×n to find the factorial

*/

for(int i=n; i>1; i--)

f *= i;

return f;

}

We can compare the difference between the two functions – the one that uses
recursion and the other that does not use recursion. Every function that uses
recursion can also be written without using recursion. Then why do we use recursion?
Some programmers find the use of recursion much simpler than the other. The
recursion method cannot be used in all the functions. How do we understand whether
recursion can be applied to a function or not? If we can express a function by
performing some operation on the output of the same function, we can use recursion
for that. For example, to find the sum of first n natural numbers, we can write the
sum(n) as:

sum(n) = n + sum(n-1)

Let us discuss a program that converts a given decimal number into its equivalent
binary number. We discussed the conversion procedure in Chapter 2.

10. Functions

307

Program 10.11: To display the binary equivalent of a decimal number

#include <iostream>

using namespace std;

void Binary(int);

int main()

{

int decimal;

cout<<"Enter an integer number: ";

cin>>decimal;

cout<<"Binary equivalent of "<<decimal<<" is ";

Binary(decimal);

return 0;

}

void Binary(int n) //Definition of a recursive function

{

if (n>1)

Binary(n/2);

cout<<n%2;

}

A sample output of Program 10.11 is given below:

Enter an integer number: 19

Binary equivalent of 19 is 10011

10.7 Creation of header files

All of us know that we always use #include <iostream> in the beginning of

all the programs that we have discussed so far. Why do we use this statement?

Actually iostream is a header file that contains the declarations and definitions

of so many variables or objects that we use in C++ programs. The objects cout

and cin that we use in the program are declared in this header file. So when we

include this header file in a program, the definitions and declarations of objects

and functions are available to the compiler during compilation. Then the executable

code of these functions and objects will be linked with the program and will be

executed when and where they are called. We can create similar header files containing

our own variables and functions. Suppose we want to write a function to find the

factorial of a number and use this function in a number of programs. Instead of

defining the factorial function in all the programs, we can place the function in a

header file and then include this header file in all other programs.

308

The following example shows how we can create a header file. Enter the following
program code in any IDE editor.

int factorial(int n)

{

int f=1;

for (int i=1; i<=n; i++)

f *= i;

return f;

}

Save this in a file with the name factorial.h and then create a C++ program as
follows:

#include <iostream>

#include "factorial.h"//includes user-defined headerfile

using namespace std;

int main()

{

int n;

cout<<"Enter a number : ";

cin >> n;

cout<<"Factorial : " << factorial(n);

}

We can compile and run the program successfully. Note that the statement #include
"factorial.h" uses double quotes instead of angular brackets < >. This is
because, when we use angular brackets for including a file, the compiler will search
for the file in the include directory. But if we use double quotes, the compiler will
search for the file in the current working directory only. Usually when we save the
factorial.h file, it will be saved in the working directory, where the main C++
program is saved. So, we must use double quotes to include the file. Now, whenever
we want to include factorial function in any C++ program, we only need to include
header file factorial.h in the program by using the statement #include
"factorial.h". In the same way we can place any number of functions in a single
header file and include that header file in any program to make use of these functions.

1. If the prototype of a function is given immediately after the

preprocessor directive, its scope will be _______.

2. What is recursion?

3. What is the scope of predefined functions in C++?

4. The arguments of a function have ______ scope.

Check yourself

10. Functions

309

1. Define a function to accept a number and return 1 if it is prime, 0 otherwise.
Using this function write a program to display all prime numbers between 100
and 200.

2. Write a program to find the smallest of three or two given numbers using a
function (use the concept of default arguments).

3. With the help of a user-defined function find the sum of digits of a number.
That is, if the given number is 3245, the result should be 3+2+ 4+5 = 14.

4. Using a function, write a program to find the LCM of two given numbers.

5. Write a program to display all palindrome numbers between a given range
using a function. The function should accept number and return 1 if it is
palindrome, 0 otherwise.

After completing this chapter the learner will be able to

l recognise modular programming style and its merits.

l use predefined functions for problem solving.

l define sub functions for performing particular tasks involved in problem
solving.

l use the sub functions defined by the user.

l define the recursive functions and use them for problem solving.

Learning outcomes

Modular programming is an approach to make programming simpler.
C++ facilitates modularization with functions. Function is a named unit of program
to perform a specific task. There are two types of functions in C++: predefined
functions and user-defined functions. Predefined functions can be used in a program
only if we include the header file concerned in the program. User-defined functions
may need to be declared if the definition appears after the calling function. During
function call, data may be transferred from calling function to the called function
through arguments. Arguments may be classified as actual arguments and formal
arguments. Either call by value method or call by reference method can be used to
invoke functions. The variables and functions in a program have scope and life
depending on the place of their declaration. Though a function is called by another
function, C++ allows recursion which is a process of calling a function by itself.
New header files can be created to store the user-defined functions so that these
functions can be used in any program.

Lab activity

Let us sum up

310

123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678

Sample questions

Very short answer type

1. How do top down design and bottom up design differ in programming?

2. What is a function in C++?

3. The ability of a function to call itself is _________.

4. Write down the role of header files in C++ programs.

5. When will you use void data type for function definition?

Short answer type

1. Distinguish between actual parameters and formal parameters.

2. Construct the function prototypes for the following functions

(a) Total() takes two double arguments and returns a double

(b) Math() takes no arguments and has no return value

3. Distinguish between exit() function and return statement.

4. Discuss the scope of global and local variables with examples.

5. Distinguish between Call-by-value method and Call-by-reference method used
for function calls.

6. In C++, function can be invoked without specifying all its arguments. How?

7. Write down the process involved in recursion.

Long answer type

1. Look at the following functions:

int sum(int a,int b=0,int c=0)

{ return (a + b + c); }

(a) What is the speciality of the function regarding the parameter list?

(b) Give the outputs of the following function calls by explaining its working
and give reason if the function call is wrong.

(i) cout<<sum(1, 2, 3); (ii) cout<<sum(5, 2);

(iii) cout<<sum(); (iv) cout<<sum(0);

2. The prototype of a function is: int fun(int, int);

The following function calls are invalid. Give reason for each.

(a) fun(2,4); (b) cout<<fun(); (c) val=fun(2.5, 3.3);

(d) cin>>fun(a, b); (e) z=fun(3);

1

lllll Computer network

o Need for network

o Some key terms

lllll Data communication system

lllll Communication medium

o Guided medium

o Unguided medium

o Wireless communication

technologies using radio

waves

lllll Data communication

devices

o NIC, Hub, Switch,

Repeater, Bridge, Router,

Gateway

lllll Data terminal equipments

o Modem, Multiplexer/

Demultiplexer

lllll Network topologies

o Bus, Star, Ring, Mesh

lllll Types of network

o PAN, LAN, MAN, WAN

lllll Logical classification of

networks

o Peer-to-peer

o Client-Server

lllll Identification of computers

and users over a network

o MAC address

o IP address

lllll Network protocols

o TCP/IP (HTTP, FTP, DNS)

lllll Uniform Resource Locator

Key Concepts

Have you surfed the Internet to search your
examination result or to know whether you got
admission to the Plus One course in a school of
your choice? Have you visited an ATM counter
to draw money? Have you transferred songs,
images or movie clips from your computer to a
cell phone or booked a train ticket using Internet?
If your answer to any of these questions is ‘yes’,
you have accessed the services of a computer
network. In this chapter, we will learn more about
the working of networks and their advantages.
We will also discuss different media and devices,
different types of networks and the rules to be
followed in data communication using these
devices.

11.1 Computer network

Computer network is a group of computers and
other computing hardware devices (such as
printers, scanners, modems, CD drives, etc.)
connected to each other electronically through a
communication medium. They can communicate
with each other, exchange commands, share data,
hardware and other resources. Computers on a
network may be linked through cables, telephone
lines, radio waves, satellites or infrared light
beams.

11.1.1 Need for Network

Internet is a good example for a computer
network. It is impossible to imagine a world

11

312

without e-mails, online newspapers, blogs, chat and other services offered through
the Internet. Apart from these, there are many other advantages in using networked
computers instead of stand-alone computers. Some of them are listed below.

• Resource sharing

• Price-performance ratio

• Communication

• Reliability

• Scalability

Resource sharing: The sharing of available hardware and software resources in a
computer network is called resource sharing. For example, the content of a DVD
placed in a DVD drive of one computer can be read in another computer. Similarly,
other hardware resources like hard disk, printer, scanner, etc. and software resources
like application software, anti-virus tools, etc. can also be shared through computer
networks.

Price-performance ratio: One can easily share the resources available in one
computer with other computers. The cost of purchasing licensed software for each
computer can be reduced by purchasing network versions of such software. This
will least affect the performance of such resources and lead to considerable savings
in cost.

Communication: Computer network helps user to communicate with any other
user of the network through its services like e-mail, chatting, video conferencing
etc. For example, one can send or receive messages within no time irrespective of
the distance.

Reliability: It is possible to replicate or backup data/information in multiple
computers using the network. For example, the C++ files, photos or songs saved
in one computer can also be saved in other computers in the same network. These
can be retrieved from other computers in which they are saved in case of disasters
(malfunctioning of computers, accidental deletion of files, etc.)

Scalability: Computing capacity can be increased or decreased easily by adding or
removing computers to the network. In addition to this, the storage capacity of
networks can also be increased by including more storage devices to the network.

11.1.2 Some key terms

Some of the key terms related to computer network are explained below:

Bandwidth : Bandwidth measures the amount of data that can be sent over a
specific connection in a given amount of time. Imagine you are in a

11. Computer Networks

313

highway or a public road. The bigger the road, the more will be the
number of vehicles that can travel on it. Moreover, the traffic here is
faster than on a narrow road. On a narrow road, the traffic is likely to
be congested. We can say that the bandwidth of a bigger road is
higher than a narrow road.

Bandwidth describes the maximum data-transfer rate between
computers in a network. In digital systems, bandwidth is measured in
bits per second (bps). If the bandwidth is more, data travels faster
and hence large amounts of data can be transferred within a particular
time span across the network. For example, an Internet connection
via cable modem may provide 25 Mbps of bandwidth.

Noise : Noise is unwanted electrical or electromagnetic energy that lowers
the quality of data signals. It occurs from nearby radio transmitters,
motors or other cables. The transfer of all types of data including
texts, programs, images and audio over a network is adversely affected
by noise.

Node : Any device (computer, scanner, printer, etc.) which is directly
connected to a computer network is called a node. For example,
computers linked to the computer network in the school are nodes.
When we connect the Internet to our computer, our computer
becomes a node of the Internet.

Make a list of the hardware and software resources shared in your

school network.

Let us do

11.2 Data communication system

In a computer network, computing devices are connected in various ways, to
communicate and share resources. Data communication is the exchange of digital
data between any two devices through a medium of transmission. Figure 11.1 shows
the representation of a general data communication system.

Fig. 11.1 : Data communication system

Medium

314

 The following five basic elements are necessary for building any data
communication system.

Message : It is the information to be communicated. Major forms of
information include text, picture, audio, video, etc.

Sender : The computer or device that is used for sending messages is called
the sender, source or transmitter.

Receiver : The computer or device that receives the messages is called the
receiver.

Medium : It is the physical path through which a message travels from the
sender to the receiver. It refers to the way in which nodes are
connected.

Protocol : The rules under which message transmission takes place between
the sender and the receiver is called a protocol.

11.3 Communication medium

Data communication is possible only if there is a medium through which data can
travel from one device to another. The medium for data transmission over a
computer network is called communication channel or communication medium.
The communication medium between computers in a network are of two types:
guided and unguided. In guided or wired medium physical wires or cables are used
and in unguided or wireless medium radio waves, microwaves or infrared signals
are used for data transmission.

11.3.1 Guided medium (Wired)

The coaxial cable, twisted pair cable (Ethernet cable) and optical fibre cable are the
different types of cables used to transfer data through computer networks.

a. Twisted pair cable (Ethernet cable)

This is the most widely used media in small computer networks. It consists of four
twisted pairs which are enclosed in an outer shield. These pairs are colour coded.
Twisted pair cables are of two types:
(i) Unshielded Twisted Pair (UTP)
cables and (ii) Shielded Twisted Pair
(STP) cables.

Unshielded Twisted Pair (UTP)
cable: As its name suggests, the
individual pairs in UTP cables are not
shielded. Figure 11.2 shows the
components of a UTP cable. Fig. 11.2 : UTP cable

11. Computer Networks

315

Characteristics of UTP cable

• Low cost cable available for setting up small networks.

• Thin and flexible cable.

• Ease of installation.

• Carries data upto a length of 100 m at a stretch.

Shielded Twisted Pair (STP) cable: It is the same cable as the UTP, but with each
pair shielded individually. An outer shield then covers all the pairs like in UTP.

Characteristics of STP cable

• Shielding in STP offers better
immunity against noise.

• It is more expensive than UTP
cable.

• Compared to UTP cable, STP
cable is difficult to install.

An RJ-45 connecter is used to
connect UTP/STP twisted pair
cable to a computer. Figure 11.3
shows the STP cable and RJ-45
connector.

b. Coaxial cable

A coaxial cable consists of an inner conductor surrounded by a tubular insulating
layer which is further covered by a tubular conducting shield. It has an outer
insulation to protect the cable too. Figure 11.4 shows the construction of a coaxial
cable.

Characteristics of coaxial cable

• Carries data to longer distances (185 m -
500 m approx.) at a stretch.

• High bandwidth.

• Less electromagnetic interference due to
the outer shield.

• Thicker than twisted pair.

• Less flexible than twisted pair.

• Difficult to install than twisted pair cable.
Fig. 11.4 : Coaxial Cable

Fig. 11.3 : STP cable and RJ-45 connecter

316

c. Optical fibre cable

Optical fibres are long thin glass fibres through which data is transmitted as light
signals. Data travels as fast as light and can be transmitted to far off distances.
Figure 11.5 shows the major parts of an optical fibre cable.

Optical fibre has the following parts:

• Core - the thin glass rod at the centre through which the light travels.

• Cladding - the outer optical material surrounding the core that reflects
the light back into the core.

• Coating - the plastic coating that protects the cable from damage and
moisture.

These optical fibres are arranged in bundles of hundreds and thousands and are
protected by the outer covering of the cable called jacket.

At the source end, the optical transmitter converts electrical signals into optical
signals (modulation) using semiconductor devices such as light-emitting diodes
(LEDs) or laser diodes. At the destination end, the optical receiver, consisting of a
photo detector, converts light back to electric signals (demodulation) using the
photoelectric effect. The speed of transmission and the distance of signals are higher
for laser diodes than for LEDs.

Characteristics of optical fibre cable

• High bandwidth for voice, video and data applications.

• Carries data over a very long distance at a stretch.

• Not susceptible to electromagnetic fields, as it uses light for data transmission.

• The most expensive and the most efficient communication media available for
computer networks.

• Installation and maintenance are difficult and complex.

Fig. 11.5 : Optical fibre

Fibres

11. Computer Networks

317

Fig. 11.6: Electromagnetic Spectrum

11.3.2 Unguided medium (Wireless)

Electromagnetic waves are used for wireless communication on computer networks.

Frequencies of waves are measured in Hertz (Hz). Based on their frequencies,

electromagnetic waves are categorised into various types as shown in Figure 11.6.

From this category we can infer that only radio waves, microwaves and infrared

rays are used for wireless communication.

a. Radio waves

Radio waves have a frequency range of 3 KHz to 3 GHz. Radio waves can be used

for short and long distance communication. These waves are easy to generate and

can go over the walls of a building easily. That is why radio waves are widely used

for communication-both indoors and outdoors. Cordless phones, AM and FM

radio broadcast and mobile phones make use of radio wave transmission.

Fig. 11.7 : Radio wave transmission

318

Characteristics of radio wave transmission

• Waves are transmitted in all directions, therefore transmitting and receiving
antennas need not be aligned face to face.

• Relatively inexpensive than wired media.

• Can penetrate through most objects.

• Transmission can be affected by motors or other electrical equipment.

• Less secure mode of transmission.

• Permissions from authorities concerned are required for the use of radio wave
transmission.

Fig. 11.9 : Microwave transmission

Fig. 11.8 : Spectrum of radio communication band

b. Micro waves

Micro waves have a frequency range of 300 MHz (0.3 GHz) to 300 GHz. Microwaves

travel in straight lines and cannot penetrate any solid object. Therefore, high towers

are built and microwave antennas are fixed on their top for long distance microwave

communication. As these waves travel in straight lines the antennas used for

transmitting and receiving

messages have to be

aligned with each other.

The distance between

two microwave towers

depends on many factors

including frequency of

the waves being used and

heights of the towers.

Figure 11.9 shows the

components of a

microwave transmission

system.

11. Computer Networks

319

Characteristics of micro wave transmission

• Relatively inexpensive than wired media.

• Offers ease of communication over difficult terrain.

• The transmission is in straight lines. Therefore, the transmitting and receiving
antennas need to be properly aligned (line of sight transmission).

c. Infrared waves

Infrared waves have a frequency range
of 300 GHz to 400 THz. These waves
are used for short range communication
(approx. 5 m) in a variety of wireless
communications, monitoring and
control applications.

Home entertainment remote control
devices, cordless mouse and intrusion
detectors are some of the devices that
utilise infrared communication (refer
Figure 11.10).

Characteristics of infrared wave transmission

• A line of sight transmission; hence information passed to one device is not
leaked.

• Only two devices can communicate at a time.

• The waves cannot cross solid objects. (You may stand between the remote
control and your television set and check whether the remote control works.)

• The longer the distance the weaker the performance.

11.3.3 Wireless communication
technologies using radio waves

a. Bluetooth

Bluetooth technology uses radio waves in the
frequency range of 2.402 GHz to 2.480 GHz. This
technology is used for short range communication
(approx. 10 m) in a variety of devices for wireless
communication. Cell phones, laptops, mouse,
keyboard, tablets, headsets, cameras, etc. are some
of the devices that utilise bluetooth communication
(refer Figure 11.11).

Fig. 11.10 : Infrared transmission

Fig. 11.11 : Bluetooth transmission

320

Characteristics of bluetooth transmission

• Line of sight between communicating devices is not required.

• Bluetooth can connect upto eight devices simultaneously.

• Slow data transfer rate (upto 1 Mbps).

b. Wi-Fi

Wi-Fi network makes use of radio waves to transmit information across a network
like cell phones, televisions and radios. The radio waves used in Wi-Fi ranges from
a frequency of 2.4 GHz to 5 GHz. Communication across a wireless network is
two-way radio communication. The wireless adapter in a computer translates data
into radio signal and transmits it using an antenna. A wireless router receives the
signal and decodes it. Once decoded, the data will be sent to the Internet or network
through a wired Ethernet /wireless connection. Similarly, the data received from
the Internet/network will also pass through the router and coded into radio signals
that will be received by the wireless adapter in a computer as indicated in Figure
11.12. Nowadays, this technology is widely used to share Internet connection with
laptops or desktops.

Fig. 11.12 : Wi-Fi transmission

Characteristics of Wi-Fi transmission

• Line of sight between communicating devices is not required.

• Data transmission speed is upto 54 Mbps.

• Wi-Fi can connect more number of devices simultaneously.

• Used for communication upto 375 ft (114 m).

c. Wi-MAX

Worldwide Interoperability for Microwave Access (Wi-MAX) originally based on

802.16e, combines the benefits of broadband and wireless. Wi-MAX has a frequency

11. Computer Networks

321

range of 2 GHz to 11 GHz. Wi-MAX can provide high-speed wireless Internet

access over very long distances (a whole city). Wi-MAX equipment exists in two

basic forms - base stations, installed by service providers to deploy the technology

in a coverage area, and receivers, installed by clients. Figure 11.13 shows the basic

components of a Wi-MAX transmission.

Fig. 11.13 : WiMAX transmission

Characteristics of Wi-MAX transmission

• Hundreds of users can connect to a single station.

• Provides higher speed connection upto 70 Mbps over an area of 45 Kilometres.

• Line of sight between communicating devices is not required.

• Weather conditions like rain, storm, etc. could interrupt the signal.

• Very high power consumption.

• High costs of installation and operation.

d. Satellite link

Long distance wireless communication systems use satellite links for transmitting

signals. Usually, a signal travels in a straight line and is not able to bend around the

globe to reach a destination far away. Signals can be sent to geostationary satellites

in space and then redirected to another satellite or directly to a far away destination.

322

A geostationary satellite orbits the earth in the same direction and amount of time

it takes to revolve the earth once. From the earth, therefore, the satellite appears to

be stationary, always above the same area of the earth. These satellites carry electronic

devices called transponders for receiving, amplifying, and re-broadcasting signals

to the earth.

Fig. 11.14 : Satellite link

Transmission of signals from the earth to a satellite is called uplink and from a

satellite to the earth is called downlink. There are multiple micro wave frequency

bands which are used for satellites links. Frequency used for uplink varies from 1.6

GHz to 30.0 GHz and that for downlink varies from 1.5 GHz to 20.0 GHz.

Downlink frequency is always lower than the uplink frequency.

The satellite system is very expensive, but its coverage area is very large.

Communication satellites are normally owned by governments or by government

approved organisations of various countries.

Characteristics of transmission using satellite link

• Satellites cover a large area of the earth.

• This system is expensive.

• Requires legal permission and authorisation.

11. Computer Networks

323

Check yourself

1. Name the basic elements needed for a data communication system.

2. Define resource sharing.

3. Name two classifications of communication channels between

computers in a network.

4. Name the connecter used to connect UTP/STP cable to a computer.

5. The cable media that use light to transmit data signals to very long

distances is _________.

6. AM and FM radio broadcast and mobile phones make use of

_________ medium for transmission.

7. The medium for communication used in home entertainment remote

control devices, certain mouse, etc. is _________.

8. A short range communication technology that does not require line of

sight between communicating devices is _________.

9. A communication system that is very expensive, but has a large

coverage area when compared to other wireless communication

systems is _________.

11.4 Data communication devices

A data communication device provides an interface between computer and the

communication channel. These devices are used to transmit, receive, amplify and

route data signals across a network through various communication media.

11.4.1 Network Interface Card (NIC)

Network Interface Card (NIC) is a device that enables a computer to connect to a

network and communicate. It provides hardware interface between a computer

and a network. It can be a separate circuit board that is installed in a computer or a

circuit already integrated with the motherboard. NIC can prepare, send, receive

and control data on the network. It breaks up data into manageable units, translates

the protocols of the computer to that of the communication medium and supplies

address recognition capabilities.

324

Fig. 11.15 (a) : NIC card Fig. 11.15 (b) : Wireless NIC card

Figure 11.15 (a, b) shows the NIC card and wireless NIC card. Some NIC cards
have wired connections (Ethernet), while others are wireless (Wi-Fi). Ethernet NICs
include jacks for network cables, while Wi-Fi NICs contain built-in transmitters/
receivers (transceivers) and an antenna. NICs can transfer data at a speed of
1 Gbps.

11.4.2 Hub

A hub is a device used in a wired
network to connect computers/
devices of the same network. It is a
small, simple, passive and
inexpensive device (refer Figure
11.16). Computers/devices are connected to ports of the hub using Ethernet cable.

When NIC of one computer sends data packets to hub, the hub transmits the packets

to all other computers connected to it. Each computer is responsible for determining

its data packets. The computer for which the data packets are intended accepts it.

Other computers on the network discards these data packets. The main disadvantage

of hub is that it increases the network traffic and reduces the effective bandwidth,

as it transmits data packets to all devices connected to it.

11.4.3 Switch

A switch is an intelligent device that connects several computers to form a network.

It is a higher performance alternative to a hub. It looks exactly like a hub. Switches

are capable of determining the destination and redirect the data only to the intendend

node. Switch performs this by storing the addresses of all the devices connected to

it in a table. When a data packet is send by one device, the switch reads the destination

address on the packet and transmits the packet to the destination device with the

Fig. 11.16 : Hub

11. Computer Networks

325

Fig. 11.17 : Wireless repeater

help of the table. A switch performs better than a hub on busy networks, since it

generates less network traffic in delivering messages.

11.4.4 Repeater

A repeater is a device that regenerates incoming

electrical, wireless or optical signals through a

communication medium (refer Figure 11.17). Data

transmissions through wired or wireless medium can

travel only a limited distance as the quality of the signal

degrades due to noise. Repeater receives incoming

data signals, amplifies the signals to their original

strength and retransmits them to the destination.

11.4.5 Bridge

A bridge is a device used to segmentise a network. An existing network can be split

into different segments and can be interconnected using a bridge. This reduces the

amount of traffic on a network. When a data packet reaches the bridge, it inspects

the incoming packet’s address and finds out to which side of the bridge it is addressed

(to nodes on the same side or the other side). Only those packets addressed to the

nodes on the other side, will be allowed to pass the bridge. Others will be discarded.

The packet that passes the bridge will be broadcast to all nodes on the other side

and is only accepted by the intended destination node. Figure 11.18 shows the

function of a bridge.

Fig. 11.18 : Bridge

326

11.4.6 Router

A router is a device that can interconnect two networks of the same type using the
same protocol. It can find the optimal path for data packets to travel and reduce
the amount of traffic on a network. Even though its operations are similar to a
bridge, it is more intelligent. The router can check the device address and the network
address and can use algorithms to find the best path for packets to reach the
destination. Figure 11.19 shows the role of a router.

Fig. 11.19 : Router

11.4.7 Gateway

A gateway is a device that can
interconnect two different networks
having different protocols (refer
Figure 11.20). It can translate one
protocol to another protocol. It is
a network point that acts as an
entrance to another network. Its
operations are similar to that of a
router. It can check the device
address and the network address
and can use algorithms to find the

Fig. 11.20 : Gateway

11. Computer Networks

327

best path for packets to reach the destination. Further, while interconnecting two
networks with different protocols, there must be some mutual understanding between
the networks. A gateway is capable of understanding the address structure used in
different networks and seamlessly translate the data packet between these networks.

11.5 Data terminal equipments

A data terminal equipment (DTE) is a device that controls data flowing to or from
a computer. It is connected to the transmission medium at the end of a
telecommunication link. Here we discuss the most commonly used DTEs - modem
and multiplexer.

11.5.1 Modem

A modem is an electronic device used for communication between computers
through telephone lines (refer Figure 11.21). The name is formed from the first
three letters of the two words modulator and demodulator. It converts digital
signals received from a computer to analog signals (modulation) for telephone
lines. It also converts the analog signals received back from telephone lines to digital
signals (demodulation) for the computer. The speed of the modem determines
how fast it can send and receive information through telephone lines. The speed of
modem is measured in bits per second (bps).

Fig. 11.21 : Communication using modem

11.5.2 Multiplexer/Demultiplexer

Have you ever wondered how 200 or more TV channels are transmitted through a
single cable in a television network? It is called multiplexing. Similar is the case with
data transmission over networks. Multiplexing is sending multiple signals on a
physical medium at the same time in the form of a single, complex signal and then
recovering the separate signals at the receiving end. Multiplexing divides the physical
medium into logical segments called frequency channels. Multiplexer combines
(multiplexes) the inputs from different sources and sends them through different
channels of a medium. The combined data travels over the medium simultaneously.

328

At the destination, a demultiplexer separates (demultiplexes) the signals and sends
them to destinations. Figure 11.22 shows the function of a multiplexer and
demultiplexer.

Fig. 11.22 : Multiplexer/De-multiplexer

Check yourself

1. Compare hub and switch.

2. What is the use of a repeater?

3. The devices used to interconnect two networks of same type is ______.

4. Differentiate between router and bridge.

5. A device that can interconnect two different networks having different

protocols is ______.

6. An electronic device used for communication between computers

through telephone lines is ______.

Make a list of networking devices and communication medium

necessary to create a small computer network having a maximum

of 10 nodes.
Let us do

11.6 Network topologies

Imagine that we have ten computers and we need to interconnect them to form a

network. What are the ways by which we can interconnect them?

11. Computer Networks

329

Using available media and based on certain conditions, there are different ways of

interconnecting the nodes. The way in which the nodes are physically interconnected

to form a network is called a Topology. Major topologies are bus, star, ring and

mesh.

11.6.1 Bus topology

In bus topology (refer Figure 11.23) all the nodes are connected to a main cable

called bus. If a node has to send data to another node, it sends data to the bus. The

signal travels through the entire length of the bus. All nodes check the bus, and only

the node for which data is addressed accepts it. A small device called terminator is

attached at each end of the bus. When the signal reaches the end of the bus, the

terminator absorbs the signal and removes it from the bus. Now the bus is free to

carry another signal. This prevents the reflection of a signal back on the cable and

hence eliminates the chances of signal interference. The process of transmitting

data from one node to all other nodes is called broadcasting.

Fig. 11.23 : Bus topology

Characteristics of bus topology

• Easy to install.

• Requires less cable length and hence it is cost effective.

• Failure of a node does not affect the network.

• Failure of cable (bus) or terminator leads to a break down of the entire

network.

• Fault diagnosis is difficult.

• Only one node can transmit data at a time.

11.6.2 Star topology

In star topology each node is directly connected to a hub/switch as shown in Figure

11.24. If any node has to send some information to any other node, it sends the

330

signal to the hub/switch. This signal is

then broadcasted (in case of a hub) to

all the nodes but is accepted only by

the intended node. In the case of a

switch, the signal is sent only to the

intended node.

Characteristics of star topology

• More efficient compared to bus

topology.

• Easy to install.

• Easy to diagnose faults.

• Easy to expand depending on the

specifications of central hub/

switch.

• Failure of hub/switch leads to failure of entire network.

• Requires more cable length compared to bus topology.

11.6.3 Ring topology

In ring topology, all nodes are

connected using a cable that loops

in a ring or circle. A ring topology

is in the form of a circle that has no

start and no end (refer Figure

11.25). Terminators are not

necessary in a ring topology. Data

travels only in one direction in a

ring. While they are passed from

one node to the next, each node

regenerates the signal. The node for

which the signal is intended reads

the signal. After travelling through

each node, the signal reaches back

to the sending node from where it

is removed.

Fig. 11.25 : Ring topology

Fig. 11.24 : Star topology

11. Computer Networks

331

Fig. 11.26 : Mesh topology

Characteristics of ring topology

• No signal amplification is required as each node amplifies the signal.

• Requires less cable length and hence is cost effective.

• If one node fails, entire network will fail.

• Addition of nodes to the network is difficult.

11.6.4 Mesh topology

In mesh topology, every node is

connected to other nodes. So there will

be more than one path between two

nodes as shown in Figure 11.26. If one

path fails, the data will take another

path and reach the destination.

Characteristics of mesh topology

• Network will not fail even if one
path between the nodes fails.

• Expensive because of the extra
cables needed.

• Very complex and difficult to manage.

Identify the network topology used in your school lab.

Let us do

11.7 Types of networks

A computer network may span any amount of geographical area. It can be on a
table, in a room, in a building, in a city, in a country, across continents or around the
world. On the basis of the area covered, computer networks are classified as:

• PAN - Personal Area Network

• LAN - Local Area Network

• MAN - Metropolitan Area Network

• WAN -Wide Area Network

332

11.7.1 Personal Area Network (PAN)

PAN is a network of communicating
devices (computer, mobile, tablet,
printer, etc.) in the proximity of an
individual. It can cover an area of a
radius with few meters (refer Figure
11.27).

When we transfer songs from one cell
phone to another or from a PC to an
MP3 player, a PAN is set up between
the two. PAN can be set up using
guided media (USB) or unguided
media (Bluetooth, infrared).

11.7.2 Local Area Network (LAN)

LAN is a network of computing and communicating devices in a room, building,
or campus. It can cover an area of radius with a few meters to a few Kilometers. A
networked office building, school or home usually contains a single LAN, though
sometimes one building can contain a few small LANs (Like some schools have
independent LANs in each computer lab) as shown in Figure 11.28. Occasionally a
LAN can span a group of nearby buildings.

Fig. 11.27 : Personal Area Network

Fig. 11.28 : Local Area Network

11. Computer Networks

333

In addition to operating in a limited space, a LAN is owned, controlled and managed

by a single person or an organisation.

LAN can be set up using wired media (UTP cables, coaxial cables, etc.) or wireless

media (infrared, radio waves, etc.). If a LAN is setup using unguided media, it is

known as WLAN (Wireless LAN).

11.7.3 Metropolitan Area Network (MAN)

MAN is a network of computing and communicating devices within a city. It can

cover an area of a few Kilometers to a few hundred Kilometers radius. MAN is

usually formed by interconnecting a number of LANs and individual computers.

All types of communication media (guided and unguided) are used to set up a

MAN. MAN is typically owned and operated by a single entity such as a government

body or a large corporation (refer Figure 11.29).

Fig. 11.29 : Metropolitan Area Network

11.7.4 Wide Area Network (WAN)

WAN is a network of computing and communicating devices crossing the limits of
a city, country or continent. It can cover an area of over hundreds of Kilometers in
radius. WAN usually contain a number of interconnected individual computers,
LANs, MANs and maybe other WANs. All types of communication media (guided
and unguided) are used to set up a WAN as shown in Figure 11.30. The best known
example of a WAN is the Internet. Internet is considered as the largest WAN in the
world. A network of ATMs, banks, government offices, international organisations,

334

Fig. 11.30 : Wide Area Network

PAN LAN MAN WAN

Area covered Small area A few meters to A city and its Entire country,

 (Up to 10 m radius) a few Kilometers vicinity (Up to continent,

(Up to 10 Km radius) (100 Km radius) or globe

Transmission High speed High speed Moderate Low speed

speed speed

Networking cost Negligible Inexpensive Moderately Expensive

expensive

Table 11.1 : Characteristics summary of PAN, LAN, MAN, WAN

Parameter

offices, etc. spread over a country, continent or covering many continents are
examples of WAN.

Table 11.1 summarises the characteristics of PAN, LAN, MAN and WAN.

11.8 Logical classification of networks

This classification is based on the role of computers in the network and division
falls into two categories: peer-to-peer and client-server.

11.8.1 Peer-to-Peer

A peer-to-peer network has no dedicated servers. Here a number of computers
are connected together for the purpose of sharing information or devices. All the
computers are considered equal. Any computer can act as a client or as a server at
any instance. This network is ideal for small networks where there is no need for
dedicated servers, like home network or small business establishments or shops.

11. Computer Networks

335

11.8.2 Client-Server

The client-server concept is the driving force behind most of the networks. It is
similar to going to a restaurant, reading the menu, calling the waiter (server) and
then ordering one’s preference from the menu. If the ordered item is available in
the restaurant at that time, it is 'served' to whom the order was placed (client), else
the request is refused.

In a network, the client-server architecture consists
of high-end computer (called server) serving lower
configuration machines called clients. A server
provides clients with specific services (responses)
upon client’s request. The services include sharing
of data, software and hardware resources. Figure
11.31 shows the general client-server architecture.

Client-server architecture is an example for
centralised software management. When software is
loaded on the server and shared among the clients, changes made to the software in
the server will reflect in the clients also. So there is no need to spend time and
energy for installing updates and tracking files independently on the clients.

Classifications for servers are

a) File server - A computer that stores and manages files for multiple users on a
network.

b) Web server - A computer dedicated to responding to requests for web pages.

c) Print server - Redirects print jobs from clients to specific printers.

d) Database server - Allows authorised clients to view, modify and/or delete
data in a common database.

Fig. 11.31 : Client - Server

Check yourself

1. In bus topology, when the signal reaches the end of the bus,

______absorbs the signal and removes it from the bus.

2. In ________topology each node is directly connected to a hub/switch.

3. In which topology is every node connected to other nodes?

4. Categorise and classify the different types of networks given below:

ATM network, Cable television network, Network within the school,

Network at home using bluetooth,Telephone network, Railway network

5. What is PAN?

6. What is a peer-to-peer network?

336

11.9 Identification of computers over a network

Imagine that you are in India and you wish to write a letter to your friend in America.
What would you do? You write a letter, put it in an envelop, write your friend’s
address on it and write your address on the back. When the letter is posted in a post
office in India, it is stamped with a unique seal and date. After going through a
feasible route the letter reaches the post office in America, where it is stamped
again with a unique seal and date. Then, the postman makes sure that it reaches the
specified addressee. In a network, data is sent in the form of packets in a similar
way.

Once a network has been set up, the nodes can communicate among themselves.
But for proper communication, the nodes should be uniquely identifiable. If node
X sends some information to node Y on a network, then it is mandatory that nodes
X and Y are uniquely identifiable on the network. Let us see how this is achieved.

11.9.1 Media Access Control (MAC) address

A Media Access Control (MAC) address is a universally unique address (12 digit
hexadecimal number) assigned to each NIC (Network Interface Card) by its
manufacturer. This address is known as the MAC address. It means that a machine
with an NIC can be identified uniquely through the MAC address of its NIC. MAC
address of an NIC is permanent and never changes.

MAC addresses are 12-digit hexadecimal (or 48 bit binary) numbers. By convention,
MAC addresses are usually written in one of the following two formats:

MM : MM : MM : SS : SS : SS or MM – MM – MM – SS – SS – SS

The first half (MM:MM:MM) of a MAC address contains the ID number of the
adapter manufacturer. The second half (SS:SS:SS) of a MAC address represents the
serial number assigned to the adapter (NIC) by its manufacturer. For example, in
the following MAC address,

00:A0:C9 : 14:C8:35

The prefix 00:A0:C9 indicates that the manufacturer is Intel Corporation. And the
last three numbers 14:C8:35 are given by the manufacturer (Intel in this example) to
this NIC.

11.9.2 Internet Protocol (IP) address

An IP address is a unique 4 part numeric address assigned to each node on a network,
for their unique identification. IP address is assigned to each machine by the network
administrator or the Internet Service Provider. An IP address is a group of four
bytes (or 32 bits) each of which can be a number from 0 to 255.

11. Computer Networks

337

To make it easier for us to remember, IP addresses are normally expressed in decimal
format as a “dotted decimal number” as indicated in Figure 11.32.

On a network, the IP address of a machine is
used to identify it. IP protocol identifies a
machine with its IP address to route the
packets.

There are two versions of IP addresses:
version 4 (IPv4) and version 6 (IPv6). IPv4
uses 32 bits and IPv6 uses 128 bits for an IP address. Using IPv4 only 232

(approximately 4 billion) distinct devices can be addressed.

As the number of devices which need to be networked (mobile phones, home
appliances, personal communication devices, etc.) is increasing at a very fast pace,
IPv4 addresses are being exhausted. To address this problem IPv6 was developed
and it is now being deployed. Using IPv6, 2128 (approximately 4 billion × 4 billion

×

 4 billion

×

 4 billion) distinct devices can be addressed.

Fig. 11.32 : IP address

Identify the IP and MAC Id of each networked machine in your school

and prepare a table as follows. (Use ipconfig /all at command prompt).

Sl No Computer Name IP MAC

1.

2.

3.

Let us do

11.10 Network protocols

A network protocol is the special set of rules to be followed in a network when

devices in the network exchange data with each other. Each protocol specifies its

own rules for formatting data, compressing data, error checking, identifying and

making connections and making sure that data packets reach its destination.

Several computer network protocols have been developed for specific purposes

and environments. Some commonly used protocols are TCP/IP, SPx/IPx, etc.

TCP/IP

TCP/IP, Transmission Control Protocol/Internet Protocol, is a suite of

communications protocols used to interconnect network devices on the local

networks and the Internet. TCP/IP defines rules for how electronic devices (like

338

computers) should be connected to the Internet and how data should be transmitted

between them.

When data is to be sent from one computer to another over Internet, it is first

broken into smaller packets by TCP and then sent. When these packets are received

by the receiving computer, TCP checks packets for errors. If errors are found,

TCP submits requests for retransmission; else packets are assembled into the original

message according to the rules specified in TCP protocol. Figure 11.33 shows the

steps involved in the working of TCP/IP protocol. Delivery of each of these packets

to the right destinations is done by Internet protocol (IP). Even though different

packets of the same message may be routed differently, they will reach the same

destination and get reassembled there. HTTP, FTP and DNS are three sub protocols

of TCP/IP protocol suite.

Fig: 11.33 : How TCP/IP works

Fig. 11.34 : An HTTP session

a. HTTP

HTTP stands for Hypertext Transfer Protocol. It is a standard protocol for
transferring requests from client-side and to receive responses from the server-
side. The HTTP client (browser) sends a HTTP request to the HTTP server (web
server) and server responds with a HTTP response. This pair of request and
response is called an HTTP session (refer Figure 11.34).

The response from the server can be static
such as a file already stored on the server, or
dynamic, such as the result of executing a
piece of code by the server as per the request
from the client.

11. Computer Networks

339

The two important characteristics of HTTP are

l HTTP is transmission medium independent.

l HTTP is stateless (The server and client are aware of each other only during a
request or response. Afterwards, each forgets the other).

b. FTP

FTP stands for File Transfer Protocol. It is a standard for exchanging of data and
program files across a network. FTP is the easiest way to transfer files between
computers via the Internet. It uses TCP and IP to perform uploading and
downloading. A FTP client program installed in the computer can help in the
uploading (sending files to another computer) and downloading (receiving files
from another computer) of files.

FTP uses client–server architecture in servers with security features, username and
password protection for file transfer. An FTP client program (Filezilla, Cute FTP,
etc.) installed in the computer can help in the easy uploading and downloading of
files.

c. DNS

DNS stands for Domain Name System. DNS returns the IP address of the domain
name, that we type in our web browser’s address bar. (like mobile phone
automatically dialing the phone number when we select a name from contact list).

The DNS system has its own network. DNS implements a database to store domain
names and IP address information of all web sites on the Internet. DNS assumes
that IP addresses do not change (statically assigned). If one DNS server does not
know how to translate a particular domain name, it asks another one, and so on,
until the correct IP address is returned.

Find and prepare notes on five protocols other than TCP/IP, HTTP,

FTP, DNS.

Let us do

11.11 Uniform Resource Locator (URL)

URL stands for Uniform Resource Locator. URL is a formatted text string used
by web browsers, e-mail clients and other software to identify a network resource
on the Internet. Every resource on the Internet has a unique URL. Network resources
are files that can be plain web pages, other text documents, graphics, programs, etc.

340

URL consists of letters, numbers and punctuations. URL string can be divided into
three parts.

a) Network protocol (also called the scheme)

b) Domain name (Host name or address)

c) File name

For example the URL http://www.dhsekerala.gov.in/index.html has three parts as
shown in Figure 11.35. The detailed description of these three parts are given below:

Fig: 11.35 : Components of an URL

a. Protocol

The protocol enables the browser to know what protocol is used to access the

information specified in the domain.

b. Domain name

Domain name is the name assigned to a server through the Domain Name System

(DNS). Domain names are used in URLs to identify the particular web server.

Domain names provide Internet users with a short name that is easy to remember.

Whenever we have to communicate with a computer on Internet, we can do so by

using its IP address. But it is practically impossible for a person to remember the IP

addresses of all the computers, one may have to communicate with. Therefore, a

system has been developed which assigns names to computers (web servers) and

maintains a database of these names and their corresponding IP addresses. These

names are called domain names.Examples of some domain names are

dhsekerala.gov.in, keralaresults.nic.in, google.com, gmail.com, etc.

A domain name usually has more than one part: top level domain name or primary

domain name and sub-domain name(s). For example, in the domain name above,

‘in’ is the primary domain name; ‘gov’ is the sub-domain of in and ‘dhsekerala’ is

the sub-domain of ‘gov’. There are only a limited number of top level domains and

these are divided into two categories: Generic Domain Names and Country-Specific

Domain Names. Examples of generic and country specific domain names are given

in Table 11.2.

11. Computer Networks

341

Generic Domain Names Country Specific Domain Names

.com Commercial business .in India

.edu Educational institutions .au Australia

.gov Government agencies .ca Canada

.mil Military .ch China

.net Network organizations .jp Japan

.org Organizations (nonprofit) .us United States of America

c. File name

It is the file to be opened. In the example given in Figure 11.35, 'index.html' is the
file that is to be accessed from the web server specified by the domain name.

Table 11.2 : Generic and country specific domain names

Make a list of valid URL, containing two examples for each generic

domain name and country specific domain name. Also note down

the file name opened by default (for file look at the URL in address

bar after the site is opened).Let us do

We learned about computer networks, the essential technology of the century,
in this chapter. Importance of network was discussed by highlighting the
various advantages it provides. We discussed the various communication
media and their pros and cons. The devices used at various situations while
forming a network was also discussed. Before discussing the types of network,
we learned the different ways a network could be formed by discussing various
topologies. We then discussed protocol and how TCP/IP send/receive data
across the network. Methods to uniquely identify a node in the network were
introduced and finally we concluded discussing URL.

Let us sum up

342

1234567890123456789012345678901212345678901234567890123456789012123456789
1234567890123456789012345678901212345678901234567890123456789012123456789
1234567890123456789012345678901212345678901234567890123456789012123456789
1234567890123456789012345678901212345678901234567890123456789012123456789
1234567890123456789012345678901212345678901234567890123456789012123456789

Sample questions

Very short answer type

1. The transmission media which carry information in the form of light signals is
called ______.

a. Coaxial b. Twisted
c. WiFi d. Optical Fiber

2. Different networks with different protocols are connected by a device called
_____.

a. Router b. Bridge
c. Switch d. Gateway

3. In _______ topology, the failure of any one computer will affect the network
operation.

a. Bus b. Ring
c. Star d. none of these

4. To transmit signals from multiple devices through a single communication
channel simultaneously, we use ______ device.

a. Modem b. Switch
c. Router d. Multiplexer

5. Bluetooth can be used for

a. long distance communication b. short distance communication
c. in mobile phones only d. none of the above

6. Satellite links are generally used for

a. PANs b. LANs
c. MANs d. all of the above

After the completion of this chapter the learner will be able to

• identify and choose a communication medium.

• compare different types of network.

• explain the logical classification of networks.

• identify how data is sent across networks.

• design small networks.

• explain how a node is identified in a network.

• identify the various parts of a URL.

Learning outcomes

11. Computer Networks

343

7. A domain name maps to

a. URL b. an IP address

c. website d. all of the above

Short answer type

1. Define bandwidth.

2. Switch and Hub are two devices associated with networking. Differentiate them.

3. What is an IP address? Give an example.

4. What is TCP/IP? What is its importance?

5. Define a computer network.

6. What is Bluetooth?

7. What is a Modem?

8. Distinguish between router and gateway.

9. Explain the need for establishing computer networks.

10. What are the uses of computer networks?

11. What is the limitation of microwave transmission? How is it eliminated?

12. Briefly describe the characteristics of Wi-Fi.

13. An International School is planning to connect all computers, spread over
distance of 45 meters. Suggest an economical cable type having high-speed
data transfer, which can be used to connect these computers.

14. What is NIC? What is its importance in networking?

15. Suppose that you are the administrator of network lab in one Institution. Your
manager directed you to replace 10 Mbps switch by 10 Mbps Ethernet hub
for better service. Will you agree with this decision? Justify your answer.

16. You need to transfer a biodata file stored in your computer to your friend’s
computer that is 10 kms away using telephone network

a. Name the device used for this at both ends.

b. Explain how the file is send and received inside the device, once a
connection between two computers is established.

17. When is a repeater used in a computer network?

18. Compare infrared and Bluetooth transmission.

19. Identify and explain the device used for connecting a computer to a telephone
network.

20. Briefly explain LAN topologies.

344

21. Briefly describe TCP/IP protocol.

22. What is a MAC address? What is the difference between a MAC address and
an IP address?

Long answer type

1. How are computer networks classified, based on size?

2. Compare different LAN topologies.

3. Explain various types of guided communication channels.

4. Compare different unguided media.

5. Define the term protocol. Briefly describe any two communication protocols.

6. Briefly describe the various communication devices used in computer networks.

7. Which is/are communication channel(s) suitable for the following situations?

a. Setting up a LAN.

b. Transfer of data from a laptop to a mobile phone.

c. Transfer of data from one mobile phone to another.

d. Creating a remote control that can control multiple devices in a home.

e. Very fast communication between two offices in two different countries.

f. Communication in a hilly area.

g. Communication within a city and its vicinity where cost of cabling is too
high.

lllll History of the Internet

lllll Connecting the computer to

the Internet

lllll Types of connectivity

o Dial up

o Wired broadband

o Wireless broadband

o Internet access sharing

methods

lllll Services on Internet

o www

o Search engines

o Email

o Social media

lllll Cyber security

o Computer virus, worm, Trojan

horse, spams, hacking,

phishing, denial of service

attack, man-in the-middle

attacks

lllll Preventing network attacks

o Firewall, antivirus scanners,

cookies

lllll Guidelines for using

computers over Internet

lllll Mobile computing

lllll Mobile communication

o Generations in mobile

communication

o Mobile communication

services

lllll Mobile operating system

Key Concepts

12

In the previous chapter we saw that the Internet
is the largest computer network in the world. We
use the Internet to check SSLC results, to submit
applications for higher secondary school
admissions and check its status, to get
information about various types of scholarships
and to submit applications for receiving them,
etc. Can you imagine life without the Internet
today? It would be difficult for us to manage all
the above tasks without it. Internet has definitely
made life easier for us. It has influenced our daily
life to a great extent. Because of its wide
popularity and increase in use even the television
sets with facilities for Internet connectivity have
come up in markets.

People generally use the Internet to search
information, access e-mails, make bill payments,
for online shopping, online banking, to connect
with people in social networking sites, etc. The
reach of Internet is very vast and it helps in
reducing cost and time. Issues like online intrusion
to privacy, online fraud, cyber-attacks, etc. are
becoming common now. Apart from the Internet
and its access methods, let us discuss the various
services provided by the Internet like search
engines, e-mail, social media and about the threats
and preventive measures while using Internet in
this chapter.

346

12.1 History of the Internet

The Internet started as a small network through a project by the United States
Department of Defence by the name ARPANET (Advanced Research Projects
Agency Network). During 1970s this military network was connected to the
computers of Universities and companies that worked for the Department of
Defence. In 1984 the military network split from ARPANET to form MILNET to
be used by the American military only. ARPANET which used TCP/IP protocol
for communication was thereafter used for scientific research and information
sharing. Later, several other networks merged with ARPANET to form a large
network. ARPANET is considered as the first wide area network (WAN).Vinton
Gray Cerf who was instrumental in the development of Internet and TCP/IP
protocol, is considered as the father of Internet.

Fig. 12.1:Tim Berners Lee

(1955 -)

Vinton Gray Cerf (1943 -) popularly called Vint
Cerf, an American computer scientist, is widely
known as ‘Father of the Internet’. He was
instrumental in the initial development of Internet

along with his fellow American computer scientist Bob Kahn.
He worked for the United States Department of Defence
Advanced Research Projects Agency (DARPA) and had a key role in the
development of TCP/IP protocol. He was also involved in the formation of
ICANN.

In 1989, Tim Berners Lee, a researcher, proposed the idea of
World Wide Web (WWW). Tim BernersLee and his team are
credited with inventing Hyper Text Transfer Protocol (HTTP),
HTML and the technology for a web server and a web
browser. Using hyperlinks embedded in hypertext the web
developers were able to connect web pages. They could design
attractive webpages containing text, sound and graphics. This
change witnessed a massive expansion of the Internet in the
1990s.

Various types of computers loaded with diverse operating
systems in different organisations at geographically distant locations joined this
network making it a global phenomenon.TCP/IP protocol is used as the
communication protocol for Internet. Any computer that joins Internet should follow
the TCP/IP protocol. In 1998, Internet Corporation for Assigned Names and
Numbers (ICANN) was established. ICANN does not control the Internet content;
rather it develops policies on the Internet’s Uniform Resource Locators (URL).

12. Internet and Mobile Computing

347

Today, Internet is the largest public network that connects billions of computers
all over the world and provides several services like searching, e-mail, file transfer,
social networking, etc. The Internet is an interconnected system of computer
networks that serves the users all over the world.

An intranet is considered as a private computer network similar to Internet that
uses TCP/IP protocol to share information, software or services within an
organisation. An intranet can host websites, provide e-mail service, file transfer
and other services available on Internet.

When an intranet is made accessible to some computers that are not part of a
company’s private network it is called an extranet. A network that allows vendors
and business partners to access a company resource can be considered as an example
of extranet.

12.2 Connecting the computer to the Internet

As we know today, the Internet has become very popular and almost all organisations
and people around the world are joining it. Earlier, people used the Internet to
search for information and check e-mails only, but today It is used to book train
tickets, recharge mobile phones, Internet banking and a lot more. Therefore almost
all of us require an Internet connection in our computers or mobile devices.

The following are the hardware and software requirements for connecting a computer
to the Internet:

l A computer with Network Interface Card (wired/wireless) facility and an
operating system that supports TCP/IP protocol

l Modem

l Telephone connection

l An Internet account given by an Internet Service Provider (ISP)

l Software like browser, client application for e-mail, chat, etc.

Nowadays desktop computers or laptops are not the only devices that we use to
connect to the Internet. People have also started using tablets, smart phones, etc. to
browse the Internet. Some of these devices come with built-in modems, whereas
others use a wireless dongle or wireless connection from a modem to access the
Internet.

12.3 Types of connectivity

Today most websites use images and multimedia content to make webpages more
attractive. Several websites provide videos that can be downloaded or viewed on

348

the Internet. Instead of distributing software in CDs or other storage media, it is
now distributed online by various vendors. The latest trend shows that software
like word processors, spreadsheets, antivirus, etc. are used online on a rental basis
instead of installing it on each computer. In all these cases, a large volume of data
is transferred online. Therefore the speed or data transfer rate of the Internet is an
important aspect. Data transfer rate is the average number of bits transferred
between devices in unit time.

1 kbps = 1000 bits per second

1 Mbps = 1000 kbps

1 Gbps = 1000 Mbps

Difference between unit symbols b and B

b stands for bit

B stands for Byte

Difference between unit symbols k and K

k = 1000 = 103

K = 1024 = 210

Here ‘k’ is a decimal unit and ‘K’ is a binary unit of measurement. But for
Mega, Giga and Tera, both decimal and binary units use ‘M’, ‘G’ and ‘T’ as
symbols respectively. They are differentiated from the context in which
they are used.

Note that data transfer rate is measured in decimal units and memory is
measured in binary.

The main factor that decides Internet access speed is the type of connectivity we
choose to link to the Internet. Internet connectivity is classified based on the speed
of the connection and the technology used. They can be broadly classified as dial-
up connectivity, wired broadband connectivity and wireless broadband connectivity.
The data transfer rates of each type of connectivity may vary as techonology
advances.

12.3.1 Dial-up connectivity

A dial-up connection uses the conventional telephone line and a dial-up modem to
dial and connect to the server at the Internet Service Provider (ISP). Figure 12.2
shows the dial-up connectivity system. As the connection is made by dialing, it
takes time to connect to the server at the ISP. This connection commonly uses a 56
kbps modem that can transmit data up to a maximum speed of 56 kbps. This slow

12. Internet and Mobile Computing

349

connection is comparatively less costly when compared to other types of connections.
Another disadvantage is that a dial-up connection requires exclusive use of the
telephone line, i.e., while accessing Internet, we cannot make or receive telephone
calls (voice calls). Nowadays, broadband connections that have a higher speed are
replacing dial-up connections.

12.3.2 Wired broadband connectivity

The term broadband refers to a broad range of
technologies that help us to connect to the Internet at a
higher data rate (speed). Wired broadband connections
are ‘always on’ connections that do not need to be dialled and connected. Broadband
connections use a broadband modem (refer Figure 12.3) and allow us to use the
telephone even while using the Internet. Table 12.1 shows the comparison between
dial-up and wired broadband connections.

Fig. 12.3: Broadband
modem

Popular broadband technologies are Integrated Services Digital Network (ISDN),
Cable Internet, Digital Subscriber Line (DSL), Leased Lines and Fiber to the Home
(FTTH).

a. Integrated Services Digital Network (ISDN)

ISDN is a broadband service capable of transporting voice and digital data. Most
ISDN lines offered by telephone companies give users two lines. The users can use

Fig. 12.2:Dial-up connectivity

Computer

ModemTelephone
lines

Internet Service
Provider

Modem

• Slow connection, speed upto 56 kbps • High speed connection,

speed usually higher than 256 kbps

• Requires dialing to connect to ISP • Always on connection

• Uses telephone line exclusively • Simultaneous use of voice and Internet

• Uses dial-up modem • Uses broadband modem

Table 12.1: Comparison between dial-up and wired broadband connections

Dial-up connection Wired broadband connection

350

one line for voice and the other for data, or they can use both lines for data. ISDN
lines are capable of offering data transfer rates upto 2 Mbps.

b. Cable Internet

Cable Internet access provides Internet access using coaxial cables laid for television
signal transmission to our homes. The service provider uses a cable modem at our
home to connect our computer to cable network. Cable TV systems are designed
to carry large bandwidth and therefore cable Internet can provide speeds between
1 Mbps to 10 Mbps.

c. Digital Subscriber Line (DSL)

DSL is another broadband service that provides connection to the Internet through
standard telephone lines. DSL allows the user to use copper telephone lines for
both Internet communication and for making voice calls simultaneously. It is
composed of several subcategories, the most common being Asymmetric Digital
Subscriber Line (ADSL). ADSL is a communication technology that allows faster
flow of information over a telephone line. The down stream speed of ADSL
services typically ranges from 256 kbps to 24 Mbps. This connection requires an
ADSL modem at our homes/offices. ADSL is the most popular broadband service
available in India.

d. Leased Line

Leased lines are dedicated lines used to provide Internet facility to ISPs, business,
and other large enterprises. An Internet leased line is a premium Internet connection
that provides speed in the range from 2 Mbps to 100 Mbps and is comparatively
costly. This is why leased lines are used only for connecting large campus of
organisations like educational institutions to Internet.

e. Fibre to the Home (FTTH)

Fibre to the Home (FTTH) uses optical fibres for data transmission. Optical fibres
are laid from the ISP to our homes. FTTH technology has been accepted worldwide
to implement high speed Internet to the home. Since optical fibres are known to
have high bandwidth and low error rates, they provide very high speed connectivity.
A Network Termination Unit (NTU) is installed in our homes, which is connected
to our computer through an FTTH modem.

12.3.3 Wireless broadband connectivity

Wireless broadband connectivity provides almost the
same speed as that of a wired broadband connection.
The popular wireless broadband accesses are Mobile
Broadband, Wi-MAX, Satellite Broadband and
Wi-Fi. Some of the wireless modems available for
use to connect to Internet are shown in Figure 12.4.

Fig. 12.4 : Wireless broadband
modems

12. Internet and Mobile Computing

351

a. Mobile broadband

Mobile broadband is wireless Internet access using mobile phone, USB wireless

modem, tablet or other mobile devices. The modem is built into mobile phones,

tablets, USB dongles, etc. Mobile broadband offers the freedom to allow the user

to access the Internet from anywhere on the move. This technology uses the cellular

network of mobile phones for data transmission. The mobile technology for data

transmission has been changing from 2nd Generation (2G) through 3rd Generation

(3G) to the current 4th Generation (4G). The speed of data transmission increases

with the progression of generations of mobile technology.

b. Wi-MAX

In the previous chapter we learned that Worldwide Interoperability for Microwave

Access (Wi-MAX) is used as an alternative for wired broadband. Wi-MAX offers

a Metropolitan Area Network which can provide wireless Internet upto a distance

of 50 Km. Connectivity is provided using devices like Wi-MAX handsets, USB

dongles, devices embedded in laptops, etc. that have a Wi-MAX modem integrated

in it. This technology provides a maximum connection speed of upto 70 Mbps.

c. Satellite broadband

Satellite broadband technology is a method by which Internet connectivity is

provided through a satellite. A Very Small Aperture Terminal (VSAT) dish antenna

and a transceiver (transmitter and receiver) are required at the user’s location. A

modem at the user’s end links the user’s computer with the transceiver. Download

speed is upto 1 Gbps for this technology. It is among the most expensive forms of

broadband Internet access. They are used by banks, stock exchanges, governments,

etc. and also for Internet access in remote areas.

12.3.4 Internet access sharing methods

An Internet connection can be shared among several computers using a LAN,

Wi-Fi network or Li-Fi network.

a. Using LAN

The Internet connected to a computer in a Local Area Network (LAN) can be

shared among other computers in the network. This can be done either using features

available in the operating system or using any proxy server software available in

the market. Sharing can also be done by connecting computers directly to the router

using a cable.

352

1. ARPANET stands for _________.

2. Who proposed the idea of www?

3. The protocol for Internet communication is ________.

4. What do you mean by an ‘always on’ connection?

5. A short distance wireless Internet access method is _______.

Check yourself

Fig. 12.5 : Wi-Fi network

b. Using Wi-Fi network

We have heard of Wi-Fi campuses in large educational institutions, coffee shops,
shopping malls, hotels, etc. We also know that some of the broadband modems at
our homes and schools offer Wi-Fi Internet access.Wi-Fi is a popular short distance
data transmission technology that is used for network access, mostly Internet. Wi-
Fi locations receive Internet connection through any one of the above mentioned
wired or wireless broadband access methods, as discussed in the previous
section.They provide us Internet connectivity through
a Wi-Fi router or a wireless network access point.
Such an access point, popularly called hotspot, has a
range of about 100 meters indoors and a greater range
outdoors. We access Internet in our Wi-Fi enabled
devices like laptops, tablets, mobile phones, etc.
through these hotspots. A drawback of Wi-Fi is that
it is less secure than wired connections.

c. Using Li-Fi network

Li-Fi (Light Fidelity) is a fast optical version of Wi-Fi, which uses visible light for
data transmission. The main component of this communication is a bright LED
(Light Emitting Diode) lamp that can transmit data and a photo diode that serves
as the receiver. LEDs can be switched on and off to generate a binary string of 1s
and 0s. The flickering of this LED is so fast that the human eye cannot detect it. A
data rate of over 100 Mbps is possible using this technique as light offers very high
bandwidth. Another advantage is that since Li-Fi uses light, it can be used in aircrafts
and hospitals where radio waves may cause interference. It can also be used
underwater where Wi-Fi does not work. It provides greater security as light cannot
penetrate walls when compared to Wi-Fi. One of the shortcomings of Li-Fi is that
it works only in direct line-of-sight. In future this technology can be further developed
to use light bulbs as a source of Internet.

12. Internet and Mobile Computing

353

12.4 Services on Internet

The Internet offers a variety of services. Services like WWW, e-mail, search engines,

social media, etc. are widely used throughout the globe. In this section we shall
discuss some of the services of Internet.

12.4.1 World Wide Web (WWW)

The World Wide Web (WWW) is a system of interlinked hypertext documents
accessed via the Internet. It is a service on the Internet that uses Internet infrastructure.
WWW is a huge client-server system consisting of millions of clients and servers
connected together. Each server maintains a collection of documents and they can
be accessed using a reference called Uniform Resource Locator (URL). These
documents may contain text, images, videos and other multimedia content. It may
also contain hyperlinks to documents on different servers. Selecting a hyperlink
results in a request to fetch that document/web page from the server and display
it. The WWW works by establishing hypertext links between documents anywhere
on the network. Clients can access the documents on the servers using software
called browser. A browser is responsible for properly displaying the documents.

a. Browser

A web browser is a software that we use to retrieve or present information and to
navigate through web pages in the World Wide Web. The document to be displayed
is identified using a URL. A URL consists of its DNS name and the file name to be
retrieved. It also specifies the protocol for transferring the document across the
network. A browser is capable of displaying text, images, hypertext links, videos,
sounds, scripts (program code inside a web page), etc. in a web document/page.
Most of WWW documents are created using Hyper Text Markup Language
(HTML) tags and are called web pages. The web browser interprets these tags and
displays a formatted page. It allows us to navigate through web pages using the
hyperlinks available in web pages. Some common browsers are Google Chrome,

Internet Explorer, Mozilla Firefox, Opera, and Safari. Icons of some popular

browsers are shown in Figure 12.6. Some of these browsers have a mobile version
that can be used in mobile operating systems.

Prepare a comparison chart on the different methods of Internet

connection.
Let us do

354

b. Web browsing

All of us have visited web sites by entering the website address (URL) into web
browsers and then using the hyperlinks in it to move through the web pages.
Traversing through the web pages of World Wide Web is called web browsing.
Major operations performed while web browsing are shown in Figure 12.7.

Google Chrome Internet Explorer Mozilla Firefox Opera Safari

Fig. 12.6 : Icons of popular browsers

Suppose you wish to visit the website ‘www.kerala.gov.in’. What will you do? You
will enter this URL in the address box of the web browser and press Enter key.
The steps a browser will follow to display a webpage may be summarised as follows.

1. The browser determines the URL (http://www.kerala.gov.in) entered.

2. The browser then sends a request to the DNS server of the user’s ISP to get
the IP address of the URL.

3. The ISP’s DNS server replies with the IP address.

4. The browser then makes a TCP connection to the web server at the IP address
(www.kerala.gov.in).

5. Then it sends a GET request for the required file (web page) to the web server.

6. The web server returns the web page.

Fig. 12.7 : Web browsing

ISP’s DNS server

Web server

12. Internet and Mobile Computing

355

7. The TCP connection is released.

8. The browser processes the contents of the webpage and displays it.

12.4.2 Search engines

There are millions of pages available
on the Internet that contain
information on a variety of topics.
But it is very difficult to search for a
topic in this large collection of web
pages. Internet search engine
websites are special programs that
are designed to help people to find
information available in World Wide
Web. Search engine programs search
documents available on World Wide
Web for specified keywords and
return a list of the documents/web
pages matching the keywords.

Let us discuss the technology behind
these websites. Search engine web
sites use programs called web
crawlers or spiders or robots to search the web. Web crawlers search the web pages
stored in the different web servers and find possible keywords. The search engine
website stores these keywords along with their URLs to form an index in the search
engine’s web servers. When we use the search engine website to search a particular

Finds new pages or

changed

information on a

web page.

Fig. 12.8 : Working of a search engine

Fig. 12.9 : Search results of different search engines

Internet

vi
si

ts

crawls

launches
Spider/
Crawler

Returns to create an
index in the server

Search engine server

356

topic (keyword), it does not search the World Wide Web. It only searches the index,
which the web crawler programs have created in the search engine’s web server for
the topic/keyword. Search engines select a list of URLs where the particular topic
is found from the index and displays it as the result. Figure 12.8 shows the working
of a search engine.

Some of the most popular web search engine sites are Google, Bing, Yahoo Search,
Ask, etc. Figure 12.9 shows the search results of different search engines.

12.4.3 E-mail

E-mail enables us to contact any person in the world in a matter of seconds. Billions
of e-mail messages are sent over the Internet every day. Electronic mail or e-mail
is a method of exchanging digital messages between computers over Internet.

E-mail has become an extremely popular communication tool. The e-mail will be
delivered almost instantly in the recipient’s mail box (Inbox). Apart from text matter,
we can send files, documents, pictures, etc. as attachment along with e-mail. The
same e-mail can be sent to any number of people simultaneously. Figure 12.10
shows a sample e-mail message.

Fig. 12.10 – A sample e-mail message

Most of you will have an e-mail address. The structure of an e-mail address is:
user name@domain name. An example of an e-mail address is

scertkerala@gmail.com

An e-mail address consists of two parts separated by @ symbol. The first part
scertkerala is the username that identifies the addressee and the second part gmail.com

is the domain name of the e-mail server, i.e., the name of the e-mail service provider.

12. Internet and Mobile Computing

357

E-mails can be accessed using websites like gmail.com, hotmail.com, etc. that provide
web applications consisting of functions to send, receive, forward, reply and organise
e-mails. Such a facility is popular and is commonly referred to as web mail.

E-mails can also be accessed using e-mail client software that is installed in our
computers. Such software uses our e-mail address and password to retrieve e-mails
from the e-mail service provider’s server and store it in our computer. An e-mail
client allows to send, receive and organise e-mail. The messages sent when the
computer is offline are stored in the program and send later when computer is
online. For receiving messages, e-mail client applications usually use either the Post
Office Protocol (POP) or the Internet Message Access Protocol (IMAP). The
popular e-mail client applications are Microsoft Outlook and Mozilla Thunderbird.

a. Sections of an e-mail

A client software gives provisions to enter the following sections. Figure 12.11
shows the major sections of an e-mail.

To (Recepient Address) – A box to provide the e-mail addresses of the primary
recipients to whom the e-mail has to be sent.

Cc (Carbon copy) – Write the e-mail addresses of the secondary recipients to whom
the message has to be sent.

Bcc (Blind carbon copy) - Write the e-mail addresses of the tertiary recipients who
receive the message. When the message is received the primary and secondary
recipients cannot see the e-mail addresses of the tertiary recipients in the message.
Depending on e-mail service used, the tertiary recipients may only see their own
e-mail address in Bcc, or they may see the e-mail addresses of all recipients.

Fig. 12.11 : Composing an e-mail

358

Subject – Provide a meaningful subject for your conversation here. This helps you

to identify a conversation with a particular person when you search your e-mails

later.

Content – Type your message here. Today most of the e-mail service providers

offer features to create an attractive message by giving colours, changing font styles,

size, etc.

Attachment facility allows us to send files like documents, pictures, etc. along with

an e-mail. The ‘Send’ button is used to send the message to the recipients. ‘Reply’

button allows you to send a reply back to the sender of the message received.

‘Forward’ button helps you to send a message received by you to other people.

b. Working of e-mail

Have you ever wondered how e-mail is sent from your computer to a friend on the

other side of the world? When an e-mail is sent from your computer using web mail

or e-mail client software, it reaches the e-mail server of our e-mail service provider.

From there the message is routed from sender’s e-mail server all the way to the

recipient’s e-mail server. The recipient’s e-mail server then delivers the e-mail to the

recipient’s mail box (inbox), which stores the e-mail and waits for the user to read

it. Simple Mail Transfer Protocol (SMTP) is used for e-mail transmission across

Internet. Figure 12.12 shows the working of e-mail.

Fig. 12.12:Working of email

1. Sender
composes

message using
e-mail client/

web mail

3. Message
traverses Internet

(probably passing
through several

routers)

4. Message arrives at
receiving server and is

placed in recipient’s
mailbox file/folder

2. Sender uploads
message to SMTP

server

SMTP
server

5. Recipient’s e-mail client/ web mail checks
mailbox for new messages and downloads
message

6. Recipient reads
message using e-
mail client/ web mail.

SMTP/POP3/
IMAP Server

12. Internet and Mobile Computing

359

c. Advantages of using e-mail

The benefits of using e-mail facility are listed below.

• Speed: An e-mail is delivered instantly to any location across the globe. We
can send the same e-mail to multiple users simultaneously.

• Easy to use: We can send and receive e-mails, organise our daily conversations
and save them easily on our computer.

• Provision of attachments: The attachment feature allows to send pictures,
files, documents, etc. along with e-mail.

• Environment friendly: e-mails do not use paper and save a lot of trees from
being cut down.

• Reply to an e-mail: When we need to reply to an e-mail, we can use the
provision of attaching previous e-mails as reference. It helps to refresh the
recipient about the subject.

• Cost-effective: When compared to fax or conventional mail, e-mail is less
expensive.

• Available anywhere anytime: Messages can be read at user’s convenience.
Access to mail box is available anytime.

The e-mail service, though beneficial in our daily life, can be misused in different
ways as listed below.

• E-mails may carry viruses: Viruses send along with e-mail can harm our
computer system. Viruses can also illegally access our e-mail address book
and spread virus infected messages to all e-mail addresses in it.

• Junk mails: Checking and deleting unwanted mails consume a lot of time.

Internet of Things (IoT)

Can you imagine a fridge which checks its egg tray and reminds you
to buy eggs in your mobile phone or orders the nearby grocery store
to supply eggs to your home; an air conditioner that can be switched

on or off using your mobile phone; or a car that automatically reminds you about
filling fuel as you approach a fuel pump? This is being made possible using Internet
of Things (IoT). IoT is the concept of connecting all devices like mobile phones,
fridges, cars, air conditioners, lamps, wearable devices, etc. to the Internet. Each
device is provided with a unique IP address which identifies it and allows it to
transfer data over Internet without human intervention. The huge increase in the
number of IP addresses due to the implementation of IPv6 supports the
introduction of this technology. The IoT can be used to monitor health of patients
and inform the doctor about an urgency, applied to things which help us reduce
wastage like power, water, etc. and improve the way we work and live.

360

12.4.4 Social media

All of us are familiar with wikipedia, the free encyclopedia in Internet. We have
also heard about people responding to social issues through facebook, twitter, etc.
Also we know that people use youtube to share videos and for promotion of
products or business. All of these are part of social media which is changing the
way we communicate, entertain and live. Social media refers to the use of mobile
and web-based technologies through which individuals and communities can create,
share, discuss and modify content.

In social media, interactions among people happen in virtual communities and
networks over Internet. These digital technologies influence the formation and
activities of civil communities to a great extent.

a. Classification of social media

The various types of social media that exist on the Internet are:
Internet forums, social blogs, microblogs, wikis, social networks,
content communities and a lot more. Figure 12.13 displays logos
of popular social media websites. Here we discuss the most
popular classifications of social media.

1. Internet forums

An Internet forum is an online discussion web site where people can engage in
conversations in the form of posted messages. Each Internet forum will have sub
forums which may have several topics. Each discussion on a topic is called a thread.
People can login and start a thread or respond to discussion in a thread. Some
forums allow anonymous login also. Discussions can be about programming, social/
political issues, fashion, etc. These discussions help us to learn and find solutions to
problems. Ubuntu Forum – a community that provides help on Ubuntu is a popular
forum.

2. Social blogs

A blog (web log) is a discussion or informational website consisting of entries or
posts displayed in the reverse chronological order i.e., the most recent post appears
first. Some blogs provide comments on a particular subject; others function as
personal online diaries and some others as online brand advertising for a particular
individual or company. Initially blogs were created by a single user only. But now
there are multi-author blogs that are professionally edited. Blogger.com and
Wordpress.com are popular sites that offer blogging facility.

3. Microblogs

Microblogs allow users to exchange short sentences, individual images or video
links. People use microblogs to share what they observe in their surroundings –

Fig. 12.13 Logo of
popular social
media websites

12. Internet and Mobile Computing

361

information about events and opinions about topics from a wide range of fields.
Microblogging offers a communication mode that is spontaneous and can influence
public opinion. Twitter.com is a popular microblogging site.

4. Wikis

Wikis allow people to add content or edit existing information in a web page, to
form a community document. Wiki is a type of content management system. Editing
done by users is very closely monitored by other editors and therefore incorrect
information, advertising, etc. are removed immediately. wikipedia.org – the free
online encyclopedia is the most popular wiki on web.

Wikipedia is a free online encyclopedia to which
anyone can add content and edit. Wikipedia was formally
launched on 15th January 2001 by Jimmy Wales and Larry
Sanger using the concept and technology of a wiki. Wikipedia consists

of over 3 crore articles in around 300 languages. The english edition alone includes
around 44 lakhs articles and is one of the most visited websites on Internet. Articles
on topics range from very broad to highly specific. Each article consists of a number
of links to Wikipedia itself and other external resources. Since users are able to
create and edit articles, the quality of the content in the articles depends on the
person who contributes and edits it. The Malayalam edition of Wikipedia is available
at ml.wikipedia.org.

5. Social networks

Social networking sites allow people to build personal web pages and then connect
with friends to communicate and share content. We can share text, pictures, videos,
etc. and comment to the posts. A social networking site can be for general topics or
for a specific area like professional networking. Public opinion is greatly influenced
by the discussions and posts in these websites. Popular social networking sites are
facebook.com and linkedin.com.

6. Content communities

Content communities are websites that organise and share contents like photos,
videos, etc. Youtube.com is a popular video sharing site and flickr.com shares
pictures.

Most of today’s social media websites offer more than one type of service, i.e.,
social networking and microblogging; blogging and internet forum; etc. Studies
have revealed that social media is now recognised as a social influencer.

b. Advantages of social media

• Bring people together: Social networking allows people to find long-lost
childhood friends and make new ones.

362

• Plan and organise events: These sites help users to organise and participate
in events.

• Business promotion: Social media offers opportunities for businesses to
connect with customers, implement marketing campaigns, manage reputation,
etc.

• Social skills: These sites allow people to express their views over a particular
issue and become an agent for social change.

c. Limitations in use of social media

• Intrusion to privacy: The personal information of users can be used for
illegal activities. Information like the e-mail address, name, location and age
can be used to commit online crimes.

• Addiction: Addiction to these sites wastes our valuable time. It will negatively
affect our mental states and may lead to depression and tension. It can reduce
the productivity of workers in an organisation. Students may lose concentration
and this in turn may affect their studies.

• Spread rumours: Social media will spread the news very quickly. It can facilitate
or worsen a crisis by spreading negative information or misinformation at an
incredible speed.

d. Social media interaction – Best practices

• Avoid unnecessary uploading of personal data like e-mail address, telephone
number, address, pictures and videos.

• Setting time schedule for using these sites can save wastage of time.

• In social media websites like wikis and blogs, photo and video sharing are
public. What you contribute is available for all to see. Be aware of what you
post online. Avoid posting content you may regret later.

• Set your privacy levels in such a way that you know exactly who can see your
posts and who can share them.The three basic privacy levels in social media
are private, friends and public.

• Prepare a chart on the different social networking websites and

their uses.

• Create a blog of your class and update the activities like

achievements in sports, arts, class tests, assignments, etc.

• Conduct a survey in your school to find the most popular Internet

browser. Also prepare a chart based on the collected data.

Let us do

12. Internet and Mobile Computing

363

12.5 Cyber security

Today, we know that people use Internet to transfer personal and confidential
information or make payments, organisations like banks perform all their financial
transactions using their computer network, railways do business – selling tickets,
information on running trains, etc. using the railway’s computer network. Can you
imagine the volume of financial loss and other issues that may occur if these
computer networks are not available, even for a short time?

Security to computer networks is vital because important data can be lost and privacy
can be violated. Further, work or business can be interrupted for several hours or
even days if a network comes under attack. With the arrival of the Internet, security
has become a major concern as people started using Internet as a tool for
communication and doing business. Every organisation should monitor its network
for possible intrusion and other attacks. Here we discuss the common threats that
affect a computer network.

12.5.1 Computer virus

A computer virus is a program that attaches itself to another program or file enabling
it to spread from one computer to another without our knowledge and interferes
with the normal operation of a computer. A virus might corrupt or delete data on
our computer, replicate itself and spread to other computers or even erase everything
on the hard disk. Almost all viruses are attached to executable files. A virus may
exist on a computer, but it cannot infect the computer unless this malicious program
is run or opened. Viruses spread when the file they are attached to, is transferred
from one computer to another using a portable storage media (USB drives, portable
hard disks, etc.), file sharing, or through e-mail attachments.Viruses have become a
huge problem on the Internet and have caused damage worth billions.

1. Give an example for an e-mail address.

2. Which of the following is not a search engine?

(a) Google (b) Bing (c) Facebook (d) Ask

3. Name the protocol used for e-mail transmission across Internet.

4. What is a blog?

5. Name two services over Internet.

6. Each document on the web is referred using ____.

Check yourself

364

12.5.2 Worm

A computer worm is a stand alone malware (malicious software) program that

replicates itself in order to spread to other computers. Worms spread from

computer to computer on its own. Unlike a virus, it does not need to attach itself

to a program to propagate. A worm takes advantage of the data transport features

of the computer system to travel without help. Worms always slow data traffic on

the network by consuming bandwidth, whereas viruses almost always corrupt or

modify files on a computer. The most destructive effect that a worm can cause is

through e-mails. A worm can send a copy of itself to every address in an e-mail

address book. Then, the worm sends itself to everyone listed in each of the receiver’s

address book and so on.

12.5.3 Trojan horse

A Trojan horse, will appear to be a useful software but will actually do damage
once installed or run on the computer. Users are typically tricked into loading and
executing it on their systems. When a Trojan is activated on a computer, they can
cause serious damage by deleting files and destroying information on the system.
Some Trojans create a backdoor on the computer. This gives malicious users access
to confidential or personal information in the computer through the network. Unlike
viruses and worms, Trojans do not reproduce by infecting files nor do they self-
replicate.

I LOVE YOU worm

This worm affected computers in 2000 by overwriting most of

the files. Users received this worm as an e-mail with a subject

line “ILOVEYOU” and with a file attachment LOVE-LETTER-FOR-

YOU.TXT.vbs. Those who clicked the attachment got their computers

affected by the worm and lost their files.

Ie0199.exe Trojan

E-mail users received a message that offered a free upgrade to

Internet Explorer that contained an executable file Ie0199.exe

as attachment. This e-mail instructed the user to download and install this

program for the upgrade. The users who followed these instructions got their

files infected.

12. Internet and Mobile Computing

365

12.5.4 Spams

Spams or junk mails are unsolicited e-mails sent
indiscriminately to persons to promote a product
or service. Spammers collect e-mail addresses
from chat rooms, websites, customer lists,
newsgroups, etc. Clicking on links in spams may
send users to websites that host certain viruses.
Today most e-mail service providers provide e-
mail filters that can successfully separate genuine
e-mail from spams as indicated in Figure 12.14.

12.5.5 Hacking

In computer networking, hacking is a technical effort to manipulate the normal
behavior of network connections and connected systems. Hacking is performed
both by computer security experts and by computer criminals. Computer experts
perform hacking to test the security and find the vulnerabilities in computer networks
and computer systems. Such computer experts are often called ‘white hats’ and
such hacking is called ethical hacking.

Computer criminals break into secure networks to destroy data or make the network
unusable for those who are authorised to use the network. They do this with the
intent of stealing confidential data or destroying files. Such criminals are called
‘black hats’.

Fig. 12.14 Collection of spams in the
e-mail menu

Trojan War

In Greek mythology, the Trojan War was
waged against the city of Troy by the
Greeks after Prince Paris of Troy stole

away the Greek Queen Helen. The Greeks fought a
battle with the city of Troy for ten long years. The
Greek soldiers got fed up and wanted to return to their homes. Then, Athena,
the Goddess of war gave the Greeks an idea to end the war. According to
the plan, they built a big hollow wooden horse. The hollow horse was filled
with soldiers and they left it as a gift for the Trojans. All other soldiers
pretended to abandon their camp. Trojans thought that they had won the
war. They pulled the huge horse to their city. They started celebrations of
their victory. In the night when everyone was asleep, the Greek soldiers
opened the horse and came out. They killed the sleeping soldiers of Troy and
rescued Queen Helen.

366

There is another category of hackers called grey hat hackers, who fall between white
and black hackers. They sometimes act illegally, though with good intentions, to
identify the vulnerabilities. Grey hat hackers do this to achieve better security.

12.5.6 Phishing

Phishing is a type of identity theft that occurs online. Phishing is an attempt to
acquire information such as usernames, passwords and credit card details by posing
as the original website, mostly that of banks and other financial institutions. Phishing
websites have URLs and home pages similar to their original ones. The act of creating
such a misleading website is called spoofing. People are persuaded to visit these
spoofed websites through e-mails. Users are tempted to type their usernames,
passwords, credit card numbers, etc. in these web pages and lose them to these
websites. These frauds use this information to steal money. Phishing is currently the
most widespread financial threat on the Internet. The URL in Figure 12.15 indicates
that it is a phishing website.

12.5.7 Denial of Service (DoS) attack

A Denial of Service(DoS) attack is usually aimed at a web server. Such an attack
forces the server/computer to restart. An attack in which the attackers’ goal is to
shut down the target server rather than stealing data is called DoS attacks.This
prevents genuine users of a service/website on the web server from using that
service. This attack can be done using a single computer called Denial of Service
(DoS) attack or using more than one computer called Distributed Denial of Service
(DDoS) attack.

Fig. 12.15:A phishing website

12. Internet and Mobile Computing

367

We have learned that when we type a
website address in the browser and press
the Enter key, the browser requests for that
web page from the server. DoS attacks
sends large number of such requests to the
server until it collapses under the load and
stops functioning. A DoS attack using a
computer on a network slows down the
network by flooding a server with a large
number of requests. A DDoS attack uses
multiple computers in the network that it
has previously infected. These infected
computers called ‘zombies’, work together
and send out large quantities of fake
messages/requests to the target server.
Figure 12.16 shows the Distributed Denial
of Service attack. This increases the amount of data traffic to the target server. This
leads to server overload and the server is unable to provide services to its users.
The target computer is thus forced to reset / restart leading to unavailability of its
service for a period of time. A DoS attack interrupts network service for some
period, but it does not cause severe damage to files as in the case of a virus attack.

12.5.8 Man-in-the-Middle attacks

A man-in-the-middle attack refers to an attack in which an attacker secretly intercepts
electronic messages between the sender and the receiver and then captures, inserts
and modifies messages during message transmission. If sender transmits messages
without appropriate security, the attacker may exploit the vulnerabilities in the
network to capture and modify the messages and send the modified messages to
the receiver. Since the network transmission still works properly, both the sender
and receiver will find it difficult to notice that the messages have been trapped or
modified by an intruder. If we use such a computer for online transactions, the man
in the middle may capture our bank account number and password to steal money,
leading to financial loss. Encrypted connections such as HTTPS (HTTP Secure),
SFTP (Secure FTP) etc. should be used for secure transactions, so that intruders
cannot modify the messages.

12.6 Preventing network attacks

Threats to computers and networks are a major issue as long as information is
accessible and transferred across the Internet. Different defense and detection
mechanisms are developed to deal with these attacks.

Fig. 12.16: Distributed Denial of Service
(DDoS) attacks

Attacker

Handler Handler

Victim

Zombies

368

12.6.1 Firewall

A firewall is a system of computer
hardware and software that provides
security to the computer network in an
organisation. A firewall controls the
incoming and outgoing network traffic by
analysing the data and determining
whether they should be allowed through

or not, based on a rule set. Firewalls deny malicious data from entering into the
computer networks as shown in Figure 12.17.

Sandboxing

Sandboxing is a technique through which programs that are
suspected to be infected with a virus can be run. Through

sandboxing such programs are run in a separate memory area and therefore
cannot damage our operating system.

12.6.2 Anti-virus scanners

Viruses, worms and Trojan horses are all examples of malicious software (malware).
Antivirus tools are used to detect them and cure the infected system. Anti-virus
software scans files in the computer system for known viruses and removes them if
found. The anti-virus software uses virus definition files containing signatures (details)
of viruses and other malware that are known. When an antivirus program scans a
file and notices that the file matches a known piece of malware, the antivirus program
stops the file from running, and puts it into ‘quarantine’. Quarantine is a special
area for storing files probably infected with viruses. These files can later be deleted
or the virus can be removed. For effective use of anti-virus software, virus
definitions must be updated regularly.

12.6.3 Cookies

Cookies are small text files that are created when we use a browser to visit a website.
Cookies keep track of our movements within the website – remembers our user
name, preferences, e-mail address, etc. Browsers store cookies for an interval of
time, usually in a cookie folder on the client’s computer. Cookies are text files and
so they are not executable programs. Websites use cookies mainly because they
save time and make browsing efficient.

Cookies are treated as data and so it is not a virus, but it is always possible for a
hacker to use it for malicious purposes. Cookies can be used to act as a spyware.

Fig. 12.17: Firewall

Internet

F
ir

ew
al

l

Home
network

12. Internet and Mobile Computing

369

Following are the major guidelines for using computers over Internet.

• Most of the computer viruses are spread through e-mail attachments. Do not
open any e-mail attachment that you are not sure about the sender.

• Download files only from reputed sources. Do not use/copy software that
you cannot confirm the origin.

• Avoid clicking on pop-up advertisements. Close them instead.

• Use USB drives with caution. Plugging someone else’s USB storage into your
computer or plugging your own USB storage into a computer at an Internet
cafe/unsafe computer, can spread an infection through the USB storage.

• Make sure the firewall is set and turned on.

• Use strong passwords. Change passwords at regular intervals.

• Update the virus definitions of your antivirus program periodically online.

• Keep a regular backup of your important files (on DVD, another hard disk,
etc.)

• Be careful about giving personal data online. If you see e-mail message requests
for personal data such as telephone number, address, credit card number, etc.
from unknown persons, ignore it.

There are harmful cookies that are used by different websites to compromise our
privacy. Such websites store a special cookie in our computer that will keep track
of our activities like, websites visited, products purchased or the forms that are
filled. Most browsers provide facilities to manage/delete harmful cookies. Frequent
deletion of cookies helps to prevent illegal access and use of personal information.

12.7 Guidelines for using computers over Internet

IIIII

STOPSTOPSTOPSTOPSTOP
BEFORE

I

DOWNLOAD

IIIII
think

BEFORE IBEFORE IBEFORE IBEFORE IBEFORE I

click

MY PASSWORD

MIXES

LeTters
#umbers

AND

$ymbol!#

370

• Visit banks’ websites by typing the URL into the address bar. Do not click on
links within e-mails to go to bank websites. Banks or any of its representatives
never sends you e-mail/SMS or phone calls to get your personal information,
usernames or password. Never reveal your passwords or ATM card details to
anyone.

• Check whether the website you are visiting is secure while performing financial
transactions. The web address in the address bar should start with ‘https://’.
Also look for a lock icon on the browser’s address bar.

• Keep a regular check on your online accounts. Regularly login to your online
accounts, and check your statements. If you see any suspicious transaction,
report them to your bank or credit card provider.

Guidelines for setting up a strong password

• A password should have atleast 8 characters.
• A password should contain

• Upper case letters
• Lower case letters
• Numbers
• Symbols like @, #, $, etc.

• A password should not be personal information like name, date
of birth, etc. or common words.

• Never disclose your password to others.
• Do not write it on a paper or store it in a file in your computer.
• Do not use the same password for all logins.
• Change password often.

Fig 12.18: Secure banking - lock icon and https

12. Internet and Mobile Computing

371

12.8 Mobile computing

The advances in computer technology have led to the development of more
computing power in small devices. Light weight computing devices with low power
consumption is now cheap and is common. Devices like laptops, tablets, smart
phones, etc. changed the lifestyle and work culture of people drastically. Today
people are able to connect to others, send and receive files or other information
anywhere anytime. This increased the computing demands day by day.

Mobile computing is a technology that has computing capability and can transmit/
receive data while in motion. Mobile computing requires portable computing
devices like laptops, tablets, smart phones, etc., wireless communication networks
and connectivity to Internet. The demand for mobile computing started the growth
and development of mobile communication technology.

12.9 Mobile communication

The term ‘mobile’ has completely revolutionised communication by opening up
innovative ways for exchanging information. Today, mobile communication has
become the backbone of the society. Mobile system technologies have improved
the living standards. Mobile communication networks does not depend on any
physical connection to communicate between two devices.

• Conduct a group discussion on the topic “security threats / cyber

attacks to your system”, and draw a bar diagram based on

information arrived in the event.

• List the names of various viruses and their features in the form of

a chart.

Let us do

1. What is a virus?

2. What do you mean by phishing?

3. The small text files used by browsers to remember our email ids,

user names, etc. are known as ________.

4. The act of breaking into secure networks to destroy data is called

_______ hacking.

5. What is quarantine?

Check yourself

372

12.9.1 Generations in mobile communication

The mobile phone was introduced in the year 1946. In the initial stage, the growth
in mobile communication was very slow. With the increase in the number of users,
accommodating them within the limited available frequency spectrum became a
major problem. To solve this problem, the concept of cellular communication
was evolved.The cellular concept was developed in the 1960’s at Bell Laboratories.
However, in the late 1990’s, when the Government of India offered spectrum licenses
for mobile communication, cellular technology became a common standard in
our country. The different generations in mobile communication are given below:

a. First Generation networks (1G)

1G refers to the first-generation of wireless telephone technology (mobile
telecommunications) developed around 1980. 1G mobile phones were based on
the analog system and provided basic voice facility only.

b. Second Generation networks (2G)

2G networks follow digital system for communication. This improved the audio
quality in transmission. In 2G networks phone conversations are digitally
encrypted.These networks provided far greater mobile phone coverage. 2G
networks also introduced data services for mobile. Picture messages and MMS
(Multimedia Messaging Service) were introduced. The two popular standards
introduced by 2G systems are GSM and CDMA. A detailed discussion on the
GSM and CDMA standards are given below.

i. Global System for Mobile (GSM)

GSM is a globally accepted standard for digital cellular communication. GSM uses
narrowband TDMA (Time Division Multiple Access), which allows simultaneous
calls on the same radio frequency. It is a digital, circuit-switched network for voice
telephony. The frequency band for GSM is 900 MHz to 1800 MHz. GSM follows a
uniform international standard that made it possible to use a mobile device around
the world. The network is identified using the SIM (Subscriber Identity Module).
The users can select a handset of their choice. GSM is the most successful family of
cellular standards.

12. Internet and Mobile Computing

373

GPRS and EDGE

2G network was expanded later to include improved data communication features
using GPRS (General Packet Radio Services) and EDGE (Enhanced Data rates
for GSM Evolution).

GPRS is a packet oriented mobile data service on GSM. When compared to
conventional GSM, users of GPRS benefitted from shorter access time and higher
data rates. GPRS allows billing based on volume of data transferred. Although
GPRS is a data only technology, it helps to improve GSM’s voice quality.

EDGE is a digital mobile phone technology that allows improved data transmission
rates for GSM. EDGE is a superset to GPRS and can function on any network
with GPRS deployed on it. It provides nearly three times faster speeds than the
GPRS system. Both phone and network must support EDGE, otherwise the phone
will revert automatically to GPRS.

ii. Code Division Multiple Access (CDMA)

In CDMA or Code Division Multiple Access system, several transmitters can send
information simultaneously over a single communication channel. CDMA provides
wider coverage than GSM and provides better reception even in low signal strength
conditions. The voice quality in CDMA is better than GSM. It has a signal with
wider bandwidth and increased resistance to interference. CDMA technology
provides better security to the mobile network when compared to GSM.

c. Third Generation networks (3G)

3G wireless network technology provides high data transfer rates for handheld
devices. The high data transfer rates allows 3G networks to offer multimedia services
combining voice and data. 3G is also referred to as wireless broadband as it has the
facility to send and receive large amounts of data using a mobile phone. The access
part in 3G networks uses WCDMA (Wideband Code Division Multiple Access). It
requires upgrading the base stations (mobile towers) and mobile phones. Also the
base stations need to be close to each other.

d. Fourth Generation networks (4G)

A 4G system, also called Long Term Evolution (L.T.E.), provides mobile ultra-
broadband Internet access to mobile devices. 4G networks offer very high speeds
and provides excellent performance for bandwidth intensive applications such as
high quality streaming video. One of the key requirements for 4G is a wireless IP-
based access system. The access part in 4G networks uses OFDMA (Orthogonal
Frequency Division Multiple Access). 4G provides good quality images and videos
than TV.

374

12.9.2 Mobile communication services

Mobile communication industry uses a number of acronyms for the various
technologies that are being developed. Here we discuss a few popular mobile
communication technologies like SMS, MMS, GPS and smart cards.

a. Short Message Service (SMS)

Short Message Service (SMS) is a text messaging service in mobile communication
systems that allows exchanging short text messages. SMS is the most widely used
data application by mobile phone users. The GSM standard allows to send a message
containing upto 160 characters. When a message is sent, it reaches a Short Message
Service Center (SMSC), which provides a ‘store and forward’ mechanism. SMSC
attempts to send messages to the recipients. If a recipient is not reachable, the
SMSC waits and then retries later. Some SMSC’s also provide a ‘forward and forget’
option where transmission is tried only once and if it fails, the message is not sent
again. SMS messages are exchanged using the protocol called SS7 (Signalling System
No # 7).

The First SMS

The first SMS message was sent on 3rdDecember 1992 from a
personal computer to a cellular phone on the Vodafone GSM
network in the UK.The content of the message was ‘Merry
Christmas’.

b. Multimedia Messaging Service (MMS)

Multimedia Messaging Service (MMS) is a standard way to send and receive messages
that consists of multimedia content using mobile phones. It is an extension of the
capability of SMS to send text messages. Unlike SMS, MMS does not specify a
maximum size for a multimedia message. MMS supports contents such as text,
graphics, music, video clips and more. An MMS server is responsible for storing
and handling incoming and outgoing messages. Associated with the MMS server is
the MMS proxy relay, which is responsible for transferring messages between
different messaging systems.

c. Global Positioning System (GPS)

The Global Positioning System (GPS) is a satellite based navigation system that is
used to locate a geographical position anywhere on earth, using its longitude and
latitude. GPS is designed and operated by the U.S. Department of Defence and it
consists of satellites, control and monitoring stations, and receivers.

The basis of the GPS is a group of satellites that are continuously orbiting the
earth. These satellites transmit radio signals that contain their exact location, time,

12. Internet and Mobile Computing

375

and other information. The radio signals from the satellites, which are monitored
and corrected by control stations, are picked up by the GPS receiver. GPS receivers
take information transmitted from the satellites to calculate a user’s exact location
on earth. A GPS receiver needs only three satellites to plot a 2D position, which
will not be very accurate. Ideally, four or more satellites are needed to plot a 3D
position, which is much more accurate.

GPS is used for vehicle fleet tracking by transporting companies to track the
movement of their trucks. Figure 12.19 depicts the working of a truck tracking
application using GPS. Vehicle navigation systems will direct the driver to his or
her destination through the best route. In commercial aviation GPS is used for
aircraft navigation. GPS is also used in oil exploration, farming, atmospheric studies,
etc. GPS receivers are now integrated in many mobile phones for implementing
various tracking applications.

d. Smart cards

Let us recollect about smart cards and smart card
readers that we discussed in Chapter 3. A smart card
is a plastic card embedded with a computer chip /
memory that stores and transacts data. The
advantages of using smart cards is that it is secure
(data is protected), intelligent (it can store and process

Fig. 12.20: A model smart card

Fig. 12.19: GPS fleet tracking

Global positioning satellite network

Cellular
Data

Network Internet

GPS Tracking
Application

376

data) and that it is convenient (it is easy to carry). That is why businesses and other
organisations use smart cards for authentication and storing data.A model of smart
card issued by Government of India for RSBY scheme is shown in Figure 12.20.

In mobile communication the smart card technology is used in Subscriber Identity
Modules (SIM) for GSM phone systems (refer Figure 12.21). The smart card is
inserted or integrated into the mobile handset. The card stores personal subscriber
information and preferences. SIM cards help to identify
a subscriber, roam across networks and provide security
to value added services like Internet browsing, mobile
commerce, mobile banking, etc. Smart cards also work
as credit cards, ATM cards, fuel cards, authorisation
cards for television receiver, high-security identification
cards, etc.

12.10 Mobile operating system

A mobile operating system is the operating system used in a mobile device (smart
phone, tablet, etc.), similar to an operating system used in a desktop or laptop
computer.

Fig. 12.21 GSM SIM card

A mobile OS manages the hardware, multimedia functions, Internet connectivity,
etc. in a mobile device. It is the software platform on which other programs, called
application programs, are running. Popular mobile operating systems are Android
from Google, iOS from Apple, BlackBerry OS from BlackBerry and Windows
Phone from Microsoft.

Android operating system

Android is a Linux-based operating system designed mainly for touch screen mobile
devices such as smart phones and tablet computers. It was originally developed by
Android Inc. that was founded in Palo Alto, California in 2003 by Andy Rubin and
his friends. In 2005, Google acquired Android Inc. making it a wholly owned
subsidiary of Google. At Google, the team led by Rubin developed a mobile device
platform powered by the Linux kernel. In 2007, the Open Handset Alliance, a
consortium of several companies which include Google, HTC, Intel, Motorola,

Fig. 12.22:Icons of popular mobile operating systems

12. Internet and Mobile Computing

377

etc. was established with a goal to develop open standards for mobile devices.
Android was released along with the formation of the Open Handset Alliance
(OHA).

The user interface of Android is based on touch inputs like swiping, tapping, pinching
and reverse pinching to manipulate on-screen objects. Android allows users to
customise their home screens with shortcuts to applications and widgets. Since its
launch in 2007, the Android operating system’s market share has been growing at a
fast pace to make it the most widely used mobile operating system today. Major
Android versions have been developed under a codename and released according
to alphabetical order. Table 12.2 shows the Android version names.

The Android OS consists of a kernel
based on Linux kernel. Android uses
Linux kernel as it has a powerful
memory and process management
system, permissions-based security
structure and open source nature. An
Application Framework for
developers to build applications using
the Android Software Development
Kit is available in Android.
Applications like Google Maps,
Facebook, etc.that run on Android are
built using this.

The Android code is released under the Apache License. Apache licensing allows
the software to be freely modified and distributed by device manufacturers and
developers. Android has a large community of developers writing applications
called ‘apps’ that enhance the functionality of devices. Apps are written using a
customised version of the Java programming language.

Android’s acceptance is due to factors like it’s open source nature. This makes it
easy for developers to make programs/applications for Android OS called Android
apps. Most of these apps are available for free download from the Android Play
Store. It adds the popularity of this OS.

With remarkable advances in mobile hardware and software, these trimmed-down
operating systems may be heading in a direction that could replace a desktop OS. It
is also likely that mobile OS could be further developed to be included in electronic
devices like televisions, washing machines, watches, etc.

Version Code name

4.4 KitKat

4.1 Jelly Bean

4.0.3 Ice Cream Sandwich

3.1 Honeycomb

2.3 Gingerbread

2.2 Froyo

2.0 Eclair

1.6 Donut

1.5 Cupcake

Table 12.2: Android version names

378

The Internet, which was started as a defence project of the US government
has become a part of our life. Today the Internet is accessed using mobile
devices like mobile phones, tablets, etc. than using a desktop computer.
Therefore speed of Internet access has become an important factor. New
technologies connect to Internet focus on data transmission speed. Internet
services like e-mail, social media, searching etc. have changed the way we
communicate. Each of the above services has its own benefits and risks.
Computer networks today play an important role in providing the above
services. It has increased the risk factors for networks, like viruses, worms,
Trojan horse, phishing, etc. Antivirus software, firewalls, etc. are used to
protect computer networks from different kinds of attacks. The risks for a
network attack can be reduced by following certain guidelines while using
computers on Internet.

The convergence of a mobile phone and a computer has shifted the focus
from desktops to mobile computing devices. These devices are always
connected to the Internet and therefore mobile communication technology

Let us sum up

• Prepare a chart displaying the different mobile operating systems

available in the market and their features.

Let us do

1. SIM is

(a) Subscriber Identity Module

(b) Subscriber Identity Mobile

(c) Subscription Identification Module

(d) Subscription Identification Mobile

2. What is a GPS?

3. The protocol used to send SMS messages is ______.

4. How can multimedia content be sent using mobile phones?

5. What are the functions of a mobile operating system?

Check yourself

12. Internet and Mobile Computing

379

123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678

After the completion of this chapter the learner will be able to

l recognise the people behind the evolution of Internet.

l identify the hardware and software requirements for Internet connection.

l use the services available on Internet.

l classify the different types of social media.

l judge the risks while interacting with social media.

l recognise the threats to network security.

l identify the various mobile computing terminologies.

l recognise the features of mobile operating systems.

l discover the features of Android operating system.

Learning outcomes

has gained importance. The mobile communication technology has evolved
through generations from 1G to 4G, the prime focus being speed. This also
has led to the development of features like SMS, MMS, GPS, etc. Android is
one of the popular mobile operating systems, developed by Google based on
Linux kernel. The advances in the development of this OS is in such a way that
it will soon replace desktop operating systems and could be used in devices
like television, washing machines, etc.

Sample questions

Very short answer type

1. Why is the invention of HTTP and HTML considered an important land mark
in the expansion of Internet?

2. Compare intranet and extranet.

3. Write short notes on

a. Mobile broadband b. Wi-MAX

4. Explain the terms web browser and web browsing.

5. Compare blogs and microblogs.

6. What are wikis?

7. What is firewall?

380

Short answer type

1. Your neighbour Ravi purchased a new PC for his personal use. Mention the
components required to connect this PC to Internet.

2. What are the advantages of using broadband connection over a dial-up
connection?

3. XYZ engineering college has advertised that its campus is Wi-Fi enabled. What
is Wi-Fi? How is the Wi-Fi facility implemented in the campus?

4. Madhu needs to prepare a presentation. For this, he uses www.google.com to
search for information. How does google display information when he types
‘Phishing’ in the search box and clicks search button?

5. Manoj’s e-mail id is manoj@gmail.com. He sends an email to Joseph whose
e-mail id is joseph@yahoo.com. How is the mail sent from Manoj’s computer
to Joseph’s computer?

6. How does a Trojan horse affect a computer?

7. Explain a few threats that affect a computer network.

8. Compare GSM and CDMA standards.

9. Write short notes on SMS.

10. What is a smart card? How is it useful?

Long answer type

1. Suppose you wish to visit the website of kerala school kalolsavam,
www.schoolkalolsavam.in and you have entered the URL in the address bar.
Write the steps that follow until the home page is displayed.

2. Write the disadvantages of social media. What are the different ways to avoid
the disadvantages of social media?

3. Explain the features of Android OS.

4. Explain the various broadband technologies available for Internet access.

12. Internet and Mobile Computing

381

Pradeep K. Sinha, Priti Sinha. Computer Fundamentals : BPB Publication

V. Rajaraman (2010). Fundamentals of Computers : PHI Publication

Thomas L. Floyd (2011). Digital Fundamentals : Pearson Education

Craig Zacker, John Rourke (2008). PC Hardware: The Complete Reference :

TMH Publication

Abraham Silberschatz, Greg Gagne, Peter B. Galvin (2005) Operating System

Concepts : John Wiley & Sons

Herbert Schildt (2003). C++ A beginners Guide : McGraw-Hill Publication

Bjarne Stroustrup (2013). The C++ Programming Language : Addison-Wesley

Professional

Robert Lafore (2009). Object-Oriented Programming in C++ : Sams Publishing

E. Balagurusamy (2008). Object Oriented Programming with C++ : Tata

McGraw-Hill Education

Yashavant P Kanetkar(2000). Let Us C++: BPB Publication

Andrew S. Tanenbaum, David J. Wetherall (2010). Computer Networks :

Prentice Hall

References

	187-230
	187-230
	208-230
	213-230

	231-258
	259-272
	273-310
	311-344
	345-381

