+ Problem solving using
computers

» Approaches in problem
solving

o Top down design
s Bottom up design
s Phases in programming
5 Problem identification

s Algorithms and
Flowcharts

s Coding the program
s Translation

o Debugging

o Execution and testing
s> Documentation

+ Perdormance evaluation of
algorithms

& Principles of Programming

and Problem Solving

We have learnt the concept of data processing and
the role of computers in data processing, We have
also discussed the computer as a system with
components such as hardware, software and users.
We had a detailed discussion on these components
in the previous chapter. Let us recall the defimtion
of software. In its simplest form, we can say that
software means a collection of programs to solve
problems using computers. As we know, a computer
cannot do anything on 1ts own, It must be mstructed
to perform the desired job. Hence it 1s necessary to
specify a sequence of instructions that the computer
must perform to solve a problem. Such a sequence
of instructions written in a language that is
understood by a computer is called a “computer
program’”. Writing a computer program 15 a challenging
task. However, we can attempt it by procuring the
concepts of problem solving techniques and different
HF:IgL‘H Uf pr{}gmmming.

4.1 Problem solving using computers

A computer can solve problems only when we give
instructions to it. If it understands the tasks
contained in the instructions, it will work accordingly.
An instruction is an action oriented statement. It tells
the computer what operation it should perform. A
computer can execute (carry out the task contained
in) an instruction only if the task is specified precisely
and accurately. As we learned in the previous chapter,
there are programmers who develop sequence of
instructions for solving problems. Once the program
is developed and stored permanently in a computer,
we can ask the computer to execute it as and when
required.

We should be cautious about the clarity of the logic of the solution and the format of
instructions while designing a program, because computer does not possess common
sense or intuition. As human beings, we use judgments based on experience, often on
subjective and emotional considerations. Such value oriented judgments often depend
on what is called "common sense”. As opposed to this, a computer exhibits no emotion
and has no common sense. That 1s why we say that computer has no intelligence of its
OWI.

In a way, computer may be viewed as an 'obedient servant’. Being obedient without
exercising 'common sense' can be very annoying and unproductive. Take the instance
of a master who sent his obedient servant to a post office with the instruction "Go to
the post office and buy ten 5 rupees stamps”. The servant goes to the post office with
the money and does not retumn even after a long tme. The master gets worried and
gocs in search of him to the post office and finds the servant standing there with the
stamps in his hand. When the angry master asks the servant for an explanation, the
servant replies that he was ordered to buy ten 5 rupees stamps but not to return with
them!

4.2 Approaches in problem solving

A problem may be solved in different ways. Even the approach may be different. In our
life, we may seck medical treatment for some diseases. We can consult an allopathie,
ayurvedic or homoepathic doctor, Each of their approaches may be different, though
all of them are solving the same problem. Similarly in problem solving also different
approaches are followed. Let us discuss the two popular designing styles of problem
solving — Top down design and Bottom up design.

4.2.1 Top down design

Look at Figure 4.1, If you are asked to draw this picture, how
will you proceed? Tt may be as follows:

1. Draw the outline of the house,

2. Draw the chimney

3. Draw the door

4. Draw the windows s

The procedure described above may be summansed as

follows: Fig 4.1 : Lav-out of a House
While drawing the door in Step 3, the Similarly the windows may be drawn
procedure may be as follows: as follows:
3.1 Outline of the door 4.1 Outline of the window
3.2 Shading 4.2 Shading

3.3 Handle 4.3 Horizontal and Verncal lines

::.'E’ - Enmpu‘tarﬂd&m-ll 4, Principles of Programming and Problem Solving

The whole problem (here drawing the picture) is broken down into smaller tasks. Thus
four tasks are identified to solve the problem. Some of these tasks (here steps 3 and 4
for drawing the door and windows) are further subdivided. Thus any complex problem
can be solved by breaking it down into different tasks and solving each task by performing
simpler activities. This concept is known as top down design in problem solving,

It is one of the programming approaches that has been proven the most productive. As
shown in Figure 4.2, top down design is the process of breaking the overall procedure
or task into component parts (modules) and then subdividing each component module
until the lowest level of detail is reached. It is also called top down decomposition
since we start "at the top" with a general problem and design specific solutions to its
sub problems. In order to obtain an effective solution for the main problem, it 1s desirable
that the sub problems (sub programs) should be independent of ecach other. So, each
sub problem can be solved and tested independently.

Main Program

Sub Program 1 Sub Program 2 Sub Program 3

Fig 4.2 : Decomposition af a probiem

The following are the advantages of problem solving by decomposition:

s Breaking the problem into parts helps us to clarify what is to be done in each part.

e At each step of refinement, the new parts become less complicated and therefore,
casier to ﬁgl..l.tt: out.

¢ Parts of the solution may turn out to be reusable.

e Breaking the problem into parts allows more than one person to work for the
solution.

4.2.2 Bottom up design

Consider the case of constructing a house. We do not follow the top down design, but
the bottom up design. The foundation will be the first task and roofing will be the last
task. Breaking down of tasks is carried out here too. It is true that some tasks can be
carried out only after the completion of some other tasks. However roofing which is
the main task will be carried out only after the completion of bottom level tasks.

Similarly in programming, once the overall procedure or rask is broken down into
component parts (modules) and each component module is further sub divided unnl
the lowest level of detail has been reached, we start solving from the lowest module

g=i—

= ® = Computer Science - X|

onwards. The solution for the main module will be developed only after designing
specific solutions to its sub modules. This stvle of approach is known as bottom-up
design for problem solving. Here again, it is desirable that the sub problems
(subprograms) should be independent of each other.

Youth festivals are conducted every year in our schools. Usually the
duties and responsihilities are decomposed. Discuss how the tasks are
divided and executed to organise the youth festival successfully.

4.3 Phases in programming

As we have seen, problem solving using computer is a challenging task. A systematic
approach is essential for this. The programs required can be developed only by going
through different stages. Though we have in-born problem solving skills, it can be
applied effectively only by proper thinking, planning and developing the logical reasoning
to solve the problem. We can achieve this by proceeding through the following stages,
in succession:

1. Problem idendfication

2. Preparing algorithms and flowcharts

Algorithm & Flow

3. (:uding the program usi.ng o
cnarts

programming language
4. Translation
5. Debugging Program Coding
6. Execution and Testing

7. Documentanon Translation .\

Figure 4.3 shows the order of performing
the tasks in various stages of programming,
MNote that the debugging stage 15 associated
with both translation and execution. The
activities involved in the seven stages
mentioned above are detailed in the
fu-]ltn\-‘irlg seCtions. Fig. 4.3 Phases of Programming

Debugging

Execution

Documentation

4.3.1 Problem identification

Let us discuss a real life situation; suppose you are ﬁufﬁ;:ring from a stomach ache. As
vou know this problem can be solved by a doctor. Your doctor may ask you some
questions regarding the duration of pain, previous occurrence, your diet etc., and
examine some parts of your body using the stethoscope, X-ray or scan. All these are a

-

= ® = Computer Science - X| 4, Principles of Programming and Problem Solving

part of the problem study. After these procedures, your doctor may be able to idennty
the problem and state it using some medical term. Now the second stage begins with
the derivation of some steps for solunon known as prescriptions,

It is clear that before deriving the steps for solution, the problem must be analysed.
During this phase you will be able to identify the data involved in processing, its type
and quantity, formula to be used, activities involved, and the output to be obtained.
Once yvou have studied the problem clearly, and are convinced about the sequence of
tasks required for the solution, you can go to the next phase. This is the challenging
phase as it exploits the efficiency of the programmer (problem solver).

4.3.2 Algorithms and Flowcharts

Once the problem 1s idenufied, i1t 1s necessary to develop a precise step-by-step procedure
to solve the problem. This procedure is not new or confined to computers. It has been
in use for a very long time, and in almost all walks of life. One such procedure taken
from real life 1s described below. It 1s a cooking recipe of an omlette taken from a
magazine.

Ingredients ‘
Eggs - 2 Nos, Onion - 1{small sized, chopped); Green chili - 2 1t h
|]

(finely chopped); Oil - 2 tea spoon, Salt - a pinch.

Method _f"* 5

Step 1 : Break the eggs and pour the contents in a vessel and 7
stir.

Step 2 : Mix chopped onion, green chilies and salt with the stirred
egg.

Step 3 : Place a pan on the stove and light the stove.

Step 4 : Pour the oil in the pan and wait till it gets heated.

Step 5 ¢ Pour the mixture prepared in step 2 into the pan and
wait fill the side 15 fried.

Step 6 : Turn over to get the other side fried well.

Step 7 @ Take it out after some seconds.

Result

An omlette is ready to be served with pepper powder.

The recipe given above has the following properties:

1. It begins with a list of ingredients required for making the

omletre, These may be called the inputs.

2. A sequence of instructons is giv::n to process the inputs.

3. As a result of carrying out the instructions, some outputs (here, omlette) are
obtained.

The instructions given to process the inputs are, however, not precise. They are
ambiguous. For example, the interpretation of "till the side is fried" in step 5 and "fried
well" in step 6 can vary from person to person. Due to such imprecise instructions,
different persons following the same recipe with the same inputs can produce omlettes
which differ in size, shape and taste.

The above ambiguities should be avoided while writing steps to solve the problems
using the computer.

a. Algorithm

Mathematicians trace the origin of the word algorithm
to a famous Arab mathematician, Abu Jafar Mohammed
Ibn Musaa Al-Khowarizmi. The word 'algorithm' is
derived from the last part of his name Al-Khowarizmi.
In computer terminology an algorithm may be defined
as a finite sequence of instructions to solve a problem.
It is a step-by-step procedure to solve a problem, where
each step represents a specific task to be carried out.
However, in order to qualify an algorithm, a sequence Fig. 4.4 : Abu Jafar Mohammed

of instructions must possess the following Ibn Musaa Al-Khowarizmi
(780 - 850)

characteristics:

(i) It should begin with instruction(s) to accept inputs. These inputs are processed by
subsequent instructions. Sometimes, the data to be processed will be given along
with the problem. In such situations, there will be no input instruction at the
beginning of the algorithm.

(i) Use variables to refer the data, where variables are user-defined words consisting
of alphabets and numerals that are similar to those used in mathematics. Variables
must be used for inputting data and assigning values or results.

(iii) Each and every instruction should be precise and unambiguous. In other words,
the instructions must not be vague. It must be possible to carry them out. For
example, the instruction "Catch the day" is precise, but cannot be carried out.

(iv) Each instruction must be sufficiently basic such that it can, in principle, be carried
out in finite time by a person with paper and pencil.

(v) The total time to carry out all the steps in the algorithm must be finite. As algorithm
may contain instructions to repetitively carry out a group of instructions, this
requirement implies that the number of repetitions must be finite.

(vi) After performing the instructions given in the algorithm, the desired results
(outputs) must be obtained.

=) ® = Computer Science - X| 4, Principles of Programming and Problem Solving

To gain insight into algorithms, let us consider a simple example. We have to find the
sum and average of any three given numbers. Let us write the procedure for solving
this problem. It is given below:

Step 1t Input three numbers.

Step 2 Add these numbers to get the sum

Step 30 Divide the sum by 3 to get the average

Step 4 Print sum and average
Though the procedure is correct, while preparing an algorithm, we have to follow any

of the standard formats. Let us see how the prﬂccduﬂ: listed above can be written in an
algorithm style.

Example 4.1: Algorithm to find the sum and average of three numbers

Let A, B, C be variables for the input numbers; and 8, Avg be variables for sum and
average.

Step 1. Start
Step2: InputA, B, C
Stepd: S=A+B+C
Step4: Avg=S/3
Step5: Print S, Avg
Step8: Stop
The above set of instructions qualifies as an algorithm for the following reasons:

¢ It has input (The variables A, B and C are used to hold the input data).

¢ The pmcu%ing steps are PI’UCIHL‘I} qrjt_c_lﬁ:,d (Using proper operators in "arcpq 3
and 4) and can be carried our by a person using pen and paper.

¢ Lach instruction 1s basic (Input, Pnnt, Add, Divide) and meaningful.
It produces two outputs such as sum (S) and average (Avg).

The beginning and termination points are specified using Start and Stop.

Types of instructions

As we know, a computer can perform only limited types of operations. So we can use
only that many instructions to solve problems. Before developing more algorithms, let
us idennfy the rypes of instructions constituting the algorithm.

e Computer can accept data that we input. So, we can use input instructions. The
words Input, Accept or Read may be used for this purpose.

. Computer gives the results as output. So we can use output instructions. The

words Print, Display or Write may be used for this purpose.

™= Computer Science - XI

e Data can directly be stored in a memory location or data may be copied from one
location to another. Similarly, results of arithmetic operations on data ean also be
stored In memory locatons, We use assignment (or storing) instruction for this,
similar to that used in mathematics. Variables followed by the equal symbol (=)
can be used for storing value, where variables refer to memory locations,

e A computer can compare data values (known as logical operation) and make
decisions based on the result. Usually, the deaision will be in the form of selecting
or skipping a set of one or more statements or execuring a set of instructions
repeatedly.

b. Flowcharts

An idea expressed in picture or diagram is preferred to text form by people. In certain
situations, algorithm may be difficult to follow, as it may contain complex tasks and
repetitions of steps. Hence, it will be better if it could be expressed in pictorial form.
The pictorial representation of an algorithm with specific symbols for instructions and
arrows showing the sequence of operations is known as flowchart. It is primarily used
as an aid n formulating and understanding algorithms. Flowcharts commonly use
some basic geometric shapes to denote different types of instructions. The actual
instructions are written within these boxes using clear and concise statements. These
boxes are connected by solid lines with arrow marks to indicate the flow of operation;
that is, the exact sequence in which the instructions are to be executed.

Normally, an algorithm is converted into a flowchart and then the instructions are
expressed in some programming language. The main advantage of this two-step approach
in program writing 1s that while drawing a flowchart one 15 not concerned with the
details of the clements of progra mming language. Hence he/she can ﬁ.l“}' concentrate
on the logic (step-by-step method) of the procedure. Moreover, since a flowchart shows
the flow of operatons in pictonal form, any error in the logic of the procedure can be
detected more easily than in a program. The algorithm and flow chart are always a
reference to the programmer. Once these are ready and found correct as far as the logic
of the solution 1s concerned, the programmer can concentrate on coding the operations
following the constructs of programming language. This will normally ensure an error-
free program.

Flowchart symbols

The communication of program logic through flowcharts 15 made easier through the
use of symbols that have standardised meanings. We will only discuss a few symbols
that are needed to indicate the necessary operations. These symbols are standardised
by the American National Standards Institute (ANSI).

1. Terminal
As the name implies, it is used to indicate the beginning (START) and ending (STOP)
in the program logic flow. It 1s the first symbol and the last symbol in the flowchart.

= ® = Computer Science - X| 4. Principles of Programming and Problem Solving

It has the shape of an ellipse. When it is used as START, an exit flow
will be attached. But when it is used as a STOP symbol, an entry flow

will be attached.
2. Input / Output

The parallelogram is used as the input/output symbol. It denotes the
function of an input/output device in the program. All the input/
output instructions are expressed using this symbol. It will be attached
with one entry flow and one exit flow.

i

3. Process

A rectangle 1s used to represent the processing step. Arithmetic
operations such as addition, subtraction, multplication, division as
well as assigning a value to a variable are expressed using this symbol.
J'I‘lﬁﬁigning a '\'i‘ll'l.'ll'_‘ toa 1'31‘131}][.‘ means m{]\'iﬂg dﬂ.tﬂ frt.:rm one mL‘rnur}-‘
location to another (e.g. a=b) or moving the result from ALLU to
memory location (e.g. a=b+5) or even storing a value to a memory

location (e.g a=2). Process H}'mh[}l also has one entry flow and one
exit flow.

4. Decision

The thombus is used as decision symbol and is used to indicate a
point at which a decision has to be made. A branch to one of two or
more alternative points is possible here. All the possible exit paths
will be specified, but only one of these will be selected based on the
result of the decision. Usually this symbol has one entry flow and
two exit flows - one towards the action based on the truth of the
condition and the other towards the alternative action.

5. Flow lines

Flow lines with arrow heads are used to indicate the flow of operation,

that i, the exact sequence in which the instructions are to be executed.

The normal flow 1s from top to bottom and left to nght. Bur in some

cases, it can be from right to left and bottom to top. Good practice - »
also suggests that flow lines should not cross each other and such

intersections should be avoided wherever possible.

6. Connector l

When a flowchart becomes bigger, the flow lines start criss-crossing
at many places causing confusion and reducing comprehension of
the flowchart. Morcover, when the flowchart becomes too lulig to fit

= W% Computer Science - XI

mnto a single page the use of flow lines becomes
impossible. Whenever a flowchart becomes complex
and the number and direction of flow lines 1s confusing
or it spreads over more than one page, a pair of
connector symbols can be used to join the flow lines
that are broken. This symbol represents an "entry

from", or an "exit to" another part of the flowchart.

'
A connector symbol 15 represented by a circle and a
letter or digit i1s placed within the circle to indicate
the link. A pair of identically labelled connector
s].'tnhufs 15 cammunl}r used to indicate a continuous
flow. So two connectors with identeal labels serve
the same function as a long flow line. That 1s, in a
pair of identically labelled connectors, one shows an
exit to some other chart section and the other

indicates an entry from another part of the chart.

Figure 4.5 shows that flowchart of the pr{:-hlurn
discussed in Example 4.1.

‘ Start)

L

InputA, B, C

h

S=A+B+C
Avg=S/3

PrintS, Avg

Fig. 4.3 : Flow chart for Sum
and Average

The mstruction given i each step i the algonthm is represented using the concerned
symbol. Hach symbol is labelled properly with the respective instruction. The flow of

operations is clearly shown using the flow lines.

Advantages of flowcharts

Flowcharts are beneficial in many ways in program planning.

« Better communication: Since a flowchart is a pictonial representation of a program,

it is easier for a programmer to explain the logic of the program to some other
programmer through a flowchart rather than the program irself.

Effective analysis: The whole program can be analysed effectvely through the
flowchart as it clearly specifies the flow of the steps constituting the program.
Effective synthesis: If a problem is divided into different modules and the solution
for each module is represented in flowcharts separately, they can finally be placed
together to visualize the overall system design.

Efficient coding: Once a flowchart is ready, programmers find it very easy to

write the concerned program because the flowchart acts as a road map for them.
It guides them to go from the starting point of the program to the final point

ensuring that no steps are omitted.

=) ® = Computer Science - X| 4. Principles of Programming and Problem Solving

Limitations of flowcharts

In spite of their many obvious advantages, flowcharts have some limitations:

e Flowcharts are very time consuming and laborious to draw with proper symbols
and spacing, especially for large complex algorithms.

« Owing to the symbol-string nature of flowcharting, any change or modification in
the logic of the algorithm usually requires a completely new flowchart.

- There are no standards determining the amount of detail that should be included
in a flowchart.

Now let us develop algonthms and draw flowcharts for solving various problems.

Example 4.2: To find the area and perimeter of a rectangle

We know that this problem can be solved, if the length and breadth of the rectangle
are given. The result can be obtained by using the following formula:

Penmeter = 2 (Length + Breadth), Area = Length % Breadth

Let L. and B be variables for length and breadth; and P, A be vanables for perimeter and

Start
Step1: Start :

Step2: Inputl, B ¥

Stepd: P=2*(L+B) / InputL, B /

Step4: A=L*B

Step5 PrintP A .
P=2*(L+B)

Step6: Stop A=L*B

The flowchart is given in Figure 4.6.

i

The algonthms developed in Examples 4.1 and 4.2 consist of / it A /

six instructons each. In both the cases, the instructions will '

be executed one by one in a sequential fashion as shown in

Figure 4.7, The order of execution of instructions 1s known @

as flow of control. We can say that the two algorithms follow

in a sequential flow of control. Fig. 4.6 : Flow chart for
Area and Perimerer

Statement 2 Statement3 | ==-==--- pl Statement N

Fig. 4.7 : Sequential flow of control

Develop an algorithm and draw the flow chart to input a time in seconds
and convert it into the Hr: Min: Sec format. (For example, if 3700 is
given as input, the output should be 1 Hr: | Min: 40 Sec).

%% 5 Computer Science X

Example 4.3: Find the height of the taller one among two students

Here, two numbers representing the height of two students are to be input. The larger
number is to be identified as the result. We know that a comparison between these
numbers 1s to be made for this. The algorithm is given below:

Step1: Start Start

Step 2. InputH1, HZ2 ¥

Step3: If H1>H2 Then / Input H1, H2 /

Step 4: Print H1

Step5: Else

Step &: Print HZ2

Step7: EndofIf — FHE I /
Step 8 Stop

The flowchart of this algorithm is shown s
in Figure 4.8. This algorithm uses the

decision making aspect. In step 3, a / Print H2 /

condition 1s checked. Obviously the result = ;
may be True or False based on the values v
of variables H1 and H2. The decision is Stop

made on the basis of this result. If the result
is True, step 4 will be selected for execution,
otherwise step 6 will be executed. Here one of the two statements (either step 4 or
step 0) 1s selected for execunion based on the condition. A branching is done in step 3.
That is, this algorithm uses the selection structure to solve the problem. As shown in
Figure 4.9, the condition branches the flow to one of the two sets based on the result
of condinon.

Fig. 4.8 : Flowchart te find larger value

-

Fig, 4.9 : Selection structure

The wf:-rking of selection construct 1s as shown in
|"igur(: 4.10. The flow of control comes to the
condition; it will be evaluated to True or False, 1f
the condition 1s True, the instructions given in the
true block will be executed and false block will be

skipped. But if the condition is False, the true block

will be skipped and the false block will be executed. b

MNow let ug solre anather prul:nicm. Fig. 4.10 : Flowchart of selection

=) ® = Computer Science - X| 4. Principles of Programming and Problem Solving

Example 4.4: To input the scores obtained in 3 unit-tests and find the

highest score

Here we have to input three numbers representing the scores and find the largest number
among them. The algorithm is given below and flowchart is shown in Figure 4.11.

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
StepT:
Step 8:
Step 9
Step 10:

This algorithm uses multiple branching based
on different conditions, Three different
actions are provided, but only one of them is
executed. Another point we have to notice is
that the first condition consists of two

Sar

Input M1, M2, M3

If M1>M2 And M1>M3 Then / e /
Print M1

Else If M2 = M3 Then
Print M2

Else

Print M3
End of If
Stop

comparisons. This kind of condinonisknown Fig. 417 ; Flowchari to find the largest of
as compond condition. three numbers

1. Develop an algorithm and draw the flowchart to check whether a
aiven number is even or odd.

2. Design an algorithm and flow chart to input a day mimber and display

the name of the day. (For example, if 1 is the input, the output should

be Sunday. If it is 2, the output should be Monday. If the number is
other than 1 to 7, the output should be "Invalid data").

3. Based on the evaluation system for standard X, develop an algorithm
to accept a score out of 100 and find the grade.

MNow, consider a case in which some task is to be performed in a repeated fashion.
Suppose we want to print the first 100 natural numbers. How do we do it? We know
that the first number is 1. It should be printed. The next number is obtained by adding
I to the first number. Again it should be printed. It 1s clear that the two tasks - printing
a number and adding 1 to it - are to be executed repeatedly. The execution should be
terminated when the last number is printed. Let us develop the algorithm for this.

") ®2 Computer Science - XI

Example 4.5: To print the numbers from 1 to 100

Step 1. Start
Step2. N-=
‘Step3 PrimtN
:step4; N=MN+1 |
'Step5: If N <=100 Then Go To Step 3 :
R e e

In the algorithm given as Example 4.5, a condition is
checked at step 5. If the condition is found true, the flow
of control is transferred back to step 3. So the steps 3, 4
and 5 are executed repeatedly as long as the condition is
true. We will say that a loop is formed here. Steps 3, 4 and
5 constitute a loop. The control comes out of the loop only
when the condition becomes false. The flowchart of this
algorithm is shown in Figure 4.12.

The above algorithm can be simplified as follows:

Step1: Start

Step2: N=1

Step3: Repeat Steps 4 and 5 While (N<=100)
Step 4 PrintN

Step 5. N=N+1

Step6: Stop

Note that in step 3, the words "Repeat” and "While"
are used to construct a loop. The statements (step
numbers) that need repeated execution is specified

with the word "Repeat” and the condition is given No
with "While". As the algorithm looks slightly different, §

the flow chart also differs slightly as in Figure 4.13.
The execunion style of a loop is shown in Figure 4.14.

Mo

Fig. 4.12 : Flowchart to print
mumbers from | to 100

Fig 4.14 : Looping construci

Fig. 4.13 : Flowchart o
primt mumbers from 1 o 100

% ® = Computer Science - XI 4. Principles of Programming and Problem Solving

A loop has four elements. Obviously, one of them is l
the condition. We know that at least one variable will
be used ro put up a condition and let us call it loop Initialisation

control variable. Before the condition being checked,
the loop control variable should get a value. It is
possible through input or assignment. Such an Mo,
mstruction 1s called initialisation instruction for the
loop. The third element, called update instruction,
changes the value of the loop control vanable, It is
essential; otherwise the execution of the loop will Body of Loop
never be terminated. The fourth clement is the loop
body, which is the set of instructions to be executed
repeatedly. The flowchart shown in Figure 4.15 depicts Updation
the working of looping structure.

Yes

The initialisation instruction will be executed first and
then the condition will be checked. 1f the condition is
true, the body of the loop will be executed followed by the update instruction. Afrer
the execution of the update instruction, the condition will be checked again. This
process will be continued until the condition becomes false. The loop that checks the
condition before executing the body is called entry-controlled loop. There 15 another
style of looping construct. In this case, the condition

will be checked only after the execution of loop-body

Fig. 4.15 : Flowchart of Looping ¥

and update instruction. Such a loop is called exit-

controlled lo . /
Input N /

Example 4.6: To print the sum of the first N
natural numbers

0o

L=T

o

Here we have to input the value of N. The sum of
numbers from 1 to the input number N is to be found
out. et S be the variable to store the sum. Figure 4.16
shows the flowchart of this algorithm

Step 1: Start

Step 2: InputN

Step 3 A=1,5=0

Step4: Repeat Steps 5 and 6 While (A <= N) [|

Step 5: S=S+A /S wmims

Step 8: A=A+1
Step 7: Print S
Step 8 Stop Fig A£.16 . Flowchart for

the sum of first N nawral numbers

This algorithm uses an entry-controlled loop. In the
next example we can see an algorithm that uses exit-

controlled loop for problem solving,

Example 4.7: To print the first 10 multiples of

a given number

Step 1. Start

Step 2 Input N

Step3: A=1

Step 4. M=AxN
Step 5: Print M
Step 6: A=A+

Step 7. Repeat Steps 4 to 6 While (A <==10)

Step 8 Stop

This algonthm and the corresponding flowchart shown
in Figure 4.17 contain a loop in which the condition
is checked only after executing the body. Table 4.1

shows comparison between entry controlled loops and Fig. 4.17 : Flowchart for

exit controlled loops.

the first 10 mudtiples of a mumber

Entry Controlled Loop

Exit Controlled Loop

« Condition is checked before the
execution of the body

» Body may never be executed.

e Suitable when skipping of the body
from being executed 1s required

Condition 1s checked after the
execution of the body

Body will surely be executed at least
once.

Suitable when normal execution of the
bn-d}' 15 to be ensured.

Table 4.1 : Comparison of Loops

Let us practice with more algorithms and flowcharts for solving the problems that are

given as learning activities.

problems:

o

Develop an algorithm and draw the flowcharts for the following

_ 1. To print all even numbers below 100 in the descending order.
2. To find the sum of odd numbers between 100 and 200.
3. 1o print the multiplication table of a given number.
To find the factorial of a number.
To input a number and check whether it is prime or not.

Computer Science - X1 4. Principles of Programming and Problem Solving

4.3.3 Coding the program

Once we have developed the skill to design algorithms and flowcharts, the next step in
programming is to express the instructions in a more precise and concise notation.
That is, the instructions are to be expressed in a programming language. The process
of writing such program instructions to solve a problem is called coding. Text editor
programs are available to write the code in computer,

A language 1s a system of communication. We communicate
our ideas and emotions to one another through natural languages
such as English, Malayalam, etc, Similarly, a computer language
15 used to communicate between user and computer. A human
being who writes a computer program is to be familiar with a
language thar is understandable to the computer also, We have
already seen that computer knows only the binary language
which is very difficult for human beings to understand and use.
As we saw in Chaprer 3, we can use a human friendly language, known as High Level
Language (HLL) that looks similar to English. Again there 1s a facility of using language
processors to convert or translate the program written in HLL into machine language.
The program written in any HLL is known as source code.

Hence, to be a programmer we have to be well-versed in any HLL such as BASIC,
COBOL, Pascal, C++ etc. to express the instructions in a program. Each language has
its own character set, vocabulary, grammar (we call it syntax) to write programs. Once
the program is written using a language, it should be saved in a file (called source file),
and then proceed to the next phase of programming,

4.3.4 Translation

While selecting a language for developing source code, certain criteria such as volume
of data, complexity in process, usage of files, etc. are to be considered. Once a language
is selected and the source code is prepared, it should be translated using the concerned
language processor. Translation is the process of converting a program written in high
level language into its equivalent version in machine language. The compiler or
interpreter is used for this purpose. During this step, the syntax errors of the program
will be displaved. These errors are to be corrected by opening the file that contains the
source code. The source code 1s again given for compilation (translation). This process
will be continued till we get a message such as "No errors or warnings" or "Successful
compilation”. Now we have a program fully constituted by machine language
mstructions. This version of the source code 15 known as object code and 1t will be
usually stored in a file by the compiler itself.

Translation

Fig 4.18 : Transfation process

= ™= Computer Science - X

Once the object code is obtained it should be present in the system as long as you want
the program to be used.

4.3.5 Debugging

Debugging is the stage where programming errors are discovered and corrected. As
long as computers are programmed by human beings, the programs will be subject to
errors. Programming errors are known as 'bugs' and the process of detecting and
correcting these errors is called debugging. In general there are two types of errors
thar occur in a program - syntax errors and logical errors. Syntax errors result when
the rules or syntax of the programming language are not followed. Such program errors
typically involve incorrect punctuation, incorrect word sequence, undefined term, or
illegal use of terms or constructs. Almost all language processors detect syntax errors
when the program is given for translation. They print error messages that include the
line number of the statement having errors and give hints about the nature of the
error. In the case of interpreters, the syntax errors will be detected and displayed
during execution. The programmer's efficiency in using the language decides the time
and effort for the debugging process. The object program will be generated only if all
the syntax errors are recrified.

The second type of error, named logical error, is due to improper planning of the
program's logic. The language processor successfully translates the source code into
machine code if there are no syntax errors. During the execution of the program,
computer actually follows the program instructions and gives the output as per the
instructions. But the output may not be correct. This is known as logical error. When a
logical error occurs, all you know 1s that the computer 15 not giving the correct output.
The computers do not tell us what is wrong,. It should be identified by the programmer
or user. In order to determine whether or not there is a logical error, the program must
be tested. 5o, let us move on to the next stage of programming.

4.3.6 Execution and testing

As we have seen in the previous section, the program is said to be error-free only when
logical errors are also rectified. Hence when the compiled version of the program is
formed, it should be executed for testing. The purpose of testing is to determine whether
the results are correct. The testung procedure involves running the program to process
the test data that will produce 'known results'. That is, the
operations involved in the program should be done
manually and the ourput thus obrained should be compared
with the one given by the computer. The accuracy of the
program logic can be determined by this testing. While
selecting the test data, we should ensure thar all aspects
of the program logic will be tested. Hence the selection
of proper test data is important in program testing.

= ® = Computer Science - X| , 4, Principles of Programming and Problem Solving

Till now, we have discussed incorrect outputs due to incorrect logic. But there is a
chance of another tvpe of error, which will interrupt the program execution. This may
be due to the inappropriate data that is encountered in an operation. For example consider
an instruction A= B/C. This statement causes interruption in execution if the value of
C happens to be zero. In such a situation, the error messages may be displayed by the
error-handling funcron of the language. These errors are known as Run-time error.
These errors can be rectified by providing instructions for checking the validity of the
data before it gets processed by the subsequent instructions in the program.

4.3.7 Documentation

A computerised system cannot be considered to be complete until it is properly
documented. In fact documentation is an on-going process that starts in the problem-
study phase of the system and continues till its implementation and operation. We can
write comments in the source code as part of documentation. It is known as internal
documentation. It helps the debugging process as well as program modification ar a
later stage. The logic that we applied in the program may not be remembered when we
go through our own program at a later stage. Besides, the program written by one person
may need to be modified by some other person in future. If the program is documented,
it will help to understand the logic we applied, the reason why a particular statement
has been used and so on. However, the documentation part of the program will not be
considered by the language processor when you give the program for translation.

Writing comments in programs is only a part of documentation. Another version of
documentation is the preparation of system manual and user manual. These are hard
copy documents that contain functioning of the system, its requirements etc. and the
procedure for installing and using the programs. While developing software for various
applications, these manuals are mandatory. This kind of documentation is known as
external documentation.

Now yvou have analysed the problem, derived the logic of the solution, expressed in a
flow chart, developed the code in a programming language, translared it after removing
the syntax errors, checked the accuracy of the outpur after removing all the possible
logical and run-time errors, and we have documented the program.

Check yourself |

What is an algorithm?

. Pictorial representation of algorithm is known as ;
Which flow chart symbol is always used in pair?

Which flow chart symbol has one entry flow and two exit flows?
Program written in HLL is known as

What is debugging?

What is an object code?

£l

- o B W —

+

(%) ® = Computer Science - X|

4.4 Performance evaluation of algorithms

We have developed algorithms for solving various problems. You may think that some
of these problems would have been solved by following a different logic. Of course, it
is true that the same problem can be solved by different sets of instructions. But an
efficient programmer is the one who develops algorithms that require minimum computer
resources for execution and give results with high accuracy in lesser time. The
performance of an algorithm is evaluated based on the concept of time and space
complexity. The algorithm which will be executed faster with minimum amount of
memory space is considered as the best algorithm for the problem.

Algorithm-1 Algorithm-2
Step1: Start Step1: Start
Step2:. InputA B, C Step2: InputA B, C
Stepd S=A+B+C Stepd: S=A+B+C
Step4: Avg=5/3 Stepd: Avg=(A+B+C)/3
Step5: Print S, Avg Step 5: Print 5, Avg
Step6: Stop Step6: Stop

Table 4.2 : Algorithms to find the sum and average of three mumbers

Let us compare the two algorithms given in Table 4.2, developed to find the sum and
average of three numbers. The two algorithms differ in step 4. Algorithm-2 uses two
steps (steps 3 and 4) for additon operation on the same data. Narurally, that algorithm
will take more time for execution than Algorithm-1. So Algorithm-1 is better for coding,

MNow let us take another case, where comparison operations are involved for the selection
of a statement. We have already discussed an algonithm to find the largest among three
numbers in Example 4.4. The two algorithms given in Table 4.3 can also be used for
solving the same problem.

Algorithm-1 Algorithm-2
Step 1: Start Step 1. Start
Step 2. Input M1, M2, M3 Step2 InputM1, M2, M3
Step 3: If M1>M2 And M1>M3 Then Step 3: If M1>M2 Then
Step 4 Print M1 Step 4: Big = M1
Step 5. If M2 = M1 And M2 > M3 Then Step 5: Else
Step 6: Print M2 Step 6: Big = M2
Step 7. If M3 =M1 And M3 > M2 Then Step 7: If M3 = Big Then Big = M3
Step 8: Print M3 Step 8: Print Big
Step 9: Stop Step 9. Stop

Table 4.3 @ Algorithms to find the largest among three numbers

%) ® = Computer Science - X| 4. Principles of Programming and Problem Solving

The algorithm in Example 4.4 has three comparison operations and one logical operation
altogether. All these operations are to be carried out only when the largest value is in
M3 (the third variable). To identify the speed of execution in each case, let us assume
that 1 second is required for one comparison operation. We can see that fastest result
will be in 3 seconds and slowest in 4 seconds. So the average speed 1s 3.5 seconds.

Now let us analyse Algorithm-1 in Table 4.3. There are three If statements, each with
three comparison operations. If we follow the assumptions specified above, we can see
that the result will be obtained in 9 seconds, irrespective of the values in the variables.
So the average speed is 9 seconds. But the Algorithm-2 in Table 4.3 uses two If
structures. The algorithm shows that whatever be the values in the variables, the ume
required for comparison will be 2 seconds. Thus the average speed is 2 seconds. 5o, we
can say that the Algorithm-2 is better than the other two.

Let us consider one more case where loop is invelved. The two algorithms given in
Table 4.4 find the sum of all even numbers and sum of all odd numbers between 100

and 200,
Algorithm-1 Algorithm-2

Step 1. Start Step 1. Start
Step2: MN=100,ES5=0 Step2: N=100,E5=005=0
Step 3. Repeat Steps4to6 Step3: Repeat Steps4to 8

While (N <= 200) While (N <= 200)
Step4: If Remainder of Nf2=0Then Step4: If Remainder of Ni2 =0 Then
Step 5: ES=ES+N Step 5: ES=ES+N
StepB: MN=N+1 Step6: Else
Step7: FPrint ES Step 7: D5=05+N
Step8: N=10005=0 Step8: N=N+1
Step9: Repeat Steps 10to 12 Step 9. PrintES

While (N <= 200) Step 10: Print OS
Step 10: If Remainder of N/2= 1 Then Step 11: Stop
Step 11: 0S=05+N
Step12: N=N+1
Step 13: Print OS
Step 14: Stop

Tabie 4.4 : Algarithms to find sum of even and odd numbers

Algorithm-1 uses two loops. Obviously, nme taken will be double for the intalisanon,
testing and updation of loop control variable compared to Algorithm-2. From the table,
it is clear that Algorithm-2 is better and efficient. So, think divergently and differently
to develop logic for solving problems,

%) ® = Computer Science - X|

‘ Let us sum up

Program is a sequence of instructions written in a computer language. The
process of programming proceeds through some stages. Preparation of
algorithms and flowcharts help develop the logic. The program written in HLL
1s known as source code and itis to be converted into machine language. The
resultant code is known as object code. The errors occurred in a program has
to be removed through a process known as debugging, The translated version
is executed by the computer. Proper documentation of the program helps us
to modify it at a later stage. While solving problems different logic may be
applied, but the performance is measured in terms of time and space
complexity.

Ty,
s-.g
#M

Learning outcomes

After the completion of this chapter the learner will be able to

« explin various aspects of problem solving,

o develop algorithms for solving problems.

o draw flowcharts to ensure the correctness of algorithms.
select the best algonthm For sah’mg a problem.

Sampi questions IITIMIATIAAAAIT AT

Very short answer type

1. What 1s an algorithm?

2. What is the role of a computer in problem solving?

3. Whar is the use of connector in a flow chart?

4. Whar do you mean by logical errors in a program?

Short answer type

What is a computer program? How does an algorithm help to write a program?
Write an algorithm to find the sum and average of 3 numbers.

Diraw a flowchart to display the first 100 natural numbers.

What are the imitations of a flow chart?

L B

What is debugging?

6. What is the need of documentation for a program?
Long answer type

1. What are the characteristics of an algorithm?

2. Whar are the advantages of using a flowchart?

3. Briefly explain different phases in programming,

]

Introduction to C++
Programming

C++ (pronounced "C plus plus") is a powerful,
popular object oriented programming (OOP)
« Tokens language developed by Bjarne Stroustrup. The
idea of C++ comes from the C increment

s C++ character set

o Keywords : ‘ :
— operator ++, thereby suggesting that C++isan
o Identifiers : 2 : "
: added (incremented) version of C language.
o Lliterals
o Bunshisirs The C++ lupguagu can be used Hﬁ practice various
rogramming concepts such as sequence
o Operators Prdgn: g-soncepts 5 § seq ;
selection and iteraton which we have already
« Integrated Development discussed in Chapter 4. In this chapter, we will
Environment (IDE) have a brief overview of the fundamentals of
C++. We will also familiarise different language
o GeanyIDE g
processor packages that are used to write C++
programs.
Just like any other language, the learning of C++
language begins with the familiarisation of its
basic symbols called characters. The learning
hierarchy proceeds through words, phrases
(expressions), statements, etc. Let us begin with
the learning of characters.
_—————— 5.1 Character set

As we know, the study of any language, such as
English, Malayalam or Hindi begins with the
alphabet. Similarly, the C++ language also has
its own alphabet. With regard to a programming
language the alphabet is known as character set.
It is a set of valid symbols, called characters that
a language can recognize. A character represents

=
ol

= Computer Science - X|

Dr. Bjarne Stroustrup developed C++ at ATA&T Bell | |
Laboratories in Murray Hill, New Jersey, USA. Now he
is avisiting Professor at Columbia University and holder
of the College of Engineering Chair in Computer Science
at Texas A&M University. He has received numerous honours. Initial
name of this language was 'C with classes’. Later it was renamed to
C++,in 1983, Bfarne

Stroustrup

any letter, digit, or any other symbol. The set of valid characters in a language
which is the fundamental units of that language, is collectively known as character
set. The character set of C++ is categorized as follows:

(1) Letters : ABCDEFGHIJKLMNOPQRSTUYV
WXYZ
abcdefghijklmnopgrstuvwxyz

(i) Digits : 0123456789

(iti) Special characters vk o E R LEY[14 =, = L7
s 3 ¢ %! & ¢ _(underscore) # @

(iv) White spaces : Space bar (Blank space), Horizontal Tab (=),

Carriage Return (), Newline, Form feed
(v) Other characters : C++ can process any of the 256 ASCII characters
as data or as literals.

Spaces, tabs and newlines (line breaks) are called white spaces. White
space is required to separate adjacent words and numbers.

5.2 Tokens

After learning the alphabet the second stage is learning words constituted by the
alphabet (or characters). The term ‘token’ in the C++ language is similar to the
term ‘word’ in narural languages. Tokens are the fundamental building blocks of

the program. They are also known as lexical units. C++ has five tvpes of tokens as
listed below:

1. Keywords
2, Idennfiers
3. Literals

4. Puncruators
5. Operators

5. Introduction to C++ Programming

*)® = Computer Science - XI

5.2.1 Keywords

The words (tokens) that convey a specific meaning to the language compiler are
called keywords. These are also known as reserved words as they are reserved by
the language for special purposes and cannot be redefined for any other purposes.
The setof 48 keywords in C++ are listed in Table 5.1. Their meaning will be explained
in due course.

asm continue | fleoat new signed try
auto default for operator sizeof typedef
break delete friend | private static union
case do goto protected |struct unsigned
catch double if public switch virtual
char else inline | register template |void
class enum int return this volatile
const extern long short throw while

Tabie 5.1: Keywords of C++

5.2.2 Identifiers

We usually assign names to places, people, objects, etc. in our day to day life, to
identify them from one another. In C++ we use identifiers for this purpose.
Identifiers are the user-defined words that are used to name different program
clements such as memory locations, statements, functions, objects, classes ete. The
identifiers of memory locations are called variables. The identifiers assigned to
statements are called labels. The identifiers used to refer a set of statements are
called function names.

While constructing identifiers certain rules are to be strictly followed for their validity
in the program. The rules are as follows:

o ldentifier is an arbitrary long sequence of letters, digits and underscores
« The first character must be a letter or underscore (_).

« White space and special characters are not allowed.

« Keywords cannot be used as identifiers.

« Upper and lower case letters are treated differently, i.e. C++ is case sensitve.

Examples for some valid identifiers are Count, Sumcf2numbers,
Average Height, lstRank, Main, FOR

=) % = Computer Science - XI

The following are some invalid identifiers due to the specified reasons:

Sum of Digits — Blank spaceisused

lstyear —» Digit is used as the first character
First.Jan —» Special character (.) is used
for —» lris a keyword

Identify invalid identifiers from the following list and give reasons:
 Data rec, data, Idata, datal, my.file, asm,
B . switch, goto, break
5.2.3 Literals
Consider the case of the Single Window System for the admission of Plus One
students. You may have given vour date of birth in the application form. As an
applicant, vour date of birth remains the same throughout yvour life. Once they are
assigned their initial values, they never change their value. In mathematics, we know
that the value of m is a constant and the value of gravitational constant ‘g’ never
changes, i.e. it remains 9.8m/s*. Like that, in C++, we use the type of tokens called
literals to represent data items that never change their value during the program
run. They are often referred to as constants. Literals can be divided into four types
as follows:

1. Integer literals

2. Floating point literals
3. Character literals

4. String literals

Integer literals

Consider the numbers 1776, 707, -273. They are integer constants that identfy integer

decimal values. The tokens constituted only by digits are called integer literals and

they are whole numbers without fractional part. The following are the characteristics

of integer literals:

« An integer constant must have at least one digit and must not contain any
decimal point.

« ltmay contain either + or — sign as the first character, which indicates whether
the number is positive or negative.

« A number with no sign is treated as positive.

« No other characters are allowed.

% % = Computer Science - X| . 5. Introduction to C++ Programming

Classify the following into valid and invalid integer constants and
give reasons for the ivalidity:
77,000 70 314. -5432 +15346
$23267 -7563 -0228140 1234ES6 -9999

In addition to decimal numbers (base 10), C++ allows the use of octal
numbers (base 8) and hexadecimal numbers (base 16) as literals
(constants). To express an octal number we have to precede it witha O
(zero character)and in order to express a hexadecimal number we have
to precede it with the characters Ox (zero, x). For example, the integer constants
75,0113 and 0x4B are all equivalent to each other. All of these represent the same
number 75 (seventy-five), expressed as a base-10 numeral, octal numeral and
hexadecimal numeral, respectively.

Floating point literals

You may have come across numbers like 3.14159, 3.0 107, 1.6x10"and 3.0 during

vour course of study. These are four valid numbers. The first number is 7 (Pi), the

second one is the speed of light in meter/sec, the third is the electric charge of an

clectron (an extremely small number) — all of them are approximated, and the last

one is the number three expressed as a floating-point numeric literal.

Floating point literals, also known as real constants are numbers having fractional

parts. These can be written in one of the two forms called fractional form or

exponential form.

A real constant in fractional form consists of signed or unsigned digits including a

decimal point between digits. The rules for writing a real constant in fractional

form are given below:

o A real constant in fractional form must have at least one digit and a decimal
point.

e ltmay also have either + (plus) or — (minus) sign preceding it.

e A real constant with no sign i1s assumed to be positve.

A real constant in exponential form consists of two parts: manttssa and exponent.

For instance, 5.8 can be written as 0.58% 10" = (.58E1 where mantissa part is (.58

(the part appearing before E) and exponential partis 1 (the part appearing afrer E).

The number E1 represents 10", The rules for writing a real constant in exponential

form are given below:

« A real constant in exponent form has two parts: 2 mantissa and an exponent.

s The mantissa must be either an integer or a valid fractional form.

-

= ® = Computer Science - X

o The mantissa is followed by a letter E or e and the exponent.
o The exponent must be an integer.
The following are valid real constants.

52.0 107.5 -T13.8 -00925
453.1-5 1.25E08 212E04 562.0E09
152E+8 1520E04 -0.573E-7 -097

Some invalid real constants are given along with the reason:

58,250.262 (Comma is used), 5.8 (No exponent part), (.58E2.3 (Fractional
number is used as exponent).

Classify the following into valid and invalid real constants and justify

YOUr answer:

77.00,000 7.0 3.14 -S.0ES4 +5345E-6
+532.67. .756E-3 -0.528E10 1234.56789 34.56.24

4353 342 S5.6E 4356 0

Character literals

When we want to store the letrer code for gender usually we use *f” or ‘I for Hemale
and ‘m’ or ‘M’ for Mad. Similarly, we may use the letter °y’ or Y to indicate Yesand
the letter 'n” or ‘N to indicate No. These are single characters. When we refer a
single character enclosed in single quotes that never changes its value during the
program run, we call ita character literal or character constant.

Note that x without single quote is an identifier whereas *x is a character constant.
The value of a single character constant is the ASCII value of the character. For
instance, the value of *c’ will be 99 which is the ASCII value of <’ and the value
of *A’ will be the ASCII value 65.

C++ language has certain non-graphic character constants, which cannot be typed
directly from the keyboard. For example, there is no way to express the Carriage
Return or Enter key, Tab key and Backspace key. These non-graphic symbols can
be represented by using escape sequences, which consists of a backslash (\)
followed by one or more characters. It should be noted that even though escape
sequences contain more than one character enclosed in single quotes, it uses only

one corresponding ASCIT code to represent it. That is why they are treated as
character constants. Table 5.2 lists escape sequences and corresponding characters.

%)% = Computer Science - XI ' 5. Introduction to C++ Programming

In Table 5.2, we can also see sequences | Escape Corresponding
representing \ ', \" and \?. These | Sequence || Non-graphic character
characters can be typed from the Na Audible bell (alert)

keyboard but when used without escape
sequence, they carry a special meaning
and have a special purpose. However, \f Form feed

\b Back Space

if these are to be displayed or printed as \n New line oe Line feed
it is, then escape sequences should be

/ 2 4% Carriage Return
used. Examples of some valid character 5
constants are: 's', 'S', '$", "\n’, NE Horizontal Tab
e \v Vertical Tab
Some invalid character constants are A Back slash
also given with the reason for invalidity: \ ! Single quote
A (No single quotes), ‘82" (More than \ Double quote
one character), “K” (Double quotes ;

\? Question mark

instead of single quotes), “\g" (Invalid
escape sequence or Multiple characters). \0 Null character

Table 5.2 : Escape Sequences

C#++ represents Octal Mumber and Hexadecimal Number with the help of escape
sequences. The \On and \xHn represent a number in the Octal Number System
and the Hexadecimal Number System respectively.

String literals

Nandana is a student and she lives in Bapuji Nagar. Here, “Nandana” is the name
of a girl and “Bapuji Nagar” is the name of a place. These kinds of data may need
to be processed with the help of programs. Such data are considered as string
constants and they are enclosed within double quotes. A sequence of one or more
characters enclosed within a pair of double quotes is called string constant. For
instance, “Hello friends”, “123%, “C++", “Baby\fs Day Out”, etc. are
valid string constants.

Classify the following into different categories of literals.

gt "rita" -124 Bl A e
"raju\'s pen" 0 -11.999 "\\' 32760

(%) ® = Computer Science - X|

5.2.4 Punctuators

In languages like English, Malayalam, etc. punctuation marks are used for
grammatical perfection of sentences. Consider the statement: Whe developed C++7
Here 7’ is the punctuation mark that tells that the statement is a question. Similarly
at the end of each sentence we put a full stop (). In the same way C++ also has
some special symbols that have syntactic or semantic meaning to the compiler.
These are called punctuators. Examplesare: # ; * ™ () [1 { }.
The purpose of each punctuator will be discussed later.

5.2.5 Operators

When we have to add 5 and 3, we express it as 5 + 3. Here + is an operator that
represents the addition operation. Similarly, C++ has a rich collection of operators.
An operator is a symbol that tells the compiler about a specific operation. They are
the tokens that trigger some kind of operation. The operator is applied on a set of
data called operands. C++ provides different types of operators like arithmetic,
relational, logical, assignment, conditional, etc. We will discuss more about operators
in the next chapter.

Classify the following inte different categories of tokens.
J"I -12"-1 & -lze_l T“KLD]."
Sum "rajulh's pen” it rita RN

break)

5.3 Integrated Development Environment (IDE)

Now we have learned the basic elements of a C++ program. Before we start writing
C++ programs, we must know whete we will type this program. Like other
programming languages, a text editor is used to create a C++ program. The
compilers such as GCC (GNU Compiler Collection), Turbo C++, Botland C++,
and many other similar compilers provide an Integrated Development Environment
(IDE) for developing C++ programs. Many of these IDEs provide facilities for
typing, editing, searching, compiling, linking and executing a C++ program. We
use Geany IDE (IT@School Ubuntu Linux 12.04) for the purpose of illustrating the
procedure for coding, compiling and executing C++ programs.

GCC with Geany IDE

GCC compiler is a free software available with Linux operating system. GCC stands
for GNU Compiler Collection and is one of the popular C++ compilers which

5. Introduction to C++ Programming

Computer Science - XI

works with ISO C++ standard. Geany is a cross-platform IDE for writing, compiling
and executing C++ programs.

A. Opening the edit window

The edit window of Geany IDE can be opened from the Applications menu of
Ubuntu Linux by proceeding as follows:

Applications = Programming = Geany

_ Geany IDE opens its window as

File Edit Search Veew Document Projec

CErT “ X P q, o .| shownin Figure 5.1. It has a title
Symbols

g Laga found 1

® | wntithed X

bar, menu bar, toolbar, and a
code edit area. We can see a tab
named untitled, which indicates
the file name for the opened edit
arca. If we use Geany 1.24 on
Windows operating system, the

195650 T o Gy © 10

SEAbS - 19SS Mew Bl “unkitied” opened

Compiler

Thits s Ceary 0L IR

Fig. 3.1: Opening screen of Geany 1DE in Ubintie Linx

opening window will be as
shown in Figure 5.2. We can see
that both of these are quite the
same.

In this window, we type the |
program in a file with the

Fie fdt Sesich Yew Documers Becgect Judd Jeoh Help

defaul titled. T i St e R . S B S, R
efault name un P oy e o oy
Ha tagn fmnd o

open a new file, choose File
menu, then select New
opton or click New button 1|

I._F-ﬂ‘ on the toolbar.

b. Saving the program g

CEAED: The @ Gedny 1,24

WEE a1 e e ConDied” apened.

Once a file is opened, enter ||
the C++ program and save || -
. a o Thit & Gaary 1.4
it with a suitable file name

with extension .cpp. GCC
being a collection of compilers,

Fig 3.2: Opening screen of Geany FDE 1.24 in Windows OS5

the extension decides which compiler is to be

selected for the compilation of the code. Therefore we have to specify the extension
withour fail. If we give the file name before typing the program, GCC provides
different colours automatically to distinguish the types of tokens used in the program.
It also uses indentation to identify the level of statements in the source code. We
will disucss the conceptof indentaton later.

= ™= Computer Science - X

Let us write a simple program given as Program 5.1 and save with the name
welcome.cpp.

Program 5.1: A program to familiarise the IDE

// my first C++ program

finclude<iostream>

using namespace std;

int mainf()

{
cout << "Welcome to the world of C++";
return 0;

} J/F/end of program

The IDE window after ::ntering Prr}gram 5.112 shown in Figuﬂ: 5.3. Observe the
diffrence in colours used for the tokens.

welcome.cpp - fhomefubuntufDesktop - Geany =
File Edit Search View Document Project Build Tools Help
1 ot l:l- Li B
L ~ [l - il E x @ = ‘- ‘ ¥ ower v
Symbols |* welcome.cpp %
¥ &9 Functions 1 /7 my Tirst -':-n- program
ain [4] 2 winclude)
u &{p: i 3 using nl-“pm:i std
rher 4 dint main()
@ s1d (3] 5 {
6 COUL == ° W to the f Cos™;
7 return ©;
B }
9 -
L]
- g++ -Wall ¢ "welcome.cpp” (in directory: /homej/ubuntu/Desktop)
Compiler Compilation finished successfully
line:9 col:0 sel:0 INS TAB mode: Unix (LF) encoding: UTF-8 Filet...

Fig 5.3: Program saved with a name in Geany 1DE

To save the program, choose File menu and select Save option or use the keyboard
shortcut Ctrl+S. Alternatively the file can be saved by clicking the Save button A in
the toolbar.

It is a good practice to save the program every now and then, just by pressing
Ctrl+S. This helps to avoid the loss of data due to power failures or due to unexpected
system errors. Once the program typing is completed, it is better to save the file
before compiling or modifying, Copying the files from the temporary volatile
primary memory to permanent non volatile secondary memory for storage is known
as saving the program.

5. Introduction to C++ Programming

C++ program files should have a proper extension depending
upon the implementation of C++ Different extensions are
followed by different compilers. Examples are .cpp, .cxx, .cc,
CHt

C. Compiling and linking the program

The next step is to compile the program and modify it, if errors are detected. For
this, choose Build menu and select Compile option. Alternatively we can also use
the Compile button 6;.}, . If there are some errors, those errors will be displayed
in the compiler status window at the bottom, otherwise the message Compilation
finished successfully will be displayed. (refer Figure 5.3).

After successful compilation, choose Build menu and select Build option for linking
or click the Build button ‘ in the toolbar. Now the program is ready for
execution.

D. Running/Executing the program

Running the program is the process by which a computer carries out the instructions
of a computer program. To run the program, choose Build menu and select Execute
option. The program can also be executed by clicking the Execute button - in
the toolbar. The ourput will be displayed in a new window as shown in Figure 5.4.

geany_run_script.sh
Welcome to the world of C++

{program exited with code: 0)
Press return to continue

Fig. 3.4: Chitput window

E. Closing the IDE

Once we have executed the program and desired ourput is obtained, it can be closed
by selecting Close option from File menu or by clicking the Close button X in the
active tab or in the title bar. For writing another program, a new file can be opened
by the New option from the File menu or by clicking the New button l_‘:‘,in the
tool bar. The key combination Ctrl+N can also be used for the same.

.

=) ® = Computer Science - X|

Afrer developing program, we can come out of Geany IDE by choosing File menu
and selecting Quit option. The same can be achieved by clicking the Close button
of the IDE window or by using the key combination Ctri+Q.

Write a program to print the message "SMOKING IS
INJURIOUS TO HEALTH" on screen.

Write a program to display the message "TOBACCO CAUSES
CANCER" on monitor.

< Let us sum up

C++ was developed by Bjarne Stroustrup in early 1980s. C++ has its own
character set. Tokens are the smallest unit of a program and are constituted by
one or more characters in C++. There are five types of tokens namely keywords,
identitiers, literals, punctuators and operators. Programs are written in computer
with the help of an editor. Software like GCC and Geany IDE provide facilities
to enter the source code in the computer, compile it and execute the object code.

Learning outcomes

After the completion of this chapter the learner will be able tos

s list the C++ character set.

« categorise various tokens.

o identfy keywords.

« write valid identifiers.

+ classify various literals.

« identify the main components of Geany IDE.

« write, compile and run a simple program.
: P ple prog

Computer Science - XI 5. Introduction to C++ Programming

Sample quesdons [T

Very short answer type

1. What are the different types of characters in C++ character set?
2. Whatis meant by escape sequences?

3. Whodeveloped C++7

4. What is meant by tokensr Name the tokens available in C++.

5. Whatis a character constantin C++ 2

6. Howare nnn—graphi-:: characters repr-:ﬁenrcd in C++r Give an example.

7. Why are the characters \, (slash), " (single quote), " (double quote) and 7 (question
mark) typed using escape sequences?

8. Which escape sequences represent newline character and null character?

9. Anescape sequence represents characters.

10. Which of the following are valid character/string constants in C++?
1t 'at’lu' "E.I'I'I,.':“ mine 'main's' woon
*char Y\ %!

11. What is a floating point constant? What are the different ways to represent a
floating point constant?

12. Whar are string-literals in C++7 What is the difference berween character
constants and string literals?

13. What is the extension of C++ program file used for runningr

14. Find out the invalid identifiers among the following. Give reason for their
invalidity
a) Principal amount b) Contnue ¢) Area d) Date-of-join ¢) 9B
15. A labelin C++ is
a) Keyword b) Identifier ¢) Operator d) Function
16. The following tokens are taken from a C++ program. Fill up the given table
by placing them at the proper places
(int, cin, %, do , =, "break" ,25.7,digit)

Kevwords Idendfiers | Lirerals Operators

ﬂ

= Computer Science - X

Short answer type

1. Write down the rules governing identifiers.

2. Whatare tokens in C++ ? How many types of tokens are allowed in C++7List
them.

3. Distinguish between identifiers and keywords.
4. How are integer constants represented in C++¢ Explain with examples.

3. What are character constants in C++¢ How are they implemented®

Long answer type

1. Briefly describe different types of tokens.
2. Explain different types of literals with examples.

3. Briefly describe the Geany IDE and its important features.

Concept of data types

C++ data types
Fundamental data types
Type modifiers

Variables

Operators

Arithmetic

Relational

Lagical

Input/Output
Assignment

Arithmetic assignment
Increment and decrement
Conditional

sizeof

Precedence of operators
Expressions

a Arnthmetic

o Relational

o Logical

Type conversion

Statements

o Declaration

o Assignment

o Input /Output

Structure of a C++ program
o Pre-processor directives
o Header files

o Conceptof namespace
o

o

Q00 o 0 0 0 0 00

The main() function
A sample program
Guidelines for coding

Data Types and
Operators

In the previous chapter we familiarised ourselves
with the IDE used for the development of C++
programs and also learnt the basic building blocks
of C++ language. As we know, data processing
is the main activity carried out in computers. All
programming languages give importance to data
handling, The input data is arranged and stored
in computers using some structures. C++ has a
predefined template for storing data. The stored
data is further processed using operators. C++
also makes provisions for users to define new data
types, called user-defined dara types.

In this chapter, we will explore the main concepts
of the C++ language like dara types, operators,
expressions and statements in detail.

6.1 Concept of data types

Consider the case of preparing the progress card
of a student after an examinaton. We need data
like admission number, roll number, name,
address, scores in different subjects, the grades
obtained in each subject, etc. Further, we need to
display the percentage of marks scored by the
student and the attendance in percentage. If we
consider a case of scientific data processing, it
may require data in the form of numbers
representing the velocity of light (3x10° m/s),
acceleration due to gravity (9.8 m/s), electric
charge of an electron (-1.6x10'") erc.

.,

o, - gt

= Computer Science - Xl

From these cases, we can infer that data can be of different types like character,
integer number, real number, string, etc. In the last chapter we saw that any valid
character of C++ enclosed in single quotes represents character data in C++.
Numbers without fractions represent integer data. Numbers with fractions
represent floating point data and anything enclosed in double quotes represents a
string data. Since the data to be dealt with are of many types, a programming
language must provide ways and facilities to handle all types of data. C++ provides
facilitics to handle different types of data by providing data type names. Data
types are the means to identify the nature of the data and the set of operations that
can be performed on the data. Various data types are defined in C++ ro differentiate
these data characteristics.

In Chapter 4, we used variables to refer data in algorithms. Variables are also used
in programs for referencing data. When we write programs in the C++ language,
variables are to be declared before their use. Data types are necessary to declare
these variables.

6.2 C++ data types

C++ provides a rich set of data types. Based on nature, size and associated
operations, they are classified as shown in Figure 6.1. Basically, they are classified
into fundamental or built-in data types, derived data types and user-defined dara
types.

C++Data Types

User-defined
Data Types

v

Integral
Data Types

Fundamental Derived
Data Types Data Types

Floating Point
Data Types

Fig 6.1 : Classificavion of C++ data fypes
Fundamental data types

l'undamental data types are defined in C++ compiler. They are also known as built-
in data types. They are atomic in nature and cannot be further decomposed of. The
five fundamental data types in C++ are char, int, float, double and void.
Among these, int and char comes under integral data type as they can handle

7 ® = Computer Science - X| 6. Data Types and Operators

only integers. The numbers with fractions (real numbers) are generally known as
floating type and are further divided into £loat and double based on precision
and range.

User-defined data types

C++ is flexible enough to allow programmers to define their own data types.
Structure (struct), enumeration (enum), union, class, etc. are examples for such
data types.

Derived data types

Derived data types are constructed from fundamental data types through some
grouping or alteration in the size. Arrays, pointers, functions, etc. are examples of
derived data types.

6.3 Fundamental data types

Fundamental data types are basic in nature. They cannot be further broken into
small units. Since these are defined in compiler, the size (memory space allocated)
depends on the compiler. We use the compiler available in GCC and hence the size
as well as the range of data supported by the data type are given accordingly. It may
be different if you use other compilers like Turbo C++ IDE. The five fundamental
data types are described below:

int data type (for integer nimbers)

Integers are whole numbers without a fractional part. They can be positive, zero or
negative. The keyword int represents integer numbers within a specific range. GCC
allows 4 bytes of memory for integers belonging to int data type. So the range of
values that can be represented by int data type is from -2147483648 to
+2147483647. The data items 6900100, 0, -112, 17, -32768, +32767, etc. are
examples of int data type. The numbers 2200000000 and -2147483649 do not
belong to int data type as they are out of the allowed range.

char data type (for character constants)

Characters are the symbols covered by the character set of the C++ language. All
letters, digits, special symbols, punctuations, etc. come under this category. When
these characters are used as data they are considered as char type data in C++. We
can say that the keyword char represents character literals of C++. Each char
tvpe data is allowed one byte of memory. The data items X, *+°, \ 0,0, etc.
belong to char data type. The char data type is internally treated as integers,
because computer recognises the character through its ASCII code. Character data
is stored in the memory with the corresponding ASCII code. As ASCII codes are
integers and need to be stored in one byte (8 bits), the range of char data type is
from -128 to +127.

™= Computer Science - XI

float data type (for floating point numbers)

Numbers with a fractional part are called floating point numbers. Internally, floating-
point numbers are stored in a manner similar to scientific notation. The number
47281.97 is expressed as 0.4728197 < 10° in scientific notation, The first part of the
number, 0.4728197 is called the mantissa. The power 5 of 10 is called exponent.
Computers typically use exponent form (I nefation) to represent floating-point
values. In E notation, the number 47281.97 would be 0.4728197E5. The part of the
number before the F is the mantissa, and the part after the E is the exponent. In
C+++, the keyword £leat is used to denote such numbers. GCC allows 4 bytes of
memory for numbers belonging to float data type. The numbers of this data
type has normally a precision of 7 digits.

double data type (for double precision floating point numbers)

In some cases, floating point numbers require more precision. Such numbers are
represented by double data type. The range of numbers that can be handled by
float type is extended by this data type, because it consumes double the size of
float datatype. In C++, itis assured that the range and precision of double will
be at least as big as float. GCC reserves 8 bytes for storing a double precision
value. The precision of double data type is generally 15 digits.

void data type (for null or empty set of values)

The data type void is a keyword and it indicates an empty set of data. Obviously it
does not require any memory space. The use of this data type will be discussed in
detail in Chapter 10.

The size of fundamental data types decreases in the order double, float, int
and char.

6.4 Type modifiers

Have you ever seen travel bags that can alter its size /volume to include extra bit of
luggager Usually we don’t use that extra space. But the zipper artached with the bag
helps us to alter its volume either by increasing it or by decreasing, In C++4 too, we
need data types that can accommodate data of slightly bigger/smaller size. C++
provides data type modifiers which help us to alter the size, range or precision.
Modifiers precede the data type name in the variable declaraton. It alters the range
of values permitted to a data type by altering the memory size and sign of values.
Important modifiers are signed, unsigned, long and short.

6. Data Types and Operators

The exact sizes of these data types depend on the compiler and computer you are
using, It is guaranteed that:

* adouble is atleastas bigasa float.

* a long double is at least as big as a double.
Each type and their modifiers are listed in Table 6.1 (based on GCC compiler) with

their features.
Name Description Size Range
char Character 1 byte |signed:-128to 127
unsigned: 0to 255
short int| Short Integer 2 bytes |signed:-32768 to 32767
(short) unsigned:0to 65535
int Integer 4 bytes |signed:-2147483648 to 2147483647
unsigned: 0to 4294967295
long int Long integer 4 bytes |signed:-2147483648 to 2147483647
(1ong) unsigned: 0 to 4294967295
+/-38 +/-38]
float Floating point number 4 bytes '3'4XI(_) to +3',4 x .10 Wlt 5
approximately 7 significant digits
dousle Double precision 8 bytes -1.7 x '10+/'308 to +17 .X' 10”’30.8 Wlth
floating point number approximately 15 significant digits
long .. .
double Long double precision | {5 bytes -3.4 x 1074 to +3.4 x10*** With
floating point number approximately 19 significant digits

Table 6.1: Data type and type modifiers

The values listed in Table 6.1 are only sample values to
give you a general idea of how the types differ. The
values for any of these entries may be different onyour
system.

6.5 Variables

Memory locations are to be identified to refer data. Variables are the names given
to memory locations. These are identifiers of C++ by which memory locations are
referenced to store or retrieve data. The size and nature of data stored in a variable
depends on the data type used to declare it. There are three important aspects for a
variable.

= ® = Computer Science - X|

i. Variable name
It is a symbolic name (identifier) given to the memory location through which the
content of the location is referred to.

ii. Memory address

The RAM of a compurer consists of collection of cells each of which can store one
byte of data. Every cell (or byte) in RAM will be assigned a unique address to refer
it. All the variables are connected to one or more memory locations in RAM. The
base address of a variable is the starting address of the allocated memory space. In
the normal situation, the address is given implicitly by the compiler. The address is
also called the L-value of a variable. In Figure 6.2 the base address of the variable
Num is 1001,

iii. Content

The value stored in the location is called the content of the variable. This is also
called the R-value of the varable. Type and size of the content depends on the data

type of the variable. 1001 1002 1003 1004

Figure 6.2, shows the memory representation of a variable. Here ﬂﬂ
the variable name is Num and it consumes 4 bytes of memory at Num
memory addresses 1001, 1002, 1003 and 1004, The content of Fig: §.2: Memory
this varable is 18. That is the L-valee of Hum is 1001 and the j:,f;:“::‘::g;:n
R-value is 18.

6.6 Operators

Operators are tokens constituted by predefined symbols that trigger computer to
carry out operations. The participants of an operation are called operands. An
operand may be either a constant or a variable.

For example, a+b triggers an arithmetic operation in which + (addition) is the
operator and a, b are operands. Operators in C++ are classified based on various
criteria. Based on number of operands required for the operation, operators are
classified into three. They are unary, binary and ternary.

Unary operators

A unary operator operates on a single operand. Commonly used unary operators
are unary+ (positive) and unary— (negative). These are used to represent the sign of
a number. If we apply unary+ operator on a signed number, the existing sign will
not change. If we apply unary— operator on a signed number, the sign of the existing

") ® = Computer Science - X| 6. Data Types and Operators

number will be negated. Examples of the use | yariable Unary+ | Unary-
of unary operators are given in Table 6.2. < = =
Some other examples of unary operators are 3 8 -8
increment (++) and decrement (==) operators. 0 0 0
Binary operators 9 -9 9

Binary operators operate on two operands.
Arithmetic operators, relational operators,
logical operators, ete. are commonly used binary operators.

Table 6.2 : Unary operators

Ternary operator

Ternary operator operates on three operands. The typical example is the conditional
operator (7 :

The operations triggered by the operators mentioned above will be discussed in
detail in the coming sections and some of them will be dealt with in Chapter 7.

Based on the nature of operation, operators are classified into arithmetic, relational,

logical, input/ output, assignment, short-hand, increment/decrement, etc.

6.6.1 Arithmetic operators

Arithmetic operators are defined to perform basic arithmetic operations such as
addidon, subtraction, multplication and division. The symbols used for this are +,
= * and / respectively. C++ also provides a special operator, % (modulus operator)
for getting remainder during division. All these operators are binary operators.
Note that + and — are used as unary operators too. The operands required for these
operations are numeric data. The result of these operations will also be numeric.
Table 6.3 shows some examples of binary arithmetic operations.

Variable | Variable | Addition | Subtraction | Multiplication | Division
x b4 X +y X -y x * y x / ¥
10 B k] 5 50 2
=1 3 -8 =14 =33 =3.66667
1:1 -3 8 14 =33 =3.66667
=50 =10 -60 =40 500 5

Table 6.3 © Arithmetic operators
Modulus operator (%)
The modulus operator, also called as mod operator, gives the remainder value
during arithmetic division. This operator can only be applied over integer operands.

—

=)™ = Computer Science - X|

Table 6.4 shows some examples of modulus operation. Note that the sign of the
result is the sign of the first operand. Here in the table the first operand is x.

Variable Variable Modulus | Variable Variable Modulus
X y Operation X y Operation
x%y x%y
10 5 0 100 100 0
2 10 5 32 11 10
-5 11 =5 11 =5 1
5 -11 5 -11 2 -1
=11 =5 -1 -5 =11 -5
Tabie 6.4 : Operations using Modulus operator
Check vourself B

1. Arrange the fundamental data types in ascending order of size.
2. The name given to a storage location is known as
3. Name aternary operator in C++.
4. Predict the output of the following operations if x =-5and y =3
4. =X f.x+y
b. -y g x%y
C =X+-y hx/y
d-x-y L x *-y
e x%-11 j =x% -5

6.6.2 Relational operators

Relational operators are used for comparing numeric data. These are binary
operators. The result of any relational operation will be either True or False. In
C++, True is represented by Land False is represented by 0. There are six relational
operators in C++. They are < (less than), > (greater than), <= (less than or equal to), >=
(greater than ar equal o), == (equal to) and V= (wot egual o). Note that equality checking
requires two equal symbols (==). Some examples for the use of various relational

operators and their results are shown in Table 6.5.

("I ® = Computer Science - XI

6. Data Types and Operators

m n m<n | m>n | m<=n |m>=n | m!=n | m==n
12 5 0 1 0 1
-7 2 1 0 1 1

4 4 0 0 1 0 1

Table 6.3 ; Operations using Relational aperators

6.6.3 Logical operators

Using relational operators, we can compare values. Examples are 3<5, num!=10,
etc. These comparison operations are called relational expressions in C++. In some
cases, two or more comparisons may need to be combined. In Mathematics we
may use expressions like a=b>c. But in C++ itis not possible. We have to separate
this into two, as a=b and b>c and these are to be combined using the logical operator
& &, i.c. (a=b)&8&(b>c). The result of such logical combinations will also be either
True or False (i.c. 1 or (). The logical operators are && (logical AND), | | (logical

OR) and ! (logical NOT).
Logical AND (&&) operator

If two relational expressions El and E2 are = 5 T
combined using logical AND (&&) operator, the

result will be 1 (True) only if both E1 and E2 0 0 0
have values 1 (True). In all other cases the result 0 1 0
will be 0 (False). The results of evaluation of && 1 0 0
operation for different possible combination of

. g 1 1 1
inputs are shown in Table 6.6.

Examples: 10=5 & & 15<25 evaluates to 1 (True)

10>5 && 100<25 evaluates to 0 (False)

Logical OR (| |) operator

If two relational expressions El and E2 are | Bl E2 El||E2
combined using logical OR (| |) operator, the 0 0 0
result will be 0 (False) only if both El and E2 are

: . 0 1 1
having value () (False). In all other cases the result 3 i 5
will be 1 (Irue). The results of evaluation of | |
operation for different possible combination of 1 1 1

inputs are shown in Table 6.7.

Table 6.6 : Logical AND

Table 6.7 : Logical OR

Examples: 10=5 | | 100<25 evaluates to 1(True)
10= 15 | | 100<90 evaluates to 0 (False)

P i

=} ® = Computer Science - X|

Logical NOT operator (!) El 1E1

This operator is used to negate the result of a relational 0 1
expression. This is a unary operation. The results of
evaluation of ! operator for different possible inputs are
shown in Table 6.8.

Teable 6.8
Logical NOT
Exampl-:: (100<2) evaluates to 1 (Ttue)

I(100=2) evaluates to 0 (False)
6.6.4 Input / Output operators

Usually input operation requires user’s intervention. In the process of input
operation, the data given through the keyboard is stored in a memory location.
C++ provides >> operator for this operation. This operator is known as get from
or extraction operator. This symbol is constituted by two greater than symbols.

Similarly in output operation, data is transferred from RAM to an output device.
Usually the monitor is the standard output device to get the results directly. The
operator << is used for output operation and is called put to or insertion operator.
It is constituted by two less than symbols.

6.6.5 Assignment operator (=)

When we have to store a value in a memory location, assignment operator (=) is
used. This is a binary operator and hence two operands are required. The first
operand should be a variable where the value of the second operand is to be stored.
Some examples are shown in table 6.9.

Item Description
a=b The value of variable b is stored in a
a=3 The constant 3 is stored in variable a

Table 6.9 : Assignment aperator
We discussed the usage of the relational operator == in Section 6.6.2. See the
difference between these two operators. The = symbol assigns a value to a variable,
whereas == symbol compares two values and gives True or False as the result.

6.6.6 Arithmetic assignment operators

A simple arithmetic statement can be expressed in a more condensed form using
arithmetic assignment operators. For example, a=a+10 can be represented as
a+=10. Here +=is an arithmetic assignment operator. This method is applicable

S

™% = Computer Science - X| 6. Data Types and Operators

to all arithmetic operators and they are Arithmetic Equivalent
shown in Table 6.10. The arithmetic assigment arithmetic
assignment operators in C++ are +=, -=, opecration operation
*= /= %= These are also known as C++ % 4= 90 ¥ =m0
short-hands. These are all binary operators

- : x -= 10 x = x - 10
and the first operand should be a variable.
— * = = *
I'he use of these operators makes the two £ 10 ~ o 10
operations (arithmetic and assignment) £ .= 10 x = x / 10
faster than the usual method. 2 %= 10 *# =x % 10

Table 6.10) : C++ short hands
6.6.7 Increment (++) and

Decrement (--) operators

Increment and decrement OPErators are two sptciﬂl operators in C++. These are
unary operators and the operand should be a variable. These operators help keeping
the source code compact.

Increment operator (++)

This operator is used for incrementing the content of an integer variable by one.
This can be written in two ways: ++x (pre increment) and X++ (post increment).
Both are equivalent to x=x+1 as well as x+=1.

Decrement operator (==)

As a counterpart of increment operator, there is a decrement operator which
decrements the content of an integer variable by one. This operator is also used in
two ways: ==x (pre decrement) and x== (post decrement). These are equivalent to
x=%x-1 and x-=1.

The two usages of these operators are called prefix form and postfix form of
increment/ decrement operation. Both the forms make the same effect on the
operand variable, but the mode of operation will be different when these are used
with other operators.

Prefix form of increment/decrement operatots

In the prefix form, the operator is placed before the operand and the increment/
decrement operation is carried out first. The incremented/decremented value is
used for the other operations. So, this method is often called cbdnge, then use
method.

Consider the variables a, b, ¢ and d with values a=10, b=5. If an operation is
specified as c=++a, the value of 2 will be 11 and that of c will also be 11. Here the
value of a is incremented by 1 at first and then the changed value of a is assigned

S—1

= & = Computer Science - Xl

to c. Thatis why both the variables get the same value. Similarly, after the execution
of d=--b the value of d and b will be 4.

Postfix form of increment/decrement operators

When increment/ decrement operation is performed in postfix form, the operator
is placed after the operand. The current value of the variable is used for the remaining
operations and after that the increment/decrement operation is carried out. So,
this method is often called use, then change method.

Consider the same variables used above with the same initial values. Afrer the
operation performed with c=a++, the value of a will be 11, but that of ¢ will be
10. Here the value of a is assigned to ¢ at first and then a is incremented by 1. That
i, before changing the value of a itis used to assign to c. Similarly, after the execution
of d=b-- the value of d will be 5 but that of b will be 4.

6.6.8 Conditional operator(?:)

This is a ternary operator applied over three operands. The first operand will be a
logical expression (condition) and the remaining two are values. They can be
constants, variables or expressions. The condition will be checked first and if itis
True, the second operand will be selected to ger the value, otherwise the third
operand will be selected. Tts syntax is:

Expressionl? Expression2: Expression3
Let us see the operation in the following;

result = score>50 7 'p' :; 'f!
If the value of score is greater than 50 then the value 'p' is assigned to the
variable result, else value ' £' is assigned to result. More about this operator
will be discussed in Chapter 7.
6.6.9 sizeof operator

The operator sizeof is a unary compile-time operator that returns the amount
of memory space in bytes allocated for the operand. The operand can be a constant,
a variable or a data type. The syntax followed is given below:

e sirzeof (data type)

e sizepf variable name

e sirzeof constant

Itis to be noted that when data type is used as the operand for sizeof operator,
it should be given within a pair of parentheses. For the other operands parentheses

are not compulsory. Table 6.11 shows different forms of usages of sizeof operator.

") ® = Computer Science - X| 6. Data Types and Operators

Item Description

sizeof (int) | Gives the value 4 (In GCC, size of int data type is 4 bvtes)
sizeof 3.2 | Returns8 (A floating point constant will be taken as doub 1 e type data)

sizeof pi If pis float type variable, it gives the value 4.

Table 6.11: Various usages of sizeof operaror
6.6.10 Precedence of operators

Let us consider the case where different operators are used with the required
operands. We should know in which order the operations will be carried out. C++
gives priority to the operators for execution. During evaluation, pair of parentheses
is given the first priority. If the expression is not parenthesised, it is evaluated
according to the predefined precedence order. The order of precedence for the
operators is given in Table 6.12. In an expression, if the operators of the same
priority level oceur, the precedence of execution will be from left to right in most

of the cases.

Priority Operations
] () parentheses
2 |++,--,!,Unary+, Unary -, sizeof
3 |*(multiplication), / (division), % (Modulus)
4 |+ (addition), - (subtraction)
5 |<(lessthan), <= (less than or equal to), > (greater than), >= (greater than or

equal to)

== (equal to). ! = (not equal to)
&& (logical AND)

| | (logical OR)

? : (Conditional expression)

e =) O

10 |=(Assignment operator), *=, /=, %=, +=, —= (arithmetic assignment operators)
11 |, (Comma)

Table 6.12: Precedence of operators
Consider the variables with values: a=3, b=5, c=4, d=2, x

After the operations specifiedinx = a + b * ¢ - d, the value in % will be 21.
Here * (muluplication) has higher priority than + (addition) and = (subtraction).
Therefore the variables b and c are multiplied, then that result is added to a. From
that result, d is subtracted to get the final result.

P

"} ® = Computer Science - X1

Itis important to note that the operator priority can be changed in an expression as
per the need of the programmer by using parentheses (). For example, if a=5,
b=4, c=3, d=2 then the result of a+b-c*d will be 3. Suppose the programmer
wants to perform subtraction first and then the addition and multiplication, you
need to use proper parentheses as (a+ (b-c)) *d. Now the output will be 12. For
changing operator priority, brackets [] and braces { } cannot be used.

The operator precedence may be different for different types
of compilers. Turbo C++ gives higher precedence to prefix
increment / decrement than its postfix form.

For example, if ais initially 5, the values of b and a after b=a++ +

++a are 12 and 7 respectively. This is equivalent to the set of statements
a=a+1 (prefix expansion), b=a+a, and a=a+1 (postfix expansion).

6.7 Expressions

An expression is composed of operators and operands. The operands may be
either constants or variables. All expressions can be evaluated to get a result. This
result is known as the value returned by the expression. On the basis of the operators
used, expressions are mainly classified into arithmetic expressions, relational
expressions and logical expressions.

6.7.1 Arithmetic expressions

An expression in which only arithmetic operators are used is called arithmetic
expression. The operands are numeric data and they may be variables or constants.
The value returned by these expressions is also numeric. Arithmetic expressions
are further classified into integer expressions, floating point (real) expressions and
constant expressions.

Integer expressions

If an arithmetic expression contains only integer operands, it is called integer
expression and it produces an integer result after performing all the operations
given in the expression. For example, if x and y are integer variables, some integer
expressions and their results are shown in Table 6.13. Note that all the above
expressions produce integer values as the results.

x Yy |lx+y|x/v¥y -Xx + x *y E+x /¥ x %y
2 5 1 1
3 -] 2 12 1 0

Table 6.13: Integer expressions and their resufis

T

(=) ®™ (= Computer Science - X|

6. Data Types and Operators

Floating point expressions (Real expressions)

An arithmetic expression that is composed of only floating point data is called
floating point or real expression and it returns a floating point result after performing
all the operations given in the expression. Table 6.14 shows some real expressions
and their results, assuming that x and y are floating point variables.

x vy |x+yv |2/ vyv]| x+x *y 5 +x / ¥ x *x /vy
5.012.0 7.0 205 il Tl 1255
y P 9.0 2.0 12.0 7.0 120

Table 6. 14: Floaring point expressions and their results
It can be seen that all the above expressions produce floating point values as the
results,

In an arithmetc expression, if all the operands are constant values, then it is called
constant expression. The expression 20+5/2.01s an example. The constants like
15,3.14, 'A" are also known as constant expressions.

6.7.2 Relational expressions

When relational operators are used in an expression, it is called relational expression
and it produces Boolean type results like True (1) or False (0). In these expressions,
the operands are numeric data. Let us see some examples of relational expressions
in Table 6.15.

b4 Y x>y X ==y x+y =y |x=-2 == y+l|x*y == 6*y
5.012.0)11 (True) |0 (False)]l (True)| 1 (True) 0 (False)
& 13 |10 (False)|0 (False)]l (True)| D (False) 1 (True)

Table 6.15: Relational expressions and their resulis
We know that arithmetic operators have higher priority than relational operators.
So when arithmetic expressions are used on either side of a relational operator,
arithmetic operations will be carried out first and then the results are compared.
The table contains some expressions in which both arithmetic and relational operators
are involved. Though they contain mixed type of operators, they are called relational
expressions since the final result will be either True or False.

6.7.3 Logical expressions

Logical expressions combine two or more relational expressions with logical
operators and produce either True or False as the result. A logical expression may
contain constants, variables, logical operators and relational operators. Let us see
some examples in Table 6.16.

=, ® = Computer Science - X|

x ¥y | x>=y && x==20 | x==5||ly==0 |x==y && y+2==0 | ! (x==y)

5.0]2.0 0 (False) 1 (True) 0 (False) 1 (True)
201 13 1 (True) 0 (False) 0 (False) 1 (True)

Table 6. 16: Logical expressions and their resufis

As seen in Table 6.16, though some expressions consist of arithmetic and relational
operators in addition to logical operators, the expressions are considered as logical
expressions, This is because the operation carried out at last will be the logical
operation and the result will be either True or False.

Check yourself

1. Predict the output of the following operations if x=5 and y=3.
a. x>=10 && y>=4 c. x>=1|y>=4

b. x>=1 && y>=3 d. x>=1|y>=3
2. Predict the output if p=5, ¢=3.r=2

a. ++p-q*r/2 ¢. p-q-r*2+p

b. p*g--tr d. pt=5*qir*r/2

6.8 Type conversion

As discussed earlier arithmetic expressions are of two types, integer expressions
and real expressions. In both cases, the operands involved in the arithmetic operation
are of the same data type. But there are situations where different types of numeric
data may be involved. For example in C++, the integer expression 5 /2 gives 2 and
the real expression 5.0/2.0 gives 2.5, But what will the result of 5/2.0 or 5.0/2 be?
Conversion techniques are applied in such situations. The data type of one operand
will be converted to another. It is called type conversion and can be done in two
ways: implicitly and explicitly.

6.8.1 Implicit type conversion (Type promotion)

Implicit type conversion is performed by C++ compiler internally. In expressions
where different types of data are involved, C++ converts the lower sized operands
to the data type of highest sized operand. Since the conversion is always from
lower type to higher, itis also known as type promotion. Data types in the decreasing
order of size are as follows: 1ong double, double, float, unsigned long,
long int and unsigned int / short int.The type of the result will also

be the type of the highest sized operand.

(7%= Computer Science - X| 6. Data Types and Operators

For example, the expression 5 / 2% 3 + 2.5 gives the result 8.5. The evaluation
steps are as follows:

Stepl: 5/2— 2 (Integerdivision)

Step2: 2*3—506 (Integer multiplication)

Step3: 6+ 2.5 — 8.5 (Floating point addition, 6 is converted into 6.0)

6.8.2 Explicit type conversion (Type casting)

Unlike implicit type conversion, sometimes the programmer may decide the data
type of the result of evaluation. This is done by the programmer by specifying the
data type within parentheses to the left of the operand. Since the programmer
explicitly casts a data to the desired type, itis known as explicit type conversion or
type casting. Usually, type casting is applied on the variables in the expressions.
More examples will be discussed in Section 6.9.2.

6.9 Statements

Can vou recollect the learning hierarchy of a natural languager Alphabet, words,
phrases, sentences, paragraphs and so on. In the learning process of C++ language
we have covered character set, tokens and expressions. Now we have come to the
stage where we start communication with the computer sensibly and meaningfully
with the help of statements. Statements are the smallest executable unit of a
programming language. C++ uses the symbol semicolon (;) as the delimiter of a
staterment. Different types of statements used in C++ are declaration statements,
aﬁaigmnunt Stﬂ[ﬂmﬂﬂtﬁ, input Smtﬂmﬂﬂtﬁ, {Jutput Htat{:m{:nts, CONt Il stateiments ctc.
Fach statement has its own purpose in a C++ program. All these statements except
declaration statements are executable statements as they possess some operations
to be done by the computer. Executable statements are the instructions to the
computer. The execution of control statements will be discussed in Chapter 7. Let
us discuss the other statements.

6.9.1 Declaration statements

Fvery user-defined word should be defined in the program before it is used. We
have seen that a variable is a user-defined word and it is an identifier of a memory
location. Tt must be declared in the program before its use. When we declare a
variable, we tell the compiler about the type of data that will be stored in it. The
syntax of variable declaration is:
data_type <variablel>[, <variable2>, <variable3>,...];

The data_type in the syntax should be any valid data type of C++. The syntax
shows thar when there are more than one variables in the declaration, they are
separated by comma. The declaration statement ends with a semicolon. Typically,
variables are declared either just before they are used or at the beginning of the

S—

Computer Science - X

program. In the syntax, everything given inside the symbols | and | are optional.
The following statements are examples for variable declaration:

int rollnumber;

double wgpa, avg_score;

The first statement declares the variable rollnumber as int type so thatit will be
allocated four bytes of memory (as per GCC) and it can hold an integer number
within the range from -2147483648 to +2147483647. The second statement defines
the identifiers wgpa and avg_score as variables to hold data of deuble type.
Fach of them will be allocated 8 bytes of memory. The memory is allocated to the
variables during the compilation of the program.
Variable initialisation
We saw, in Secrion 6.5, that a variable 1s associated with two values: L-value (its
address) and R-value (its content). When a variable is declared, a memory location
with an address will be allocated for it. What will its content be? It is not blank or ()
or space! If the variable is declared with int data type, the content or R-value will
be any integer within the allowed range. But this number cannot be predicted or
will not always be the same. So we call it garbage valve. When we store a value into the
variable, the existing content will be replaced by the new one. The value can be
stored in the variable either at the time of compilation or execution. Supplying
value to a variable at the time of its declaration is called variable initialisation.
This value will be stored in the respective memory location during compile-time.
The assignment operator (=) is used for this. It can be done in two ways as given
below:

data type variable = value;

OR

data_type variable(value)

The statements: int xyz =120; and int xyz (120) ; arc examples of variable
initialisation statements. Both of these statements declare an integer variable xyz

and store the value 120 in it as shown in Figure 6.3.

More examples are: 420
float wval=0.12, b=5.234; XYz
char k="A'; Fig. 6.3: Variable

A variable can also be initialised duting the execution of the """

program and is known as dynamic inidalisation. This is done by
assigning an expression to a variable as shown in the following statements:
float product = x * y;

float interest = p*n*r/100.0;

(=@ = Computer Science - X| 6. Data Types and Operators

In the first statement, the variable product is initialised with the product of the
values stored in x and y at runtime. In the second case, the expression
p*n*r/100.0is evaluated and the value returned by it will be stored in the variable
interest.

Note that during dynamic initialisation, the variables included in the expression at
the right of assignment operator should have valid data. Otherwise it will produce
unexpected results,

const - The access modifier

Itis a good practice to use symbolic constants rather than using numeric constants
directly. For example, we can use symbolic names like Pi instead of using 22.0/7.0
or 3.14. The keyword const is used to create such symbolic constants whose value
can never be changed during execution. Consider the following statement:

float pi=3.14;

The floating point variable pi is initialised with the value 3.14. The content of pi
can be changed during the execution of the program. But if we modify the declaration
as: const float pi=3.14;

the value of pi remains constant (unaltered) throughout the execution of the
program. The read/write accessibility of the variable is modified as read only. Thus,
the const acts as an access modifier.

During software development, larger programs are developed
using collaborative effort. Several people may work together on
different portions of the same program. They may share the same
variable. In these situations, there may be occasions where one
may modify the content of the variable which will adversely affect other
person's coding. In these situations we have to keep the content of variables
unaffected by the activity of others. This can be done by using 'const’.

6.9.2 Assignment statements

When the assignment operator (=) is used to assign a value to a variable, it forms an
assignment statement. It can take any of the following syntax:
variable = constant;

variablel = wvariable?;
variable = expression;

variable = function();
In the third case, the result of the expression is stored in the variable. Similarly, in
the fourth case, the value returned by the function is stored. The concept of functions
will be discussed in Chapter 10.

iy

= ® = Computer Science - XI

Some examples of assignment statements are given below:

A = 15; b =5.8;

c =a + b; ¢ =a * b;

d = {a + bl*{c + d): r = sqgrt(25);
In the last example, sgrt () is a function that assigns the square root of 25 to the
variable r.

The left hand side (1LHS) of an assignment statement must be a variable. During
execution, the expression at the right hand side (RHS) is evaluated first. The result
is then assigned (stored) to the variable at LHS.

Assignment statement can be chained for doing multiple assignments at a time. For

instance, the statement x=y=2z=13; assigns the value 13 in three variables in the

order of z, y and x. The variables should be declared before this assignment. If we
assign a value to a variable, the previous value in it, if any, will be replaced by the
new value.

Type compatibility

During the execution of an assignment statement, if the data type of the RHS

expression is different from that of the LLHS variable, there are two possibilities.

+ The size of the data type of the variable at LHS is higher than that of the
vatiable or expression at RHS. In this case data type of the value at RHS is
promoted (type promotion) to that of the vanable ar LHS. Consider the
following code snippet:

int a=5, b=2;

float p, 4
p = b;
q=a/ p;

Here the data type of b is promoted to float and 2.0 is stored in p. When
the expression a/p 1s evaluated, the result will be 2.5 due to the type promotion
of a. So, g will be assigned with 2.5.
¢ The second possibility is that the size of the data type of LHS variable is
smaller than the size of RHS value. In this case, the higher order bits of the
result will be truncated to fit in the variable location of LHS. The following
code illustrates this.

float a=2.6;

int p, q:
p = a
g=a* 4;

Here the value of p will be 2 and that of g will be 10. The expression a* 4 is
evaluated to 10.4, but g being int type it will hold only 10.

("1 ® = Computer Science - XI 6. Data Types and Operators

Programmer can apply the explicit conversion technique to get the desired results
when there are mismatches in the data types of operands. Consider the following
code segment.

int p=5, g=2;

float =, y:

X = p/q;

y = (x+p)/a;
After executing the above code, the value of % will be 2.0 and that of v will be 3.5.
The expression p/g being an integer expression gives 2 as the result and is stored in
x as floating point value. In the last statement, the pair of parentheses gives priority
to x+p and the result will be 7.0 due to the type promotion of p. Then the result
7.0will be the first operand for the division operation and hence the result will be
3.5 since q is converted into float. Ifwe have ro get the floating point result from
p/ g to store in %, the statement should be modified as x=(float)p/g; or x=p/
(float)q: by applving type casting,

6.9.3 Input statements

Input statement is a means that allows the user to store data in the memory during
the execution of the program. We saw that the get from or extraction operator
(>>) specifies the input operation. The operands required for this operator are the
input device and a location in RAM where data is to be stored. Keyboard being a
standard console device, the stream (sequence) of dara is extracted from the
keyboard and stored in memory locations identified by variables. Since C++ isan
object oriented language, keyboard is considered as the standard input stream device
and is identified as an object by the name ein (pronounced as ‘see in’). The simplest
form of an input statement is:
streamobject >> wvariable;

Since we use keyboard as the input device, the st reamobject in the syntax will
be substituted by cin. The operand after the >> operator should strictly be a
varable. For example, the following statement reads data from the keyboard and
stores in the variable num.

0ac0

cin >> num; 0100
Extraction

= b
Figure 6.4 shows how Dbivey Sperater

data is extracted from I [o]—I"[2>]_m:u

kf:}'b[:-ard and stored in -

the variable.
Fig 6.4 : Input procedure in C++

P i

" ® = Computer Science - XI

6.9.2 Output statements

Ourtput statements make the results available to users through any output device.
‘The put to or insertion operator (<<) is used to specify this operation. The operands
in this case are the outpurt device and the data for the output. The syntax of an
output statement is:
streamobject << data;

The streamobject may be any output device and the data may be a constant, a
variable or an expression. We use monitor as the commonly used output device
and C++ identifies it as an object by the name eout (pronounced as ‘see out’).
The following are some examples of output statement with monitor as the output

device:

cout << num;

cout << “hello friends”;

cout << num+lZ;
The first statement displays
the content of the variable ! oy
num. The second statement s
displays the string constant Object o b
"helleo friends" and the cout 1—' {4 Im

last staterment shows the value
returned by the expression
num+12 (assuming that num
contains mmerie value). Figure 6.5 shows how data is inserted into the output stream
object (monitor) from the memory location num.

The tokens cin and cout are not keywords. They are predefined
words that are not part of the core C++ language, and you are
allowed to redefine them. They are defined in libraries required
by the C++ language standard. Needless to say, using a
predefined identifier for anything other than its standard meaning can
be confusing and dangerous and such practice should be avoided. The
safest and easiest practice is to treat all predefined identifiers as if
they were keywords.

Fig. 6.3: Ouiput procedure in C+4

Cascading of I/O operators
Suppose you want to input three values to different variables, say x, v, and z. You
may use the following statements:

Cin>>¥;
cin=>y;

cinrrz;

% = Computer Science - XI 6. Data Types and Operators

Bur rthese three statements can be combined to form a single statement as given
below:
cin>>a>>y>>z;

The multple use of input or output operators in a single statement is called
cascading of I1/0 operators. In the use of cascading of input operators, the values
input are assigned to the variables from left to right. In the example cin>>x>>y>>z;
the first value is assigned to x, the second to y and the third to z. While entering
values to the variables %, v and z during execution the values should be separated
by space bar, tab, or carriage return.

Similarly, if you want to display the contents of different variables (say =, v, z), use
the following statement:
COUL<<X<<Y<<Z]

If variables, constants and expressions appear together for output operations, the
above technique can be applied as in the following example:
cout<<"The number is "<<gz;

While cascading output operators, the values for the output will be retrieved from
right to left. Consider the code fragment given below:

int x=5h;

cout<<x<< " \E ' <SH+K;
The output of this code will be: 60

Itwillnotbe: 5 6
Itis to be noted that both << and >> operators cannot be used in a single statement.

In the statement x=y=2z=5; the = operator is cascaded. Here also the cascading is
from right to left.

6.10 Structure of a C++ program

We are now in a position to solve simple problems by using the statements we
discussed so far. Bur a set of statements alone does not constitute a program. A
C++ program has a typical structure. Itis a collection of one or more functions. A
function means the set of instructions to perform a particular task referred to by a
name. Since there can be many functions in a C++ program, they are usually
identified by unique names. The most essenual function needed for every C++
program is the main () function.

r—

= ™ = Computer Science - XI

The structure of a simpl:: C+ + program is given below:

#include <header file>
using namespace identifier;
int main()

{

statements;

return 0;

}

The first line is called preprocessor directive and the second line 1s the namespace
statement. The third line is the function header which is followed by a set of
statements enclosed by a pair of braces. Let us discuss each of these parts of the
program.

6.10.1 Preprocessor directives

A C++ program starts with pre-processor directives. Preprocessors are the compiler
directive statements which give instruction to the compiler to process the
information provided before actual compilation starts. Preprocessor directives are
lines included in the code that are not program statements. These lines always start
with a # (hash) symbol. The pre-processor directive #include is used to link the
header files available in the C++ library by which the facilities required in the
program can be obtained. No semicolon () is needed at the end of such lines.
Separate #include statements should be used for different header files. There are

some other pre-processor directives such as #define, $undef, etc.

6.10.2 Header files

Header files contain the information about functions, objects and predefined derived
data types and they are available along with compiler. Thete are a number of such
files to support C++ programs and they are kept in the standard library. Whichever
program requires the support of any of these resources, the concerned header file
is to be included. For example, if we want to use the predefined objects cin and
cout, we have to use the following statement at the beginning of the program.
#include <iostream>

The header file iostream contains the information about the objects cin and
cout. Eventhough header files have the extension . h, it should not be specified for
GCC. But the extension is essental for some other compilers like Turbo C++ IDE.

("1 ® = Computer Science - XI 6. Data Types and Operators

6.10.3 Concept of namespace

A program cannot have the same name for more than one identifier (variables or
functions) in the same scope. For example, in our home two or more persons (or
even living beings) will not have the same name. If there are, it will surely make
conflicts in the identity within the home. So, within the scope of our home, a name
should be unique. But our neighbouring home may have a person (or any living
being) with the same name as that of one of us. It will not make any confusion of
identity within the respective scopes. But an outsider cannort access a parricular
person by simply using the name; but the house name is also to be mentioned.

The concept of namespace is similar to a house name. Different identifiers are
associated to a particular namespace. Itis actually a group name in which each item
is unique in its name. User is allowed to create own namespaces for variables and
functions. We can use an identifier to give name to a namespace. The keyword
using rechnically tells the compiler about a namespace where it should search for
the elements used in the program. In C++, std is an abbreviation of 'standard'
and it is the standard namespace in which cout, cin and alot of other objects are
defined. So, when we want to use them in a program, we need to follow the format
std: :cout and std: : cin. This kind of explicit referencing can be avoided with
the statement using namespace std; in the program. In such a case, the compiler
searches this namespace for the elements cin, cout, endl, etc. So whenever the
computer comes across cin, cout, endl or anything of that matter in the program,
it will read it as std: : cout, std: :cin or std: :endl.

The statement using namespace std; doesn't really add a function, it is the
#include <iostream> that "loads" cin, cout, endl and all the like.

6.10.4 Themain () function

Ewvery C++ program consists of a function named main (). The execution starts at
main () and ends withinmain (). If we use any other function in the program, it is
called (or invoked) frommain (). Usually a data type precedes themain () and in
GCC, it should be int.

The function headermain () is followed by its body, which is a set of one or more
statements within a pair of braces { }. This structure is known as the definition of
themain () function. Each statement is delimited by a semicolon (). The statements
may be executable and non-executable. The executable statements represent
mstructions to be carried out by the computer. The non-executable statements are
intended for compiler or programmer. They are informative statements. The last
statement in the body of main () is return 0;. Even though we do not use this
statement, it will not make any error. Its relavance will be discussed in Chapter 10.

]

m

7 W% Computer Science - XI

C++isa free form language in the sense that it is not necessary to write each statement
in new lines. Also a single statement can take more than one line.

6.10.5 A sample program

Let us look at a complete program and familiarise ourselves with its features, in
detail. This program on execution will display a text on the screen.

#include <iostream>
using namespace std;
int main()

{
cout<<"Hello, Welcome to C++";

return 0;
}

The program has seven lines as detailed below:

Line 1: The preprocessor directive #include is used to link the header file
iostream with the program.

Line 2: The using namespace statement makes available the identifier cout in
the program.

Line 3: The header of the essential function fora C++ program, i.e., int main ().

Line 4: An opening brace { that marks the beginning of the instruction set
(program).

Line 5: An output statement, which will be executed when we run the program, to

display the text "Helle, Welcome te C++" onthe monitor. The header
file iostreamis included in this program to use cout in this statement.

Line 6: The return statement stops the execution of themain () function. This
statement is optional as far as main () is concerned.

Line 7: A closing brace } that marks the end of the program.

6.11 Guidelines for coding

A source code looks good when the coding is legible, logic is communicative and
errors if any are easily detectable. These features can be experienced if certain styles
are followed while writing programs. Some guidelines are discussed in this section
to write stylistic programs.

("1 ® = Computer Science - XI 6. Data Types and Operators

Use suitable naming convention for identifiers

Suppose we have to calculate the salary for an employee after deductions. We may
codeitas: A =B - C;

where A is the net salary, B the total salary and C total deduction. The variable
names A, B and C do not reflect the quantities they denote. If the same instruction
is expressed as follows, it would be better:

Net_salary = Gross_salary - Deduction;

The variable names used in this case help us to remember the quantity they possess.
They readily reflect their purpose. These kinds of identifiers are called mnemonic
names. The following points are to be remembered in the choice of names:

s Choose good mnemonic names for all variables, functions and procedures.
eg avg_hgt, Roll Neo, emp code, SumQfDigits, ctc.

« Use standardized prefixes and suffixes for related variables.
e.g numl, num2, num3 for three numbers

« Assign names to constants in the beginning of the program.
eg fleoat PI = 3.14;

Use clear and simple expressions

Some people have a tendency to reduce the execution time by sacrificing simplicity.
This should be avoided. Consider the following example. To find out the remainder
after division of x by n, we cancode as: y = x-(x/n) *n;

The same thing is achieved by a simpler and more elegant picce of code as shown
below:

v = X % n:
So it is better to use simpler codes in programming to make the program more
simple and clear.

Use comments wherever needed

Comments play a very important role as they provide internal documentation of a
program. They are lines in code that are added to describe the program. They are
ignored by the compiler. There are two ways to write comments in C++:

Single line comment: The characters / / (two slashes) is used to write single line
comments. The text appearing after // in a line is treated as a comment by the
C++ compiler.

Mudtiline comments: Anything written within /* and * / is treated as comment
so that the comment can take any number of lines.

T —

= &= Computer Science - Xl

But care should be taken that no relevant code of the program is included accidently

inside the comment. The following points are to be noted while commenting:

o Always insert prologues, the comments in the beginning of a program that
summarises the purpose of the program.

« Comment each variable and constant declaration.

« Use comments to explain complex program steps.

+ ltis better to include comments while writing the program itself.

« Write short and clear comments.

Relevance of indentation

In computer programming, an indent style is a convention governing the indentation
of blocks of code to convey the program’s structure, for good visibility and better
clarity. Anindentation makes the statements clear and readable. It shows the levels
of statements in the program.

The usage of these guidelines can be observed in the programs given in the next
section.

Program gallery
Let us now write programs to solve some problems ﬁlllﬂwing the cndjng gl.lideliﬂes.
The call-outs given are not part of the program. Program 6.1 displays a message.

Program 6.1: To display a message

/* This program displays the message

"Smoking is injurious to health'
: Multiline commen
on the monitor */ e

#include <iocstreamh> // To use the cout ocbject

using namespace std; // To access cout

int main() //program begins here — Single line comment

{ //The following output statement displays a message
cout << "Smoking is injurious to health";

return 0;

//end of the program

On executing Program 6.1, the output will be as follows:

Smoking is injurious to health
More illustrations on the usage of indentation can be seen in the examples given in
Chapter 7.

[~} ® & Computer Science - X| 6. Data Types and Operators

Program 6.2 accepts two integer numbers from the user, finds its sum and displays
the result.

Program 6.2: To find the sum of two integer numbers

finclude <iostream>
using namespace std;
int main(}
{ //Program begins
/* Two variables are declared to read user inputs and the
variable sum is declared to store the result
=)
int numl, num?, sum;
cout<<"Enter two numbers: "; //Prompt for input

cin>>numl>>num2; //Cascading to get two numbers
sum=numl+num?; //Assignment statement to find the sum
cout<<"Sum of the entered numbers = "<<sum;

/* The result is displayed with proper message.
Cascading of output operator is utilized iy
return 0;

}

A sample output of Program 6.2 is given below: User inputs

Enter two numbers: 5 7 " |separated by spaces
Sum of the entered numbers = 12
Let us consider another problem. A student is awarded with three scores obtained

in three Continuous Evaluation (CE) activities. The maximum score of an activity
is 20. Find the average score of the student.

Program 6.3: To find the average of three CE scores

#include <iostream>
using namespace std;
int main()}

{

int score 1, score 2, score 3;

float avg:

//BAverage of 3 numbers can be a fleoating point value
cout << "Enter the three CE scores: ":

cin >> score 1 >> score 2 >> score_3;

avg = (score_1 + score_2 + score_3) /[3.0;

'::i-,‘- !.] L.k

Computer Science - Xl

‘,f'ﬁ
1z written instead of 3.0,

cout << "Average CE score is:
return 0;

}

The result of addition will be an integer wvalue.

integer division will be
performed and will not get the correct result
LLI =

If 3

)
avg;

Program 6.3 gives the following output for the CFE scores 17, 19 and 20.

Enter the three CE scores:

Average CE score is:

17
18.666666

15

20

The assignment statement to find the average value uses an expression to the right
of assignment operator (=). This expression has two + operators and one / operator.
The precedence of / over + is changed by using parentheses for addition. The
operands for the addition operators are all int type data and hence the result will
be an integer. When this integer result is divided by 3, the output will again be an
integer. If it was so, the output of Program 6.3 would have been 18, which is not
accurate. Hence floating point constant 3.0 is used as the second operand for /
operator. [t makes the integer numerator float by type promotion.

Suppose the radius of a circle 't is given and you are requested to compute its arca
and the perimeter. As vou know, area of a circle is calculated using the formula
ot and perimeter by 2nr, where o = 3.14. Program 6.4 solves this problem.

Program 6.4: To find the area and perimeter of a circle for a given radius

#include <iostream>
using namespace std;
int main()
{
const flcat PI = 22.0/7:; //Use
float radius, area, perimeter;
cout<<"Enter the radius of the
cin»>radius;
area = PI * radius * radius;
perimeter = 2 * PI * radius;
cout<<"Area of the circle =

of

COnsL

circle:

access modifier

o Escape sequence
*‘“\n' prints a new
line after displaying
the value of Area

"<<arﬁa<<""&n";

cout<<"Perimeter of the circle = "<<perimeter;

return 0;

A sample output of Program 6.4 is as follows:

IIII‘ﬁiiillIII

=} ® (= Computer Science - X| 6. Data Types and Operators

Enter the radius of the cirele: 2.5

Area of the clrcle = 12.0642857

Perimeter of the circle = 15.714285
The last two output statements of Program 6.4 displays both the results in separate
lines. The escape sequence character ' \n' brings the cursor to the new line before
the last output statement gets executed.

Let us develop another program to find simple interest. As vou know, principal
amount, rate of interest and period are to be given as input to get the result.

Program 6.5: To find the simple interest

#include <iostream>
using namespace std;
int main()
{
float p_Amount, n_Year, i Rate, int Amount;
cout<<"Enter the principal amount in Rupees: ";
cin>>p Amount;
cout<<"Enter the number of years for the deposit: ";
cin>>n_ Year;
cout<<"Enter the rate of interest in percentage: ";
cin>>i Rate;
int_Amount = p Bmount * n Year * i Rate /100;
cout <<"Simple interest for the principal amount "
<<p_Amount<<" Rupees for a period of "<<n_Year
<<" years at the rate of interest "<<i rate
<<" is "<<int Amount<<" Rupees";
return 0;
}

A sample output of Program 6.5 is given below:

Enter the principal amount in Rupees: 100
Enter the number of years for the deposit: 2
Enter the rate of interest in percentage: 10

Simple interest for the principal amount 100 Rupees for a
period of 2 years at the rate of interest 10 is 20 Rupees

Computer Science - X

The last statement in Program 6.5 is the output statement and it spans over four
lines. Note that there is no semi colon at the end of each line and so it is considered
a single statement. On execution of the program the result may be displaved in
multiple lines depending on the size and resolution of the monitor of your computer.

Program 6.6 solves a temperature conversion problem. The temperature in degree
celsius will be given as input and the output will be its equivalent in fahrenheit.
Program 6.6: To convert temperature from Celsius to Fahrenheit

#include <iostream>
using namespace std;
int main/{)

{
float celsius, fahrenheit;
cout<<"Enter the Temperature in Celsius: ";
cin>>celsius;

fahrenheit=1.8*celsius+32;
cout << celsius<<" Degree Celsius = "

<< fahrenheit<<" Degree Fahrenheit";
return 0;

}

Program 6.6 gives a sample output as follows:
Enter the Temperature in Celsius: 37

37 Degree Celsius = 98,5993998 Degree Fahrenheilt

We know that each character literal in C++ has a unique value called its ASCII
code. These values are integers. Let us write a program to find the ASCII code of a
given character.

Program 6.7: To find the ASCII value of a character

#include <iostream>
using namespace std;
int main{()
{
char ch;
int asc;
cout << "Enter the character: ";
cin =>. ch;
asc = ch;
cout << "ASCII wvalue of "<<ch<<" = " << asc;
return 0;

=) ® = Computer Science - X| 6. Data Types and Operators

A sampler output of Program 6.7 is given below:

Enter the character: A

ASCII walue of A = 65

Let us sum up

Data types are means to identify the type of data and associated operations handling
it. Each data type has a specific size and a range of data. Data types are used to
declare variables. Type modifiers help handling a higher range of data and are used
with data types to declare variables. Different types of operators are available in
C++ for various operations. When operators are combined with operands (data),
expressions are formed. There are mainly three types of expressions - arithmetic,
relational and logical. Type conversion methods are used to get desired results
from arithmetic expressions. Statements are the smallest executable unit of a
program. Variable declaration statements define the variables in the program and
they will be allocated memory space. The executable statements like assignment
staterments, input statements, output statements, etc. help giving instructions to the
computer. Some special operators like arithmetic assignment, increment, decrement,
ctc. make the expressions and statements compact and the execution faster. C++
program has a typical structure and it must be followed while writing programs.
Stylistic guidelines shall be followed to make the program attractive and
communicative among humans.

Learning outcomes

Atter the completion of this chapter the learner will be able to

o identify the various data types in C++.

 list and choose appropriate data type modifiers.

« choose appropriate variables.

¢ experiment with various operators.

« apply the various 1/O operators.

e write various expressions and statements.

 identify the structure of a simple C++ program.

« identify the need for stylistic guidelines while writing a program.
o write simple programs using C++,

e

1. Write a program thart asks the user to enter the weight in grams, and then
display the equivalent in Kilograms.

2. Write a program to generate the following table
2013 100%
2012 99.9%
2011 95.5%
2010 90.81%
2009 85%

Use a single cout statement for output. (Hint: Make use of \n and \t)

4. Write a short program that asks for your height in Meter and Centimeter and
converts it to Feet and inches. (1 foot = 12 inches, 1 inch = 2.54 cm).

5. Write a program to compute simple interest and compound interest.

6. Write a program to : (i) print ASCII code for a given digit, (i) print ASCII
code for backspace. (Hint : Store escape sequence for backspace in an integer
variable).

7. Write a program to accept a time in seconds and convert into hrs: mins: secs
format. For example, if 3700 seconds is the input, the output should be Thr: 1
min: 40 secs.

Sarrnple qaes tions

Very short answer type
1. What are data types? List all predefined data types in C++.
2. Whatis a constant?

What is dynamic initalisation of variables?

What is type casting?

Write the purpose of declaration statement?

3

4

5

6. Name the header file to be included to use cin and cout in programs?
7. What is the input operator ">>" and output operator "<<" called ?
8

What will be the result of a = 5/3 if ais (i) float and (ii) int ?

= ® (= Computer Science - X| 6. Data Types and Operators

9. What will be the value of P= P++ + ++i where 1 1822 and P= 3 initiall}r?

10. Find the value given by the following expression if | =5 initially.

(i) (5*++))%6 (i) (5%++)%6
11. What will be the order of evaluation for following expressions?
(i) i+5>=j-6 (i) s+10<p-2+2*q

12, What will be the result of the following if ans 1s 6 initally?
(1) cour <<ans = 8; (i) cour << ans == §

Short answer type

1. What is a variable? List the two values associated with it.

2. Inhow many ways can a variable be declared in C++7

3. Explain the impact of type modifiers of C++ in variable declaration.

5. What is the role of the keyword 'const'?

6. Explain how prefix form of increment operation differs from postfix form.
8. Write down the operation performed by sizeof operator.

9. Explain the two methods of type conversions.

10. What would happen if main () is not present in a program?

11. Identify the errors in the following code segments:

(a) int main{()

{ cout << "Enter two numbers"

cin >> num >> auto

float area = Length * breadth ; }
(b) #include <iostream>

using namespace std

void Main()

{ int a, b

cin <<a <<b

max={a > b) a:b

cout>max

}
12. Find out the errors, if any, in the following + + statements:
(i) cout<< "a=" a; (v) cin >> "\n" >> y ;
(i) m=5,n=12;015 (vi) cout >> \n "abc"

Computer Science - XI

(i) cout << "x" ; <<x; (vii) a =b + ¢
(iv) cin >> y (vill) break = x

13. What is the role of relational operators? Distinguish between ==and =.

14. Comments are useful to enhance readability and understandability of a
program. Justify this statement with examples.

Long answer type

1. Explain the operators of C++ in detail.

2. Explain the different types of expressions in C++ and the methods of type
conversions in detail.

3. Write the working of arithmetic assignment operator? Explain all arithmetic
assignment operators with the help of examples.

	7-26
	27-76
	77-108
	109-130
	131-144
	145-180

